1932

Abstract

The unique combination of great stiffness, strength, and extensibility makes spider major ampullate (MA) silk desirable for various biomimetic and synthetic applications. Intensive research on the genetics, biochemistry, and biomechanics of this material has facilitated a thorough understanding of its properties at various levels. Nevertheless, methods such as cloning, recombination, and electrospinning have not successfully produced materials with properties as impressive as those of spider silk. It is nevertheless becoming clear that silk properties are a consequence of whole-organism interactions with the environment in addition to genetic expression, gland biochemistry, and spinning processes. Here we assimilate the research done and assess the techniques used to determine distinct forms of spider silk chemical and physical property variability. We suggest that more research should focus on testing hypotheses that explain spider silk property variations in ecological and evolutionary contexts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-031616-035615
2017-01-31
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ento/62/1/annurev-ento-031616-035615.html?itemId=/content/journals/10.1146/annurev-ento-031616-035615&mimeType=html&fmt=ahah

Literature Cited

  1. Agnarsson I, Boutry C, Blackledge TA. 1.  2008. Spider silk aging: initial improvement in a high performance material followed by slow degradation. J. Exp. Zool. 309A:494–504 [Google Scholar]
  2. Agnarsson I, Boutry C, Wong S-C, Baji A, Dhinojwala A. 2.  et al. 2009. Supercontraction forces in spider dragline silk depend on hydration rate. Zoology 112:325–31 [Google Scholar]
  3. Andersson M, Chen G, Otikovs M, Landreh M, Nordling K. 3.  et al. 2014. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains. PLOS Biol 12:e1001921 [Google Scholar]
  4. Andersson M, Holm L, Ridderstråle Y, Johansson J, Rising A. 4.  2013. Morphology and composition of the spider major ampullate gland and dragline silk. Biomacromolecules 14:2945–52 [Google Scholar]
  5. Arcidiacono S, Mello CM, Butler M, Welsh E, Soares JW. 5.  et al. 2002. Aqueous processing and fiber spinning of recombinant spider silks. Macromolecules 35:1262–66 [Google Scholar]
  6. Asakura T, Suzuki Y, Nakazawa Y, Yazawa K, Holland GP, Yarger JL. 6.  2013. Silk structure studied with nuclear magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. 69:23–68 [Google Scholar]
  7. Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY. 7.  2007. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLOS ONE 2:e514 [Google Scholar]
  8. Ayoub NA, Hayashi CY. 8.  2008. Multiple recombining loci encode MaSp1, the primary constituent of dragline silk, in widow spiders (Latrodectus: Theridiidae). Mol. Biol. Evol. 25:277–86 [Google Scholar]
  9. Blackledge TA, Hayashi CY. 9.  2006. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope arentata (Fabricius 1775). J. Exp. Biol. 209:2452–61 [Google Scholar]
  10. Blackledge TA, Hayashi CY. 10.  2006. Unraveling the mechanical properties of composite silk threads spun by cribellate orb-weaving spiders. J. Exp. Biol. 209:3131–40 [Google Scholar]
  11. Blackledge TA, Pérez-Rigueiro J, Plaza GR, Perea B, Navarro A. 11.  et al. 2012. Sequential origin in the high performance properties of orb spider dragline silk. Scientific Rep. 2:782Shows how spider silk mechanics have diverged and the relationship of mechanics with spidroin expression. [Google Scholar]
  12. Blackledge TA, Scharff N, Coddington JA, Szüts T, Wenzel JW. 12.  et al. 2009. Reconstructing web evolution and spider diversification in the molecular era. PNAS 106:5229–34 [Google Scholar]
