1932

Abstract

The evolution of eusociality is a perennial issue in evolutionary biology, and genomic advances have fueled steadily growing interest in the genetic changes underlying social evolution. Along with a recent flurry of research on comparative and evolutionary genomics in different eusocial insect groups (bees, ants, wasps, and termites), several mechanistic explanations have emerged to describe the molecular evolution of eusociality from solitary behavior. These include solitary physiological ground plans, genetic toolkits of deeply conserved genes, evolutionary changes in protein-coding genes, regulation, and the structure of gene networks, epigenetics, and novel genes. Despite this proliferation of ideas, there has been little synthesis, even though these ideas are not mutually exclusive and may in fact be complementary. We review available data on molecular evolution of insect sociality and highlight key biotic and abiotic factors influencing social insect genomes. We then suggest both phylogenetic and ecological evolutionary developmental biology (eco-evo-devo) perspectives for a more synthetic view of molecular evolution in insect societies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-031616-035601
2017-01-31
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ento/62/1/annurev-ento-031616-035601.html?itemId=/content/journals/10.1146/annurev-ento-031616-035601&mimeType=html&fmt=ahah

Literature Cited

  1. Abouheif E, Favé MJ, Ibarrarán-Viniegra AS, Lesoway MP, Rafiqi AM, Rajakumar R. 1.  2014. Eco-evo-devo: The time has come. Ecological Genomics: Ecology and the Evolution of Genes and Genomes ed. CR Landry, N Aubin-Horth 107–25 Dordrecht, Neth: Springer [Google Scholar]
  2. Alaux C, Le Conte Y, Adams HA, Rodriguez-Zas S, Grozinger CM. 2.  et al. 2009. Regulation of brain gene expression in honey bees by brood pheromone. Genes Brain Behav. 8:309–19 [Google Scholar]
  3. Alaux C, Sinha S, Hasadsri L, Hunt GJ, Guzmán-Novoa E. 3.  et al. 2009. Honey bee aggression supports a link between gene regulation and behavioral evolution. PNAS 106:15400–5 [Google Scholar]
  4. Amdam GV, Csondes A, Fondrk MK, Page RE Jr. 4.  2006. Complex social behaviour derived from maternal reproductive traits. Nature 439:76–78 [Google Scholar]
  5. Amdam GV, Norberg K, Fondrk MK, Page RE Jr. 5.  2004. Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. PNAS 101:11350–55 [Google Scholar]
  6. Ament SA, Blatti CA, Alaux C, Wheeler MM, Toth AL. 6.  et al. 2012. New meta-analysis tools reveal common transcriptional regulatory basis for multiple determinants of behavior. PNAS 109:E1801–10 [Google Scholar]
  7. Ament SA, Corona M, Pollock HS, Robinson GE. 7.  2008. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. PNAS 105:4226–31 [Google Scholar]
  8. Ament SA, Velarde RA, Kolodkin MH, Moyse D, Robinson GE. 8.  2011. Neuropeptide Y-like signalling and nutritionally mediated gene expression and behaviour in the honey bee. Insect Mol. Biol. 20:335–45 [Google Scholar]
  9. Ament SA, Wang Y, Chen C-C, Blatti CA, Hong F. 9.  et al. 2012. The transcription factor ultraspiracle influences honey bee social behavior and behavior-related gene expression. PLOS Genet. 8:e1002596 [Google Scholar]
  10. Anderson KE, Gadau J, Mott BM, Johnson RA, Altamirano A. 10.  et al. 2006. Distribution and evolution of genetic caste determination in Pogonomyrmex seed-harvester ants. Ecology 87:2171–84 [Google Scholar]
  11. Asgari S. 11.  2013. MicroRNA functions in insects. Insect Biochem. Mol. Biol. 43:388–97 [Google Scholar]
  12. Beani L. 12.  2006. Crazy wasps: when parasites manipulate the Polistes phenotype. Ann. Zool. Fenn. 43:564–74 [Google Scholar]
