1932

Abstract

We review the challenges and future perspectives of regional climate model (RCM), or dynamical downscaling, activities. Among the main technical issues in need of better understanding are those of selection and sensitivity to the model domain and resolution, techniques for providing lateral boundary conditions, and RCM internal variability. The added value (AV) obtained with the use of RCMs remains a central issue, which needs more rigorous and comprehensive analysis strategies. Within the context of regional climate projections, large ensembles of simulations are needed to better understand the models and characterize uncertainties. This has provided an impetus for the development of the Coordinated Regional Downscaling Experiment (CORDEX), the first international program offering a common protocol for downscaling experiments, and we discuss how CORDEX can address the key scientific challenges in downscaling research. Among the main future developments in RCM research, we highlight the development of coupled regional Earth system models and the transition to very high-resolution, cloud-resolving models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102014-021217
2015-11-04
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/energy/40/1/annurev-environ-102014-021217.html?itemId=/content/journals/10.1146/annurev-environ-102014-021217&mimeType=html&fmt=ahah

Literature Cited

  1. Dickinson RE, Errico RM, Giorgi F, Bates GT. 1.  1989. A regional climate model for the western United States. Clim. Change 15:383–422 [Google Scholar]
  2. Giorgi F, Bates GT. 2.  1989. The climatological skill of a regional model over complex terrain. Mon. Weather Rev. 117:2325–47 [Google Scholar]
  3. Giorgi F. 3.  1990. Simulation of regional climate using a limited area model nested in a general circulation model. J. Clim. 3:941–63 [Google Scholar]
  4. Giorgi F, Bates GT, Nieman SJ. 4.  1993. The multi-year surface climatology of a regional atmospheric model over the western United States. J. Clim. 6:75–95 [Google Scholar]
  5. Giorgi F, Brodeur CS, Bates GT. 5.  1994. Regional climate change scenarios over the United States produced with a nested regional climate model. J. Clim. 7:375–99 [Google Scholar]
  6. Jones RG, Murphy JM, Noguer M. 6.  1995. Simulations of climate change over Europe using a nested regional climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries. Q. J. R. Meteorol. Soc. 121:1413–49 [Google Scholar]
  7. Jones RG, Murphy JM, Noguer M, Keen AB. 7.  1997. Simulation of climate change over Europe using a nested regional climate model. II: Comparison of driving and regional model responses to a doubling of carbon dioxide. Q. J. R. Meteorol. Soc. 123:265–92 [Google Scholar]
  8. Hirakuchi H, Giorgi F. 8.  1995. Multiyear present-day and 2 × CO2 simulations of monsoon climate over eastern Asia and Japan with a regional climate model nested in a general circulation model. J. Geophys. Res. 100:21105–26 [Google Scholar]
  9. Christensen JH, Machenauer B, Jones RG, Schar C, Ruti PM. 9.  et al. 1997. Validation of present day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Clim. Dyn. 13:489–506 [Google Scholar]
  10. Giorgi F, Mearns LO. 10.  1991. Approaches to the simulation of regional climate change: a review. Rev. Geophys. 29:191–216 [Google Scholar]
  11. McGregor JL. 11.  1997. Regional climate modelling. Meteorol. Atmos. Phys. 63:105–17 [Google Scholar]
  12. Giorgi F, Mearns LO. 12.  1999. Introduction to special section: regional climate modeling revisited. J. Geophys. Res. 104:6335–52 [Google Scholar]