  13. Blamires SJ, Chou I-C, Tso I-M. 13.  2010. Prey type, vibrations and handling interactively influence spider silk expression. J. Exp. Biol. 213:3906–10 [Google Scholar]
  14. Blamires SJ, Liao C-P, Chang C-K, Chuang Y-C, Wu C-L. 14.  et al. 2015. Mechanical performance of spider silk is robust to nutrient-mediated changes in protein composition. Biomacromolecules 16:1225–32 [Google Scholar]
  15. Blamires SJ, Tso I-M. 15.  2013. Nutrient-mediated architectural plasticity of a predatory trap. PLOS ONE 8:e54558 [Google Scholar]
  16. Blamires SJ, Wu C-L, Blackledge TA, Tso I-M. 16.  2012. Environmentally induced post-spin property changes in spider silks: influences of web type, spidroin composition and ecology. Biol. J. Linn. Soc. 106:580–88 [Google Scholar]
  17. Blamires SJ, Wu C-L, Blackledge TA, Tso I-M. 17.  2012. Post-secretion processing influences spider silk performance. J. R. Soc. Interface 9:2479–87 [Google Scholar]
  18. Blamires SJ, Wu C-L, Tso I-M. 18.  2012. Variation in protein intake induces variation in spider silk expression. PLOS ONE 7:e31626 [Google Scholar]
  19. Blamires SJ, Wu C-C, Wu C-L, Sheu H-S, Tso I-M. 19.  2013. Uncovering spider silk nanocrystalline variations that facilitate wind-induced mechanical property changes. Biomacromolecules 14:3484–90 [Google Scholar]
  20. Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I. 20.  2014. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr. Biol. 24:1765–71 [Google Scholar]
  21. Bratzel G, Buehler MJ. 21.  2011. Molecular mechanics of silk nanostructures under varied mechanical loading. Biopolymers 97:408–17 [Google Scholar]
  22. Breslauer DN, Lee LP, Muller SJ. 22.  2009. Simulation of flow in the silk gland. Biomacromolecules 10:49–57 [Google Scholar]
  23. Brooks AE, Stricker SM, Joshi SB, Karmerzell TJ, Middaugh CR, Lewis RV. 23.  2008. Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromolecules 9:1506–10 [Google Scholar]
  24. Carmichael S, Viney C. 24.  1999. Molecular order in spider major ampullate silk (Dragline): effects of spinning rate and post-spin drawing. J. Appl. Polym. Sci. 72:895–903 [Google Scholar]
  25. Chen G, Liu X, Zhang Y, Lin S, Yang Z, Johansson J. 25.  et al. 2012. Full-Length minor ampullate spidroin gene sequence. PLOS ONE 7:e52293 [Google Scholar]
  26. Chen X, Knight DP, Vollrath F. 26.  2002. Rheological characterization of Nephila spidroin solution. Biomacromolecules 3:644–48 [Google Scholar]
  27. Chen X, Shao Z, Vollrath F. 27.  2006. The spinning processes for spider silk. Soft Matter 2:448–51 [Google Scholar]
  28. Chung H, Kim TY, Lee SY. 28.  2012. Recent advances in production of recombinant spider silks. Curr. Opin. Biotechnol. 23:957–64 [Google Scholar]
  29. Collin MA, Camama E, Swanson BO, Edgerly JS, Hayashi CY. 29.  2009. Comparison of Embiopteran silks reveals tensile and structural similarities across taxa. Biomacromolecules 10:2268–74 [Google Scholar]
  30. Copeland CG, Bell BE, Christensen CD, Lewis RV. 30.  2015. Development of a process for the spinning of synthetic spider silk. ACS Biomater. Sci. Eng. 1:577–84 [Google Scholar]
  31. Craig CL. 31.  2003. Spiderwebs and Silk: Tracing Evolution from Molecules to Genes to Phenotypes Oxford, UK: Oxford Univ. Press
  32. Craig CL, Hsu M, Kaplan DL, Pierce ME. 32.  1999. A comparison of the composition of silk proteins produced by spiders and insects. Int. J. Biol. Macromol. 24:109–18 [Google Scholar]
  33. Craig CL, Riekel C, Herberstein ME, Weber RS, Kaplan DL, Pierce ME. 33.  2000. Evidence for diet effects on the composition of silk proteins produced by spiders. Mol. Biol. Evol. 17:1904–13 [Google Scholar]