  13. Behura S, Whitfield C. 13.  2010. Correlated expression patterns of microRNA genes with age-dependent behavioural changes in honeybee. Insect Mol. Biol. 19:431–39 [Google Scholar]
  14. Bell AM, Robinson GE. 14.  2011. Behavior and the dynamic genome. Science 332:1161–62 [Google Scholar]
  15. Berens AJ, Hunt JH, Toth AL. 15.  2015. Comparative transcriptomics of convergent evolution: Different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Mol. Biol. Evol. 32:690–703 [Google Scholar]
  16. Berens AJ, Hunt JH, Toth AL. 16.  2015. Nourishment level affects caste-related gene expression in Polistes wasps. BMC Genom. 16:235 [Google Scholar]
  17. Berens AJ, Tibbetts EA, Toth AL. 17.  2016. Candidate genes for individual recognition in Polistes fuscatus paper wasps. J. Comp. Physiol. A 202:115–29 [Google Scholar]
  18. Bessoltane N, Toffano-Nioche C, Solignac M, Mougel F. 18.  2012. Fine scale analysis of crossover and non-crossover and detection of recombination sequence motifs in the honeybee (Apis mellifera). PLOS ONE 7:e36229 [Google Scholar]
  19. Bonasio R, Li Q, Lian J, Mutti NS, Jin L. 19.  et al. 2012. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr. Biol. 22:1755–64 [Google Scholar]
  20. Bonasio R, Zhang G, Ye C, Mutti NS, Fang X. 20.  et al. 2010. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329:1068–71 [Google Scholar]
  21. Brady SG, Sipes S, Pearson A, Danforth BN. 21.  2006. Recent and simultaneous origins of eusociality in halictid bees. Proc. R. Soc. B 273:1643–49 [Google Scholar]
  22. Breed M, Sanchez L. 22.  2010. Both environment and genetic makeup influence behavior. Nat. Educ. Knowl. 3:68 [Google Scholar]
  23. Cahan SH, Blumstein DT, Sundström L, Liebig J, Griffin A. 23.  2002. Social trajectories and the evolution of social behavior. Oikos 96:206–16 [Google Scholar]
  24. Cahan SH, Keller L. 24.  2003. Complex hybrid origin of genetic caste determination in harvester ants. Nature 424:306–9 [Google Scholar]
  25. Cardinal S, Danforth BN. 25.  2011. The antiquity and evolutionary history of social behavior in bees. PLOS ONE 6:e21086 [Google Scholar]
  26. Carroll SB. 26.  2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36 [Google Scholar]
  27. Cassill LD, Tschinkel RW. 27.  Task selection by workers of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 45:301–10 [Google Scholar]
  28. Chaimanee V, Chantawannakul P, Chen Y, Evans JD, Pettis JS. 28.  2012. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. J. Insect Physiol. 58:1090–95 [Google Scholar]
  29. Chandrasekaran S, Ament SA, Eddy JA, Rodriguez-Zas SL, Schatz BR. 29.  et al. 2011. Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. PNAS 108:18020–25 [Google Scholar]
  30. Chen X, Yu X, Cai Y, Zheng H, Yu D. 30.  et al. 2010. Next-generation small RNA sequencing for microRNAs profiling in the honey bee Apis mellifera. Insect Mol. Biol. 19:799–805 [Google Scholar]
  31. Choe JC, Crespi BJ. 31.  1997. The Evolution of Social Behaviour in Insects and Arachnids Cambridge, UK: Cambridge Univ. Press
  32. Crespi BJ, Yanega D. 32.  1995. The definition of eusociality. Behav. Ecol. 6:109–15 [Google Scholar]
  33. Crozier R. 33.  1976. Counter-intuitive property of effective population size. Nature 262:384 [Google Scholar]
  34. Currie CR. 34.  2001. A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu. Rev. Microbiol. 55:357–80 [Google Scholar]
  35. Daugherty T, Toth AL, Robinson GE. 35.  2011. Nutrition and division of labor: effects on foraging and brain gene expression in the paper wasp Polistes metricus. Mol. Ecol. 20:5337–47 [Google Scholar]