  13. Giorgi F, Hewitson B, Christensen J, Hulme M, von Storch H. 13.  et al. 2001. Regional climate information—evaluation and projections. Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change JT Houghton, Y Ding, DJ Griggs, M Noguer, PJ van der Linden 583–638 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  14. Leung LR, Mearns LO, Giorgi F, Wilby RL. 14.  2003. Regional climate research: needs and opportunities. Bull. Am. Meteorol. Soc. 82:89–95 [Google Scholar]
  15. Wang Y, Leung LR, McGregor JL, Lee DK, Wang WC. 15.  et al. 2004. Regional climate modeling: progress, challenges and prospects. J. Meteorol. Soc. Jpn. 82:1599–628 [Google Scholar]
  16. Giorgi F. 16.  2006. Regional climate modeling: status and perspectives. J. Phys. IV 139:101–18 [Google Scholar]
  17. Laprise R. 17.  2008. Regional climate modeling. J. Comput. Phys. 227:3641–66 [Google Scholar]
  18. Laprise R, de Elia R, Caya D, Biner S, Lucas-Picher P. 18.  et al. 2008. Challenging some tenets of regional climate modeling. Meteorol. Atmos. Phys. 100:3–22 [Google Scholar]
  19. Rummukainen M. 19.  2010. State-of-the-art with regional climate models. WIREs: Clim. Change 1:82–96 [Google Scholar]
  20. Arritt RW, Rummukainen M. 20.  2011. Challenges in regional-scale climate modeling. Bull. Am. Meteorol. Soc. 92:365–68 [Google Scholar]
  21. Giorgi F, Jones C, Asrar GR. 21.  2009. Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull. 58:175–83 [Google Scholar]
  22. Jones C, Giorgi F, Asrar G. 22.  2011. The Coordinated Regional Downscaling Experiment: CORDEX, an international downscaling link to CMIP5. CLIVAR Exch. 16:34–40 [Google Scholar]
  23. Duffy PB, Govindasamy B, Iorio JP, Milovich J, Sperber KR. 23.  et al. 2003. High-resolution simulations of global climate, part 1: present climate. Clim. Dyn. 21:371–90 [Google Scholar]
  24. Fox-Rabinovitz M, Cote J, Dugas B, Déqué M, McGregor JL. 24.  et al. 2008. Stretched-grid Model Intercomparison Project: decadal regional climate simulations with enhanced variable and uniform-resolution GCMs. Metereol. Atmos. Phys. 100:159–77 [Google Scholar]
  25. Benestad RE, Hanssen-Bauer I, Chen D. 25.  2008. Empirical-Statistical Downscaling Singapore: World Sci.
  26. Taylor KE, Stouffer RJ, Meehl GA. 26.  2012. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93:485–98 [Google Scholar]
  27. Takle ES, Gutowski WJ Jr, Arritt RW, Pan Z, Anderson CJ. 27.  et al. 1999. Project to intercompare regional climate simulations (PIRCS): description and initial results. J. Geophys. Res. 104:19443–61 [Google Scholar]
  28. Christensen JH, Carter TR, Rummukainen M, Amanatidis G. 28.  2007. Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim. Change 81:1–6 [Google Scholar]
  29. Jacob D, Barring L, Christensen OB, Christensen JH, de Castro M. 29.  et al. 2007. An intercomparison of regional climate models for Europe: design of the experiments and model performance. Clim. Change 81:31–52 [Google Scholar]
  30. Solman SA. 30.  2013. Regional climate modeling over South America: a review. Adv. Meteorol. 18:1–13 [Google Scholar]
  31. Fu C. 31.  et al. 2005. Regional Climate Model Intercomparison Project for Asia. Bull. Am. Meteorol. Soc. 86:257–66 [Google Scholar]
  32. Curry JA, Lynch AH. 32.  2002. Comparing Arctic regional climate models. EOS Trans. Am. Geophys. Union 83:87 [Google Scholar]
  33. Mearns LO, Arritt R, Biner S, Bukovsky MS, McGinnis. 33.  et al. 2012. The North American Regional Climate Change Assessment Program: overview of phase I results. Bull. Am. Meteorol. Soc. 93:1337–62 [Google Scholar]
  34. Paeth H, Hall NMJ, Gaertner MA, Dominguez Alonso M, Moumouni S. 34.  et al. 2011. Progress in regional downscaling of West Africa precipitation. Atmos. Sci. Lett. 12:75–82 [Google Scholar]
  35. Takle ES, Roads J, Rockel B, Gutowski WJ Jr, Arritt RW. 35.  et al. 2007. Transferability intercomparison: an opportunity for new insight on the global water cycle and energy budget. Bull. Am. Meteorol. Soc. 88:375–91 [Google Scholar]