  34. Cranford SW, Buehler MJ. 34.  2012. Biomateriomics Dordrecht, Neth.: Springer Sci. and Bus.
  35. Creager MS, Jenkins JE, Thagard-Yeaman LA, Brooks AE, Jones JA. 35.  et al. 2010. Solid-state NMR comparison of various spiders’ dragline silk fiber. Biomacromolecules 11:2039–43 [Google Scholar]
  36. Davies GJG, Knight DP, Vollrath F. 36.  2013. Structure and function of the major ampullate spinning duct of the golden orbweaver, Nephila edulis. Tiss. Cell 45:306–11 [Google Scholar]
  37. Dicko C, Kennedy JM, Knight DP, Vollrath F. 37.  2004. Transition to a β-sheet-rich structure in spidroin in vitro: the effects of pH and cations. Biochemistry 43:14080–87 [Google Scholar]
  38. Eadie L, Ghosh TK. 38.  2011. Biomimicry in textiles: past, present and potential. An overview. J. R. Soc. Interface 8:761–75 [Google Scholar]
  39. Eisoldt L, Hardy JG, Heim M, Scheibel TR. 39.  2010. The role of salt and shear on the storage and assembly of spider silk proteins. J. Struct. Biol. 170:413–19 [Google Scholar]
  40. Elices M, Guinea GV, Pérez-Rigueiro J, Plaza GR. 40.  2011. Polymeric fibers with tunable properties: lessons from spider silk. Mater. Sci. Eng. C 31:1184–88Identifies supercontraction as a ground state and describes its role in tailoring silk properties. [Google Scholar]
  41. Elices M, Pérez-Rigueiro J, Plaza GR, Guinea GV. 41.  2004. Recovery in spider silk fibers. J. Appl. Polym. Sci. 92:3537–41 [Google Scholar]
  42. Elices M, Plaza GR, Pérez-Rigueiro J, Guinea GV. 42.  2011. The hidden link between supercontraction and mechanical behavior of spider silks. J. Mech. Behav. Biomed. Mater. 4:658–69 [Google Scholar]
  43. Garb JE. 43.  2013. Spider silk: an ancient biomaterial for 21st century research. Spider Research in the 21st Century: Trends and Perspectives D Penny 252–81 Manchester, UK: SIRI Scientific Press
  44. Garb JE, Ayoub NA, Hayashi CY. 44.  2010. Untangling spider silk evolution with spidroin terminal domains. BMC Evol. Biol. 10:243 [Google Scholar]
  45. Garrido MA, Elices M, Viney C, Pérez-Rigueiro J. 45.  2002. Active control of spider silk strength: comparison of drag line spun on vertical and horizontal surfaces. Polymer 43:1537–40 [Google Scholar]
  46. Garrido MA, Elices M, Viney C, Pérez-Rigueiro J. 46.  2002. The variability and interdependence of spider drag line tensile properties. Polymer 43:4495–502 [Google Scholar]
  47. Giesa T, Arslan M, Pugno NM, Buehler MJ. 47.  2011. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Lett 11:5038–46 [Google Scholar]
  48. Giesa T, Pugno NM, Buehler MJ. 48.  2012. Natural stiffening increases flaw tolerance of biological fibers. Phys. Rev. E 86:041902 [Google Scholar]
  49. Gnesa E, Hsia Y, Yarger JL, Weber W, Lin-Cereghino J. 49.  et al. 2012. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers. Biomacromolecules 13:304–12 [Google Scholar]
  50. Gronau G, Zhao Q, Buehler MJ. 50.  2013. Effect of sodium chloride on the structure and stability of spider silks N-terminal protein domain. Biomater. Sci. 1:276–84 [Google Scholar]
  51. Grubb DT, Ji G. 51.  1999. Molecular chain orientation in supercontracted and re-extended spider silk. Int. J. Biol. Macromol. 24:203–10 [Google Scholar]
  52. Guan J, Porter D, Vollrath F. 52.  2012. Silks cope with stress by tuning their mechanical properties under load. Polymer 53:2717–26 [Google Scholar]