  36. de Bekker C, Ohm RA, Loreto RG, Sebastian A, Albert I. 36.  et al. 2015. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genom. 16:620 [Google Scholar]
  37. Evans HE, West-Eberhard MJ. 37.  1970. The Wasps Ann Arbor: Univ. Michigan Press
  38. Evans JD, Wheeler DE. 38.  1999. Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. PNAS 96:5575–80 [Google Scholar]
  39. Ferreira PG, Patalano S, Chauhan R, Ffrench-Constant R, Gabaldón TGR. 39.  et al. 2013. Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biol. 14R20
  40. Gadagkar R. 40.  1997. The evolution of caste polymorphism in social insects: genetic release followed by diversifying evolution. J. Genet. 76:167–79 [Google Scholar]
  41. Galbraith DA, Kocher SD, Glenn T, Albert I, Hunt GJ. 41.  et al. 2016. Testing the kinship theory of intragenomic conflict in honey bees (Apis mellifera). PNAS 113:1020–25 [Google Scholar]
  42. Galbraith DA, Yang X, Nino EL, Yi S, Grozinger C. 42.  2015. Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera). PLOS Pathog 11:e1004713 [Google Scholar]
  43. Gibbs J, Brady SG, Kanda K, Danforth BN. 43.  2012. Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). Mol. Phylogenet. Evol. 65:926–39 [Google Scholar]
  44. Gilbert SF, Bosch TCG, Ledón-Rettig C. 44.  2015. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat. Rev. Genet. 16:611–22 [Google Scholar]
  45. Glastad K, Hunt B, Yi S, Goodisman M. 45.  2011. DNA methylation in insects: on the brink of the epigenomic era. Insect Mol. Biol. 20:553–65 [Google Scholar]
  46. Graham AM, Munday MD, Kaftanoglu O, Page RE Jr., Amdam GV, Rueppell O. 46.  2011. Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.). BMC Evol. Biol. 11:95 [Google Scholar]
  47. Grozinger CM, Fan YL, Hoover SER, Winston ML. 47.  2007. Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera). Mol. Ecol. 16:4837–48 [Google Scholar]
  48. Grozinger CM, Sharabash NM, Whitfield CW, Robinson GE. 48.  2003. Pheromone-mediated gene expression in the honey bee brain. PNAS 100:14519–25 [Google Scholar]
  49. Guo X, Su S, Skogerboe G, Dai S, Li W. 49.  et al. 2013. Recipe for a busy bee: microRNAs in honey bee caste determination. PLOS ONE 8:e81661 [Google Scholar]
  50. Harpur BA, Kent CF, Molodtsova D, Lebon JM, Alqarni AS. 50.  et al. 2014. Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. PNAS 111:2614–19 [Google Scholar]
  51. Herb BR, Wolschin F, Hansen KD, Aryee MJ, Langmead B. 51.  et al. 2012. Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat. Neurosci. 15:1371–73 [Google Scholar]
  52. Hines HM, Hunt JH, O'Connor TK, Gillespie JJ, Cameron SA. 52.  2007. Multigene phylogeny reveals eusociality evolved twice in vespid wasps. PNAS 104:3295–99 [Google Scholar]
  53. Hoekstra HE, Coyne JA. 53.  2007. The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016 [Google Scholar]
  54. Hölldobler B, Wilson EO. 54.  2009. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies New York: WW Norton & Company
  55. Hughes D. 55.  2013. Pathways to understanding the extended phenotype of parasites in their hosts. J. Exp. Biol. 216:142–47 [Google Scholar]
  56. Hughes WO, Boomsma JJ. 56.  2008. Genetic royal cheats in leaf-cutting ant societies. PNAS 105:5150–53 [Google Scholar]
  57. Hunt BG, Wyder S, Elango N, Werren JH, Zdobnov EM. 57.  et al. 2010. Sociality is linked to rates of protein evolution in a highly social insect. Mol. Biol. Evol. 27:497–500 [Google Scholar]
  58. Hunt JH. 58.  2007. The Evolution of Social Wasps New York: Oxford Univ. Press
  59. Hunt JH, Amdam GV. 59.  2005. Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science 308:264–67 [Google Scholar]
  60. Hunt JH, Richard F-J. 60.  2013. Intracolony vibroacoustic communication in social insects. Insect Soc. 60:403–17 [Google Scholar]