  36. Davies HC, Turner RE. 36.  1977. Updating prediction models by dynamical relaxation: an examination of the technique. Q. J. R. Meteorol. Soc. 103:225–45 [Google Scholar]
  37. Giorgi F, Marinucci MR, Bates GT, DeCanio G. 37.  1993. Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Weather Rev. 121:2814–32 [Google Scholar]
  38. von Storch H, Langenberg H, Feser F. 38.  2000. A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev. 128:3664–73 [Google Scholar]
  39. Seth A, Giorgi F. 39.  1998. The effect of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J. Clim. 11:2698–712 [Google Scholar]
  40. Antic S, Laprise R, Denis B, de Elia R. 40.  2004. Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography. Clim. Dyn. 23:473–93 [Google Scholar]
  41. Gutowski WJ Jr, Wei H, Vörösmarty CJ, Fekete BM. 41.  2007. Influence of Arctic wetlands on Arctic atmospheric circulation. J. Clim. 11:4243–54 [Google Scholar]
  42. Giorgi F, Bi X. 42.  2000. A study of internal variability of a regional climate model. J. Geophys. Res. 105:29503–16 [Google Scholar]
  43. Rinke A, Dethloff K. 43.  2000. On the sensitivity of a regional Arctic climate model to initial and boundary conditions. Clim. Res. 14:101–13 [Google Scholar]
  44. Christensen OB, Gaertner MA, Prego JA, Polcher J. 44.  2001. Internal variability of regional climate models. Clim. Dyn. 17:875–87 [Google Scholar]
  45. Caya D, Biner S. 45.  2004. Internal variability of RCM simulations over an annual cycle. Clim. Dyn. 22:33–46 [Google Scholar]
  46. Rinke A, Marbaix P, Dethloff K. 46.  2004. Internal variability in Arctic regional climate simulations: case study for the SHEBA year. Clim. Res. 27:197–209 [Google Scholar]
  47. Alexandru A, de Elia R, Laprise R. 47.  2007. Internal variability in regional climate downscaling at the seasonal scale. Mon. Weather Rev. 135:3221–28 [Google Scholar]
  48. Lucas-Picher P, Caya D, de Elia R, Laprise R. 48.  2008. Investigation of regional climate models' internal variability with a ten-member ensemble of 10-year simulations over a large domain. Clim. Dyn. 31:927–40 [Google Scholar]
  49. Cretat J, Macron C, Pohl B, Richard Y. 49.  2011. Quantifying internal variability in a regional climate model: a case study for southern Africa. Clim. Dyn. 37:1335–56 [Google Scholar]
  50. Braun M, Caya D, Frigon A, Slivitzky M. 50.  2012. Internal variability of the Canadian RCM's hydrological variables at the basin scale in Quebec and Labrador. J. Hydrometeorol. 13:443–62 [Google Scholar]
  51. Nikiema O, Laprise R. 51.  2011. Diagnostic budget study of the internal variability in ensemble simulations of the Canadian RCM. Clim. Dyn. 36:2313–37 [Google Scholar]
  52. Lorenz P, Jacob D. 52.  2005. Influence of regional scale information on the global circulation: a two-way nesting climate simulation. Geophys. Res. Lett. 32:L14826 [Google Scholar]
  53. Feser F. 53.  2006. Enhanced detectability of added value in limited-area model results separated into different spatial scales. Mon. Weather Rev. 134:2180–97 [Google Scholar]
  54. Castro CL, Pielke RA, Leoncini G. 54.  2005. Dynamical downscaling: an assessment of value added using a regional climate model. J. Geophys. Res. 110:D05108 [Google Scholar]
  55. Winterfeldt J, Weisse R. 55.  2009. Assessment of value added for surface marine wind speed obtained from two regional climate models. Mon. Weather Rev. 137:2955–65 [Google Scholar]
  56. De Sales F, Xue Y. 56.  2010. Assessing the dynamic downscaling ability over South America using the intensity-scale verification technique. Int. J. Climatol. 31:1254–63 [Google Scholar]
  57. Prömmel K, Geyer B, Jones JM, Widmann M. 57.  2010. Evaluation of the skill and added value of a reanalysis-driven regional simulation for alpine temperature. Int. J. Climatol. 30:760–73 [Google Scholar]