  53. Guehrs KH, Schlott B, Grosse F, Weisshart K. 53.  2008. Environmental conditions impinge on dragline silk protein composition. Insect Mol. Biol. 17:553–64 [Google Scholar]
  54. Guerette PA, Gizinger DG, Weber BHF, Gosline JM. 54.  1996. Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 272:112–15 [Google Scholar]
  55. Guinea GV, Pérez-Rigueiro J, Plaza GR, Elices M. 55.  2006. Volume constancy during stretching of spider silk. Biomacromolecules 7:2173–77 [Google Scholar]
  56. Guinea GV, Elices M, Plaza GR, Perea GB, Daza R. 56.  et al. 2012. Minor ampullate silks from Nephila and Argiope spiders: tensile properties and microstructural characterization. Biomacromolecules 13:2087–98 [Google Scholar]
  57. Hagn F, Eisoldt L, Hardy JG, Vanderly C, Coles M. 57.  et al. 2010. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465:239–42Describes how the C-terminal domain controls the formation of protein secondary structures. [Google Scholar]
  58. Hagn F, Thamm C, Scheibel T, Kessler H. 58.  2011. pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk—implications for fiber formation. Angnew. Chem. Int. Ed. 50:310–13 [Google Scholar]
  59. Han L, Zhang L, Zhao T, Wang Y, Nakagaki M. 59.  2013. Analysis of a new type of major ampullate spider silk gene, MaSp1s. Int. J. Biol. Macromol. 56:156–61 [Google Scholar]
  60. Hedhammer M, Rising A, Grip S, Saenz Martinez A, Nordling K. 60.  et al. 2008. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Biochemistry 47:3407–17 [Google Scholar]
  61. Heim M, Romer L, Scheibel T. 61.  2010. Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins. Chem. Soc. Rev. 39:156–64 [Google Scholar]
  62. Hinman MB, Lewis RV. 62.  1992. Isolation of a clone encoding a second dragline silk fibroin: Nephila clavipes dragline silk is a two-protein fiber. J. Biol. Chem. 267:19320–24Describes the first cDNA library and sequencing of the MaSp2 spidroin. [Google Scholar]
  63. Holland C, O'Neil K, Vollrath F, Dicko C. 63.  2012. Direct structural and optical regimes in natural silk spinning. Biopolymers 97:368–73 [Google Scholar]
  64. Hormiga G, Griswald CE. 64.  2014. Systematics, phylogeny, and evolution of orb-weaving spiders. Annu. Rev. Entomol. 59:487–512 [Google Scholar]
  65. Hu X, Kohler K, Falick AM, Moore AMF, Jones PR. 65.  et al. 2005. Egg case protein 1. A new class of silk proteins with fibroin-like properties from the spider Latrodectus hesperus. J. Biol. Chem. 280:21220–30 [Google Scholar]
  66. Huang W, Lin Z, Sin YM, Li D, Gong Z, Yang D. 66.  2006. Characterization and expression of a cDNA encoding a tubuliform silk protein of the golden web spider Nephila antipodiana. Biochimie 88:849–58 [Google Scholar]
  67. Izdebski T, Akhenblit P, Jenkins JE, Yarger JL, Holland GP. 67.  2010. Structure and dynamics of aromatic residues in spider silk: 2D carbon correlation NMR of dragline fibers. Biomacromolecules 11:168–74 [Google Scholar]
  68. Jenkins JE, Creager MS, Butler EB, Lewis RV, Yarger JL, Holland GP. 68.  2010. Solid-state NMR evidence for elastin-like β-turn structure in spider dragline silk. Chem. Comm. 46:6714–16 [Google Scholar]
  69. Jenkins JE, Creager MS, Holland GP, Lewis RV, Yarger JL. 69.  2010. Quantitative correlation between the protein primary sequences and secondary structures in spider dragline silks. Biomacromolecules 11:192–200 [Google Scholar]