  61. Jandt JM, Bengston S, Pinter-Wollman N, Pruitt JN, Raine NE. 61.  et al. 2014. Behavioural syndromes and social insects: personality at multiple levels. Biol. Rev. 89:48–67 [Google Scholar]
  62. Jasper WC, Linksvayer TA, Atallah J, Friedman D, Chiu JC, Johnson BR. 62.  2014. Large-scale coding sequence change underlies the evolution of postdevelopmental novelty in honey bees. Mol. Biol. Evol. 33:1379 [Google Scholar]
  63. Johnson BR, Tsutsui ND. 63.  2011. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee. BMC Genom. 12:164 [Google Scholar]
  64. Jones BM, Wcislo WT, Robinson GE. 64.  2015. Developmental transcriptome for a facultatively eusocial bee, Megalopta genalis. G3 Genes Genomes Genet 5:2127–35 [Google Scholar]
  65. Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D. 65.  et al. 2015. Genomic signatures of evolutionary transitions from solitary to group living. Science 348:1139–43 [Google Scholar]
  66. Kent CF, Zayed A. 66.  2013. Evolution of recombination and genome structure in eusocial insects. Commun. Integr. Biol. 6:18012–17 [Google Scholar]
  67. Kerr WE. 67.  1974. Sex determination in bees. III. Caste determination and genetic control in Melipona. Insectes Sociaux 21:357–67 [Google Scholar]
  68. Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG. 68.  2009. More than just orphans: Are taxonomically-restricted genes important in evolution?. Trends Genet. 25:404–13 [Google Scholar]
  69. Khamis AM, Hamilton AR, Medvedeva YA, Alam T, Alam I. 69.  et al. 2015. Insights into the transcriptional architecture of behavioral plasticity in the honey bee Apis mellifera. Sci. Rep. 5:1136 [Google Scholar]
  70. Kocher SD, Paxton RJ. 70.  2014. Comparative methods offer powerful insights into social evolution in bees. Apidologie 45:289–305 [Google Scholar]
  71. Kocher SD, Pellissier L, Veller C, Purcell J, Nowak MA. 71.  et al. 2014. Transitions in social complexity along elevational gradients reveal a combined impact of season length and development time on social evolution. Proc. R. Soc. B 281:627 [Google Scholar]
  72. Kocher SD, Tsuruda JM, Gibson JD, Emore CM, Arechavaleta-Velasco ME. 72.  et al. 2015. A search for parent-of-origin effects on honey bee gene expression. G3 Genes Genomes Genet. 5:1657–62 [Google Scholar]
  73. Korb J, Schmidinger S. 73.  2004. Help or disperse? Cooperation in termites influenced by food conditions. Behav. Ecol. Sociobiol. 56:89–95 [Google Scholar]
  74. Korb J, Weil T, Hoffmann K, Foster KR, Rehli M. 74.  2009. A gene necessary for reproductive suppression in termites. Science 324:758 [Google Scholar]
  75. Krieger MJ, Ross KG. 75.  2002. Identification of a major gene regulating complex social behavior. Science 295:328–32 [Google Scholar]
  76. Kronauer DJ. 76.  2008. Genomic imprinting and kinship in the social Hymenoptera: What are the predictions?. J. Theor. Biol. 254:737–40 [Google Scholar]
  77. Kucharski R, Maleszka J, Foret S, Maleszka R. 77.  2008. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–30 [Google Scholar]
  78. Libbrecht RO, Oxley PR, Keller L, Kronauer DJC. 78.  2016. Robust DNA methylation in the clonal raider ant brain. Curr. Biol. 26:391–95 [Google Scholar]
  79. Li-Byarlay H, Li Y, Stroud H, Feng S, Newman TC. 79.  et al. 2013. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. PNAS 110:12750–55 [Google Scholar]
  80. Lihoreau M, Latty T, Chittka L. 80.  2012. An exploration of the social brain hypothesis in insects. Front. Physiol. 3:442 [Google Scholar]
  81. Linksvayer TA, Wade MJ. 81.  2005. The evolutionary origin and elaboration of sociality in the aculeate Hymenoptera: maternal effects, sib-social effects, and heterochrony. Q. Rev. Biol. 80:317–36 [Google Scholar]