  58. Coppola E, Giorgi F, Rauscher S, Piani C. 58.  2010. Development of regional climate model weights based on the model's “mesoscale signal.”. Clim. Res. 44:121–34 [Google Scholar]
  59. Veljovic K, Rajkovic B, Fennessy MJ, Altshuler EL, Mesinger F. 59.  2010. Regional climate modeling: Should one attempt improving on the large scales? Lateral boundary condition scheme: any impact?. Meteorol. Z. 19:237–46 [Google Scholar]
  60. Racherla PN, Shindell DT, Faluvegi GS. 60.  2012. The added value to global model projections of climate change by dynamical downscaling: a case study over the continental U.S. using the GISS-ModelE2 and WRF models. J. Geophys. Res. Atmos. 117:D20118 [Google Scholar]
  61. Di Luca A, de Elia R, Laprise R. 61.  2012. Potential for added value in precipitation simulated by high resolution nested regional climate models and observations. Clim. Dyn. 38:1229–47 [Google Scholar]
  62. Di Luca A, de Elia R, Laprise R. 62.  2013. Potential for small scale added value of RCM's downscaled climate change signal. Clim. Dyn. 40:1415–33 [Google Scholar]
  63. Diaconescu EP, Laprise R. 63.  2013. Can added value be expected in RCM-simulated large scales?. Clim. Dyn. 41:1769–800 [Google Scholar]
  64. Mariotti L, Coppola E, Sylla MB, Giorgi F, Piani C. 64.  2011. Regional climate model simulations of projected 21st century climate change over an all-Africa domain: comparison analysis of nested and driving model results. J. Geophys. Res. Atmos. 116:D1516 [Google Scholar]
  65. Mariotti L, Diallo I, Coppola E, Giorgi F. 65.  2014. Seasonal and intraseasonal changes of Africa monsoon climates in 21st century CORDEX projections. Clim. Change 125:53–65 [Google Scholar]
  66. Laprise R. 66.  2014. Comment on “The added value to global model projections of climate change by dynamical downscaling: a case study over the continental U.S. using the GISS-ModelE2 and WRF models” by Racherla et al.. J. Geophys. Res. 119:3877–81 [Google Scholar]
  67. van Meijgaard E, van Ulft LH, Lenderink G, de Roode SR, Wipfler L. 67.  et al. 2012. Refinement and application of a regional atmospheric model for climate scenario calculations of western Europe. Natl. Res. Program. Clim. Changes Spat. Plan. Rep. KvR 054/12, Program. Off. Clim. Changes Spat. Plan., Nieuwegein, Neth.
  68. Hazeleger W, Severijns C, Semmler T, Stefanescu S, Yang S. 68.  et al. 2010. EC-Earth: a seamless Earth-System prediction approach in action. Bull. Am. Meteorol. Soc. 91:1357–75 [Google Scholar]
  69. Jacob D, Petersen J, Eggert B, Alias A, Christensen JH. 69.  et al. 2013. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change 14:563–78 [Google Scholar]
  70. Isotta FA, Frei C, Weilguni V, Perčec Tadić M, Lassegues P. 70.  et al. 2014. The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol. 34:1657–75 [Google Scholar]
  71. Taylor KE. 71.  2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106:7183–92 [Google Scholar]
  72. Torma C, Giorgi F, Coppola E. 72.  2015. Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps. J. Geophys. Res. Atmos. 1203957–72
  73. Giorgi F, Coppola E, Raffaele F, Diro GT, Fuentes-Franco F. 73.  et al. 2014. Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim. Change 125:39–51 [Google Scholar]
  74. Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S. 74.  et al. 2001. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2:36–50 [Google Scholar]
  75. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ. 75.  et al. 2007. The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor. 8:33–55 [Google Scholar]
  76. Gao XJ, Pal JS, Giorgi F. 76.  2006. Projected changes in mean and extreme precipitation over the Mediterranean region from high resolution nested RCM simulations. Geophys. Res. Lett. 33:L03706 [Google Scholar]