  70. Kaleta C, Schäuble S, Rinas U, Schuster S. 70.  2013. Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol J 8:1105–14 [Google Scholar]
  71. Kenny JM, Knight DP, Wise MJ, Vollrath F. 71.  2002. Amyloidogenic nature of spider silk. Eur. J. Biochem. 269:4159–63 [Google Scholar]
  72. Keten S, Xu Z, Ihle M, Buehler MJ. 72.  2010. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9:359–67 [Google Scholar]
  73. Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL. 73.  2008. Spider silks and their applications. Trends Biotechnol 26:244–51 [Google Scholar]
  74. Knight DP, Vollrath F. 74.  1999. Liquid crystals and flow elongation in a spider's silk production line. Proc. R. Soc. B 266:519–23 [Google Scholar]
  75. Knight DP, Vollrath F. 75.  2001. Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften 88:179–82 [Google Scholar]
  76. Kronqvist N, Otikovs M, Chmyrov V, Chen G, Andersson M. 76.  et al. 2014. Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation. Nat. Comm. 5:3254 [Google Scholar]
  77. La Mattina C, Reza R, Hu X, Falick AM, Vasanthavada K. 77.  et al. 2008. Spider minor ampullate silk proteins are constituents of the prey wrapping silk of the cob weaver Latrodectus hesperus. Biochemistry 47:4692–700 [Google Scholar]
  78. Leclerc J, Lefèvre T, Gauthier M, Gagné SM, Auger M. 78.  2013. Hydrodynamical properties of recombinant spider silk proteins: effects of pH, salts and shear, and implications for the spinning process. Biopolymers 99:582–93 [Google Scholar]
  79. Lee KS, Kim BY, Je YH, Woo SD, Sohn HD, Jin BR. 79.  2007. Molecular cloning and expression of the C-terminus of spider flagelliform silk protein from Araneus ventricosus. J. Biosci. 32:705–12 [Google Scholar]
  80. Lefèvre T, Boudreault S, Cloutier C, Pézolet M. 80.  2011. Diversity of molecular transformations involved in the formation of spider silks. J. Mol. Biol. 405:238–53 [Google Scholar]
  81. Lefèvre T, Paquet-Mercier F, Rioux-Dubé J-F, Pézolet M. 81.  2011. Structure of silk by Raman spectromicroscopy: from the spinning glands to the fibers. Biopolymers 97:322–35 [Google Scholar]
  82. Lewis RV. 82.  1992. Spider silk: the unraveling of a mystery. Acc. Chem. Res. 25:392–98 [Google Scholar]
  83. Liao C-P, Chi K-J, Tso I-M. 83.  2009. The effects of wind on trap structural and material properties of a sit-and-wait predator. Behav. Ecol. 20:1194–203 [Google Scholar]
  84. Liu Y, Shao Z, Vollrath F. 84.  2005. Extended wet-spinning can modify spider silk properties. Chem. Comm. 19:2489–491 [Google Scholar]
  85. Liu Y, Shao Z, Vollrath F. 85.  2005. Relationships between supercontraction and mechanical properties of spider silk. Nat. Mater. 4:901–5Reveals the principles linking the properties of spider silk to their protein structure. [Google Scholar]
  86. Liu Y, Shao Z, Vollrath F. 86.  2008. Elasticity of spider silks. Biomacromolecules 9:1782–86 [Google Scholar]
  87. Liu Y, Sponner A, Porter D, Vollrath V. 87.  2008. Proline and processing of spider silk. Biomacromolecules 9:116–21 [Google Scholar]
  88. Madsen B, Shao ZZ, Vollrath F. 88.  1999. Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual. Int. J. Biol. Macromol. 24:301–6 [Google Scholar]
  89. Madurga R, Blackledge TA, Perea B, Plaza GR, Riekel C. 89.  et al. 2015. Persistence and variation in microstructural design during the evolution of spider silk. Scientific Rep. 5:14820 [Google Scholar]