  82. Linksvayer TA, Wade MJ. 82.  2009. Genes with social effects are expected to harbor more sequence variation within and between species. Evolution 63:1685–96 [Google Scholar]
  83. Liu F, Peng W, Li Z, Li W, Li L. 83.  et al. 2012. Next-generation small RNA sequencing for microRNAs profiling in Apis mellifera: comparison between nurses and foragers. Insect Mol. Biol. 21:297–303 [Google Scholar]
  84. Lo N, Hayashi Y, Kitade O. 84.  2009. Should environmental caste determination be assumed for termites?. Am. Nat. 173:848–53 [Google Scholar]
  85. Lockett GA, Helliwell P, Maleszka R. 85.  2010. Involvement of DNA methylation in memory processing in the honey bee. Neuroreport 21:812–16 [Google Scholar]
  86. Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. 86.  2010. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLOS Biol 8:e1000506 [Google Scholar]
  87. Manfredini F, Riba-Grognuz O, Wurm Y, Keller L, Shoemaker D, Grozinger CM. 87.  2013. Sociogenomics of cooperation and conflict during colony founding in the fire ant Solenopsis invicta. PLOS Genet. 9:e1003633 [Google Scholar]
  88. Misof B, Liu S, Meusemann K, Peters RS, Donath A. 88.  et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–67 [Google Scholar]
  89. Moczek AP, Snell-Rood EC. 89.  2008. The basis of bee-ing different: the role of gene silencing in plasticity. Evol. Dev. 10:511–13 [Google Scholar]
  90. Molodtsova D, Harpur BA, Kent CF, Seevananthan K, Zayed A. 90.  2014. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviors. Front. Genet. 5:431 [Google Scholar]
  91. Morandin C, Dhaygude K, Paviala J, Trontti K, Wheat C, Helanterä H. 91.  2015. Caste-biases in gene expression are specific to developmental stage in the ant Formica exsecta. J. Evol. Biol. 28:1705–18 [Google Scholar]
  92. Morandin C, Tin MMY, Abril S, Gómez C, Pontieri L. 92.  et al. 2016. Comparative transcriptomics reveals the conserved building blocks involved in parallel evolution of diverse phenotypic traits in ants. Genome Biol. 17:43 [Google Scholar]
  93. Moritz RF, Lattorff HMG, Neumann P, Kraus FB, Radloff SE, Hepburn HR. 93.  2005. Rare royal families in honeybees, Apis mellifera. Naturwissenschaften 92:488–91 [Google Scholar]
  94. Mueller UG. 94.  2012. Symbiont recruitment versus ant-symbiont co-evolution in the attine ant-microbe symbiosis. Curr. Opin. Microbiol. 15:269–77 [Google Scholar]
  95. Nygaard S, Zhang G, Schiott M, Li C, Wurm Y. 95.  et al. 2011. The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Res. 21:1339–48 [Google Scholar]
  96. Oldroyd BP, Allsopp MH, Roth KM, Remnant EJ, Drewell RA, Beekman M. 96.  2014. A parent-of-origin effect on honeybee worker ovary size. Proc. R. Soc. B 281:20132388 [Google Scholar]
  97. Oldroyd BP, Beekman M. 97.  2008. Effects of selection for honey bee worker reproduction on foraging traits. PLOS Biol. 6:e56 [Google Scholar]
  98. Ometto L, Shoemaker D, Ross KG, Keller L. 98.  2011. Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species. Mol. Biol. Evol. 28:1381–92 [Google Scholar]
  99. Page RE, Amdam GV. 99.  2007. The making of a social insect: developmental architectures of social design. BioEssays 29:334–43 [Google Scholar]
  100. Patalano S, Vlasova A, Wyatt C, Ewels P, Camara F. 100.  et al. 2015. Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. PNAS 112:13970–75 [Google Scholar]
  101. Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP. 101.  2010. Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol. Evol. 25:459–67 [Google Scholar]
  102. Pigliucci M, Müller GB. 102.  2010. Evolution: The Extended Synthesis Cambridge, MA: MIT Press