  90. Mortimer B, Holland C, Vollrath F. 90.  2013. Forced reeling of Bombyx mori silk: separating behavior and processing conditions. Biomacromolecules 14:3653–59 [Google Scholar]
  91. Opell BD. 91.  1998. Economics of spider orb webs: the benefits of producing adhesive capture threads and of recycling. Funct. Ecol. 12:613–24 [Google Scholar]
  92. Opell BD, Bond JE. 92.  2001. Changes in the mechanical properties of capture threads and the evolution of modern orb-weaving spiders. Evol. Ecol. Res. 3:567–81 [Google Scholar]
  93. Ortlepp CS, Gosline JM. 93.  2004. Consequences of forced silking. Biomacromolecules 5:727–31 [Google Scholar]
  94. Osaki S. 94.  2004. Ultraviolet rays mechanically strengthen spider silks. Polym. J. 36:657–60 [Google Scholar]
  95. Perea GB, Solanas C, Plaza GR, Guinea GV, Jorge I. 95.  et al. 2015. Unexpected behavior of irradiated spider silk links conformational freedom to mechanical performance. Soft Matter 11:4868–78 [Google Scholar]
  96. Pérez-Rigueiro J, Elices M, Plaza GR, Real JI, Guinea GV. 96.  2006. The influence of anesthesia on the tensile properties of spider silk. J. Exp. Biol. 209:320–26 [Google Scholar]
  97. Pérez-Rigueiro J, Elices M, Plaza GR, Rudea J, Guinea GV. 97.  2007. Fracture surfaces and tensile properties of UV-irradiated spider silk fibers. J. Polym. Sci. 45:786–93 [Google Scholar]
  98. Perry DJ, Bittencourt D, Liberels-Stilberg J, Rech EL, Lewis RV. 98.  2010. Pyriform spider silk sequences reveal unique repetitive elements. Biomacromolecules 11:3000–6 [Google Scholar]
  99. Plaza GR, Guinea GV, Pérez-Rigueiro J, Elices M. 99.  2006. Thermo-hygro-mechanical behavior of spider dragline silk: glassy and rubbery states. J. Polym. Sci. 44:994–99 [Google Scholar]
  100. Porter D, Vollrath F. 100.  2008. The role of kinetics of water and amide bonding in protein stability. Soft Matter 4:328–36 [Google Scholar]
  101. Porter D, Vollrath F. 101.  2009. Silk as a biomimetic ideal for structural polymers. Adv. Mater. 21:487–92 [Google Scholar]
  102. Pugno NM, Cranford SW, Buehler MJ. 102.  2013. Synergetic material and structure optimization yields robust spider web anchorages. Small 9:2747–56 [Google Scholar]
  103. Rauscher S, Baud S, Miao M, Keeley FW, Pomes R. 103.  2006. Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure 14:1667–76 [Google Scholar]
  104. Riekel C, Branden CI, Craig CL, Ferrero C, Heidelbach F, Muller M. 104.  1999. Aspects of X-ray diffraction on single spider fibers. Int. J. Biol. Macromol. 24:179–86 [Google Scholar]
  105. Riekel C, Rossle M, Sapede D, Vollrath F. 105.  2004. Influence of CO2 on the micro-structural properties of spider dragline silk: X-ray microdiffraction results. Naturwissenschaften 91:30–33 [Google Scholar]
  106. Riekel C, Vollrath F. 106.  2001. Spider silk fibre extrusion: combined wide- and small-angle X-ray micro-diffraction experiments. Int. J. Biol. Macromol. 29:203–10 [Google Scholar]
  107. Römer L, Scheibel T. 107.  2008. The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2:154–61 [Google Scholar]
  108. Rousseau ME, Hernández Cruz D, West MM, Hitchcock AP, Pézolet M. 108.  2007. Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy. J. Am. Chem. Soc. 129:3897–905 [Google Scholar]
  109. Sahni V, Dhinojwala A, Opell DB, Blackledge TA. 109.  2014. Prey capture adhesives produced by orb weaving spiders. Biotechnology of Silk T Asakura, T Miller 203–17 Dordrecht, Neth.: Springer [Google Scholar]