  103. Purcell J. 103.  2011. Geographic patterns in the distribution of social systems in terrestrial arthropods. Biol. Rev. 86:475–91 [Google Scholar]
  104. Purcell J, Brelsford A, Wurm Y, Perrin N, Chapuisat M. 104.  2014. Convergent genetic architecture underlies social organization in ants. Curr. Biol. 24:2728–32 [Google Scholar]
  105. Queller DC. 105.  2003. Theory of genomic imprinting conflict in social insects. BMC Evol. Biol. 3:15 [Google Scholar]
  106. Rehan SM, Berens AJ, Toth AL. 106.  2014. At the brink of eusociality: transcriptomic correlates of worker behaviour in a small carpenter bee. BMC Evol. Biol. 14:260 [Google Scholar]
  107. Rehan SM, Glastad KM, Lawson SP, Hunt BG. 107.  2016. The genome and methylome of a subsocial small carpenter bee, Ceratina calcarata. Genome Biol. Evol. 8:1401–10 [Google Scholar]
  108. Rehan SM, Leys R, Schwarz MP. 108.  2012. A mid-Cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality. PLOS ONE 7:e34690 [Google Scholar]
  109. Rehan SM, Toth AL. 109.  2015. Climbing the social ladder: the molecular evolution of sociality. Trends Ecol. Evol. 30:426–33 [Google Scholar]
  110. Robinson GE, Ben-Shahar Y. 110.  2002. Social behavior and comparative genomics: new genes or new gene regulation?. Genes Brain Behav. 1:197–203 [Google Scholar]
  111. Robinson GE, Grozinger CM, Whitfield CW. 111.  2005. Sociogenomics: social life in molecular terms. Nat. Rev. Genet. 6:257–70 [Google Scholar]
  112. Ross KG, Keller L. 112.  1995. Ecology and evolution of social organization: insights from fire ants and other highly eusocial insects. Annu. Rev. Ecol. Syst. 26:631–56 [Google Scholar]
  113. Ross L, Blackmon H, Lorite P, Gokhman V, Hardy N. 113.  2015. Recombination, chromosome number and eusociality in the Hymenoptera. J. Evol. Biol. 28:105–16 [Google Scholar]
  114. Sadd BM, Barribeau SM, Bloch G, de Graaf DC, Dearden P. 114.  et al. 2015. The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol 16:76 [Google Scholar]
  115. Scharf ME, Buckspan CE, Grzymala TL, Zhou X. 115.  2007. Regulation of polyphenic caste differentiation in the termite Reticulitermes flavipes by interaction of intrinsic and extrinsic factors. J. Exp. Biol. 210:4390–98 [Google Scholar]
  116. Scharf ME, Wu-Scharf D, Zhou X, Pittendrigh BR, Bennett GW. 116.  2005. Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. Insect Mol. Biol. 14:31–44 [Google Scholar]
  117. Schrader L, Simola DF, Heinze JR, Oettler J. 117.  2015. Sphingolipids, transcription factors, and conserved toolkit genes: developmental plasticity in the ant Cardiocondyla obscurior. Mol. Biol. Evol. 32:1474–86 [Google Scholar]
  118. Schwander T, Humbert J-Y, Brent CS, Cahan SH, Chapuis L. 118.  et al. 2008. Maternal effect on female caste determination in a social insect. Curr. Biol. 18:265–69 [Google Scholar]
  119. Schwarz RS, Huang Q, Evans JD. 119.  2015. Hologenome theory and the honey bee pathosphere. Curr. Opin. Insect Sci. 10:1–7 [Google Scholar]
  120. Sen Sarma M, Rodriguez-Zas SL, Hong F, Zhong S, Robinson GE. 120.  2009. Transcriptomic profiling of central nervous system regions in three species of honey bee during dance communication behavior. PLOS ONE 4:e6408 [Google Scholar]
  121. Sheehan MJ, Botero CA, Hendry TA, Sedio BE, Jandt JM. 121.  et al. 2015. Different axes of environmental variation explain the presence vs. extent of cooperative nest founding associations in Polistes paper wasps. Ecol. Lett. 18:1057–67 [Google Scholar]
  122. Simola DF, Graham RJ, Brady CM, Enzmann BL, Desplan C. 122.  et al. 2016. Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science 351:aac6633 [Google Scholar]