  110. Savage KN, Gosline JM. 110.  2008. The role of proline in the elastic mechanism of hydrated spider silks. J. Exp. Biol. 211:1948–57 [Google Scholar]
  111. Savage KN, Guerette PA, Gosline JM. 111.  2004. Supercontraction stress in spider webs. Biomacromolecules 5:675–79 [Google Scholar]
  112. Schwarze S, Zwettler FU, Johnson CM, Neuweiler H. 112.  2013. The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening. Nat. Comm. 4:1215 [Google Scholar]
  113. Seidel A, Liivak O, Jelinski LW. 113.  1998. Artificial spinning of spider silk. Macromolecules 31:6733–36 [Google Scholar]
  114. Sensenig A, Agnarsson I, Blackledge TA. 114.  2010. Behavioural and biomaterial coevolution in spider orb webs. J. Evol. Biol. 23:1839–56 [Google Scholar]
  115. Sensenig A, Agnarsson I, Blackledge TA. 115.  2011. Adult spiders use tougher silk: ontogenetic changes in web architecture and silk biomechanics in the orb-weaver spider. J. Zool. 285:28–38 [Google Scholar]
  116. Shao Z, Vollrath F. 116.  1999. The effect of solvents on the contraction and mechanical properties of spider silk. Polymer 40:1799–806 [Google Scholar]
  117. Shao Z, Vollrath F, Sirichaisit J, Young RJ. 117.  1999. Analysis of spider silk in native and supercontracted states using Raman spectroscopy. Polymer 40:2493–500 [Google Scholar]
  118. Shao Z, Young RJ, Vollrath F. 118.  1999. The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy. Int. J. Biol. Macromol. 24:295–300 [Google Scholar]
  119. Shi X, Holland GP, Yarger JL. 119.  2013. Amino acid analysis of spider dragline silk using 1H NMR. Anal. Biochem. 440:150–57 [Google Scholar]
  120. Spiess K, Lammel A, Scheibel T. 120.  2010. Recombinant spider silk proteins for applications in biomaterials. Macromol. Biosci. 10:998–1007 [Google Scholar]
  121. Sponner A, Schlott B, Vollrath F, Unger E, Grosse F, Weisshart K. 121.  2005. Characterization of the protein components of Nephila clavipes dragline silk. Biochemistry 44:4727–36 [Google Scholar]
  122. Sponner A, Unger E, Grosse F, Weisshart K. 122.  2005. Differential polymerization of the two main protein components of dragline silk during fibre spinning. Nat. Mater. 4:772–75Compares the rates of structural formations of MaSp1 and MaSp2 and shows how they influence silk mechanics. [Google Scholar]
  123. Sponner A, Vater W, Monajembahi S, Unger E, Grosse F, Weisshart K. 123.  2007. Composition and hierarchical organization of a spider silk. PLOS ONE 3:e998 [Google Scholar]
  124. Sponner A, Vater W, Rommerskirch W, Vollrath F, Unger E. 124.  et al. 2005. The conserved C-termini contribute to the properties of spider silk fibroins. Biophys. Res. Comm. 338:897–902 [Google Scholar]
  125. Swanson BO, Blackledge TA, Summers AP, Hayashi CY. 125.  2006. Spider dragline silk: correlated and mosaic evolution in high performance biological materials. Evolution 60:2539–51 [Google Scholar]
  126. Teulé F, Miao Y-G, Sohn B-H, Kim Y-S, Hull JJ. 126.  et al. 2012. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. PNAS 109:923–28 [Google Scholar]
  127. Torakeva O, Jacobsen M, Buehler MJ, Wong J, Kaplan DL. 127.  2014. Structure–function–property–design interplay in biopolymers: spider silk. Acta Biomater 10:1612–26 [Google Scholar]
  128. Tso I-M, Wu H-C, Hwang I-R. 128.  2005. Giant wood spider Nephila pilipes alters silk protein in response to prey variation. J. Exp. Biol. 208:1053–61 [Google Scholar]
  129. van Beek JD, Hess S, Vollrath F, Meier BH. 129.  2002. The molecular structure of spider dragline silk: folding and orientation of the protein backbone. PNAS 99:10266–271 [Google Scholar]
  130. Vasathavada K, Hu X, Falick AM, La Mattina C, Moore AMF. 130.  et al. 2007. Aciniform spidroin, a constituent of egg case sacs and wrapping fibres from the black widow spider Latrodectus hesperus. J. Biol. Chem. 282:35088–97 [Google Scholar]
  131. Vehoff T, Glisovic A, Schollmayer H, Zippelius A, Salditt T. 131.  2007. Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation. Biophys. J. 93:4425–32 [Google Scholar]
  132. Vollrath F. 132.  2000. Strength and structure of spider's silk. Rev. Mol. Biotechnol. 74:67–83 [Google Scholar]
  133. Vollrath F, Hawkins N, Porter D, Holland C, Boulet-Audet M. 133.  2014. Differential Scanning Fluorimetry provides high throughput data on silk protein transitions. Scientific Rep. 4:5625 [Google Scholar]
  134. Vollrath F, Knight DP. 134.  2001. Liquid crystalline spinning of spider silk. Nature 410:541–48Provides an overview of the processes by which dope flows through the silk gland to form a fiber. [Google Scholar]
  135. Vollrath F, Madsen B, Shao Z. 135.  2001. The effect of spinning conditions on the mechanics of a spider's dragline silk. Proc. R. Soc. B 268:2339–46 [Google Scholar]
  136. Vollrath F, Porter D, Holland C. 136.  2011. There are many more lessons still to be learned from spider silks. Soft Matter 7:9595–600 [Google Scholar]
  137. Vollrath F, Porter D, Holland C. 137.  2013. The science of silks. MRS Bull 38:73–80 [Google Scholar]
  138. Wang M, Jin H-J, Kaplan DL, Rutledge GC. 138.  2004. Mechanical properties of electrospun silk fibers. Macromolecules 37:6856–64 [Google Scholar]
  139. Winkler S, Kaplan DL. 139.  2000. Molecular biology of spider silk. Rev. Mol. Biotechnol. 74:85–93 [Google Scholar]
  140. Work RW. 140.  1981. A comparative study of supercontraction of major ampullate silk fibers of orb-web-building spiders (Araneae). J. Arachnol. 9:299–308 [Google Scholar]
  141. Xu M, Lewis RV. 141.  1990. Structure of a protein superfiber: spider dragline silk. PNAS 87:7120–24Describes the first cDNA library and sequencing of MaSp1. [Google Scholar]
  142. Xue L, Steinhart M, Gorb SN. 142.  2013. Biological and bioinspired micro- and nanostructured adhesives. Biomaterials Surface Science A Taubert, JF Mano, JC Rodríguez-Cabello Weinheim, Ger.: Wiley-VCH Verlag GmbH and Co. [Google Scholar]
  143. Zhang Y, Zhao A-C, Sima Y-H, Lu C, Xiang Z-H, Nakagaki M. 143.  2013. The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: a second blueprint for synthesizing de novo silk. Comp. Biochem. Physiol. B 164:151–58 [Google Scholar]
  144. Zhao A-C, Zhao T-F, Nakagaki K, Zhang Y-S, SiMa Y-H. 144.  et al. 2006. Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi. Biochemistry 45:3348–56 [Google Scholar]
  145. Zhou P, Xun X, Knight DP, Zong X-H, Deng F, Yao W-H. 145.  2004. Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR. Biochemistry 43:11302–11 [Google Scholar]
/content/journals/10.1146/annurev-ento-031616-035615
Loading
/content/journals/10.1146/annurev-ento-031616-035615
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error