  123. Simola DF, Wissler L, Donahue G, Waterhouse RM, Helmkampf M, Roux J. 123.  2013. Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. Genome Res. 23:1235–47 [Google Scholar]
  124. Simola DF, Ye C, Mutti NS, Dolezal K, Bonasio R. 124.  et al. 2013. A chromatin link to caste identity in the carpenter ant Camponotus floridanus. Genome Res. 23:486–96 [Google Scholar]
  125. Sinha S, Ling X, Whitfield CW, Zhai C, Robinson GE. 125.  2006. Genome scan for cis-regulatory DNA motifs associated with social behavior in honey bees. PNAS 103:16352–57 [Google Scholar]
  126. Sirvio A, Pamilo P, Johnson RA, Page RE Jr., Gadau J. 126.  2011. Origin and evolution of the dependent lineages in the genetic caste determination system of Pogonomyrmex ants. Evolution 65:869–84 [Google Scholar]
  127. Smith CD, Smith CR, Mueller U, Gadau J. 127.  2010. Ant genomics: strength and diversity in numbers. Mol. Ecol. 19:31–35 [Google Scholar]
  128. Standage DS, Berens AJ, Glastad KM, Severin AJ, Brendel VP, Toth AL. 128.  2016. Genome, transcriptome, and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol. Ecol. 25:1769–84 [Google Scholar]
  129. Suen G, Teiling C, Li L, Holt C, Abouheif E. 129.  et al. 2011. The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLOS Genet. 7:e1002007 [Google Scholar]
  130. Sumner S. 130.  2014. The importance of genomic novelty in social evolution. Mol. Ecol. 23:26–28 [Google Scholar]
  131. Suryanarayanan S, Hermanson JC, Jeanne RL. 131.  2011. A mechanical signal biases caste development in a social wasp. Curr. Biol. 21:231–35 [Google Scholar]
  132. Suzuki Y, Nijhout HF. 132.  2006. Evolution of a polyphenism by genetic accommodation. Science 311:650–52 [Google Scholar]
  133. Tallamy DW, Wood TK. 133.  1986. Convergence patterns in subsocial insects. Annu. Rev. Entomol. 31:369–90 [Google Scholar]
  134. Terrapon N, Li C, Robertson HM, Ji L, Meng X. 134.  et al. 2014. Molecular traces of alternative social organization in a termite genome. Nat. Comm. 5:3636 [Google Scholar]
  135. Tilley CA, Oldroyd BP. 135.  1997. Unequal subfamily proportions among honey bee queen and worker brood. Anim. Behav. 54:1483–90 [Google Scholar]
  136. Toth AL, Robinson GE. 136.  2007. Evo-devo and the evolution of social behavior. Trends Genet. 23:334–41 [Google Scholar]
  137. Toth AL, Tooker JF, Radhakrishnan S, Minard R, Henshaw MT, Grozinger CM. 137.  2014. Shared genes related to aggression, rather than chemical communication, are associated with reproductive dominance in paper wasps (Polistes metricus). BMC Genom. 15:75 [Google Scholar]
  138. Toth AL, Varala K, Henshaw MT, Rodriguez-Zas SL, Hudson ME, Robinson GE. 138.  2010. Brain transcriptomic analysis in paper wasps identifies genes associated with behaviour across social insect lineages. Proc. R. Soc. B 277:2139–48 [Google Scholar]
  139. Toth AL, Varala K, Newman TC, Miguez FE, Hutchison SK. 139.  et al. 2007. Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318:441–44 [Google Scholar]
  140. Trible W, Ross KG. 140.  2016. Chemical communication of queen supergene status in an ant. J. Evol. Biol. 29:502–13 [Google Scholar]
  141. Waddington CH. 141.  1961. Genetic assimilation. Adv. Genet. 10:257–93 [Google Scholar]
  142. Wang J, Wurm Y, Nipitwattanaphon M, Riba-Grognuz O, Huang Y-C. 142.  et al. 2013. A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493:664–68 [Google Scholar]
  143. Wcislo WT, Danforth BN. 143.  1997. Secondarily solitary: the evolutionary loss of social behavior. Trends Ecol. Evol. 12:468–74 [Google Scholar]
  144. Weaver DB, Anzola JM, Evans JD, Reid JG, Reese JT. 144.  et al. 2007. Computational and transcriptional evidence for microRNAs in the honey bee genome. Genome Biol. 8R97
  145. Weil T, Rehli M, Korb J. 145.  2007. Molecular basis for the reproductive division of labour in a lower termite. BMC Genom. 8:198 [Google Scholar]
  146. Weiner SA, Galbraith DA, Adams DC, Valenzuela N, Noll FB. 146.  et al. 2013. A survey of DNA methylation across social insect species, life stages, and castes reveals abundant and caste-associated methylation in a primitively social wasp. Naturwissenschaften 100:795–99 [Google Scholar]
  147. Weiner SA, Toth AL. 147.  2012. Epigenetics in social insects: a new direction for understanding the evolution of castes. Genet. Res. Int. 2012:609810 [Google Scholar]
  148. Weinstock GM, Robinson GE, Gibbs RA, Worley KC, Evans JD. 148.  et al. 2006. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–49 [Google Scholar]
  149. West-Eberhard MJ. 149.  1987. Flexible strategy and social evolution. Animal Societies: Theories and Facts ed. YB Itō, JL, J Kikkawa 35–51 Tokyo: Jpn. Sci. Soc. Press [Google Scholar]
  150. West-Eberhard MJ. 150.  1996. Wasp societies as microcosms for the study of development and evolution. Natural History and Evolution of Paper Wasps ed. MJ West-Eberhard, S Turillazzi New York: Oxford Univ. Press [Google Scholar]
  151. West-Eberhard MJ. 151.  2003. Developmental Plasticity and Evolution Oxford, UK: Oxford Univ. Press
  152. Wheeler D. 152.  1996. The role of nourishment in oogenesis. Annu. Rev. Entomol. 41:407–31 [Google Scholar]
  153. Whitfield CW, Cziko AM, Robinson GE. 153.  2003. Gene expression profiles in the brain predict behavior in individual honey bees. Science 302:296–99 [Google Scholar]
  154. Wilfert L, Gadau J, Schmid-Hempel P. 154.  2007. Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity 98:189–97 [Google Scholar]
  155. Wilkins JF, Haig D. 155.  2003. What good is genomic imprinting: the function of parent-specific gene expression. Nat. Rev. Genet. 4:359–68 [Google Scholar]
  156. Wilson EO. 156.  1971. The Insect Societies Cambridge, MA: Harvard Univ. Press
  157. Wilson EO. 157.  2008. One giant leap: how insects achieved altruism and colonial life. BioScience 58:17–25 [Google Scholar]
  158. Wilson-Rich N, Spivak M, Fefferman NH, Starks PT. 158.  2009. Genetic, individual, and group facilitation of disease resistance in insect societies. Annu. Rev. Entomol. 54:405–23 [Google Scholar]
  159. Wissler L, Gadau JR, Simola DF, Helmkampf M, Bornberg-Bauer E. 159.  2013. Mechanisms and dynamics of orphan gene emergence in insect genomes. Genome Biol. Evol. 5:439–55 [Google Scholar]
  160. Wittkopp PJ, Haerum BK, Clark AG. 160.  2004. Evolutionary changes in cis and trans gene regulation. Nature 430:85–88 [Google Scholar]
  161. Woodard SH, Bloch GM, Band MR, Robinson GE. 161.  2014. Molecular heterochrony and the evolution of sociality in bumblebees (Bombus terrestris). Proc. R. Soc. B 281:20132419 [Google Scholar]
  162. Woodard SH, Fischman BJ, Venkat A, Hudson ME, Varala K. 162.  et al. 2011. Genes involved in convergent evolution of eusociality in bees. PNAS 108:7472–77 [Google Scholar]
  163. Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S. 163.  et al. 2011. The genome of the fire ant Solenopsis invicta. PNAS 108:5679–84 [Google Scholar]
  164. Zayed A, Robinson GE. 164.  2012. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu. Rev. Genet. 46:591–615 [Google Scholar]
  165. Zhou X, Oi FM, Scharf ME. 165.  2006. Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. PNAS 103:4499–504 [Google Scholar]
/content/journals/10.1146/annurev-ento-031616-035601
Loading
/content/journals/10.1146/annurev-ento-031616-035601
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error