  77. Gleckler PJ, Taylor KE, Doutriaux C. 77.  2008. Performance metrics for climate models. J. Geophys. Res. 113:D06104 [Google Scholar]
  78. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC. 78.  et al. 2013. Evaluation of climate models. Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, MMB Tignor, SK Allen 741–866 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  79. Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M. 79.  et al. 2014. Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 7:1297–333 [Google Scholar]
  80. Rauscher SA, Coppola E, Piani C, Giorgi F. 80.  2010. Resolution effects of regional climate model simulations of precipitation over Europe. Clim. Dyn. 35:685–711 [Google Scholar]
  81. Dee DP,, Uppala SM, Simmons AJ, Berrisford P, Poli P,. 81.  et al. 2011. The ERA interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137:553–97 [Google Scholar]
  82. Matsuura K, Willmott C. 82.  2010. Terrestrial air temperature and precipitation: 1900–2008 gridded monthly time series (V 2.01). Univ. Delaware, Dep. Geogr. Cent. Clim. Res., Newark, DE. Last updated June 2009; accessed June 2014. http://climate.geog.udel.edu/∼climate/html_pages/archive.html
  83. Herrera S, Fita L, Fernandez J, Gutierrez JM. 83.  2010. Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J. Geophys. Res. 115:D21117 [Google Scholar]
  84. Wehner MF. 84.  2013. Very extreme seasonal precipitation in the NARCCAP ensemble: model performance and projections. Clim. Dyn. 40:59–80 [Google Scholar]
  85. Singh D, Tsiang M, Rajaratnam B, Diffenbaugh NS. 85.  2013. Precipitation extremes over the continental United States in a transient, high-resolution, ensemble climate model experiment. J. Geophys. Res. 118:7063–86 [Google Scholar]
  86. Gutowski WJ Jr, Arritt RW, Kawazoe S, Flory DM, Takle ES. 86.  et al. 2013. Regional, extreme daily precipitation in NARCCAP simulations. J. Hydrometeorol. 14:1212–27 [Google Scholar]
  87. Glisan JM, Gutowski WJ Jr. 87.  2014. WRF summer extreme daily precipitation over the CORDEX Arctic. J. Geophys. Res. Atmos. 119:1720–32 [Google Scholar]
  88. Leung LR, Qian Y. 88.  2009. Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett. 36:L03820 [Google Scholar]
  89. Gutowski WJ, Arritt RW, Kawazoe S, Flory DM, Takle ES. 89.  et al. 2010. Regional, extreme monthly precipitation simulated by NARCCAP RCMs. J. Hydrometeor. 11:1373–79 [Google Scholar]
  90. Nikulin G, Jones C, Samuelsson P, Giorgi F, Sylla MB. 90.  et al. 2012. Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Clim. 25:6057–78 [Google Scholar]
  91. Kendon EJ, Roberts NM, Senior CA, Roberts MJ. 91.  2012. Realism of rainfall in a very high-resolution regional climate model. J. Clim. 25:5791–806 [Google Scholar]
  92. Fosser G, Khodayar S, Berg P. 92.  2014. Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim. Dyn. 44:45–60 [Google Scholar]
  93. Ban N, Schmidli J, Schar C. 93.  2014. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. 119:7889–907 [Google Scholar]
  94. Haylock MR, Hofstra N, Tank AMGK, Klok EJ, Jones PD. 94.  et al. 2008. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 113:D20119 [Google Scholar]
  95. Sunyer MA, Sørup HJD, Christensen OB, Madsen H, Rosbjerg D. 95.  et al. 2013. On the importance of observational data properties when assessing regional climate model performance of extreme precipitation. Hydrol. Earth Syst. Sci. 17:4323–37 [Google Scholar]
  96. Mesinger F,, Di Mego G, Kalnay E, Mitchell K, Shafran PC,. 96.  et al. 2006. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87:343–60 [Google Scholar]
  97. Giorgi F. 97.  2005. Climate change prediction. Clim. Change 73:239–65 [Google Scholar]
  98. Foley AM. 98.  2010. Uncertainty in regional climate modelling: a review. Prog. Phys. Geogr. 34:647–70 [Google Scholar]
  99. Moss RH, Edmonds JA, Hbbard KA, Manning MR, Rose SK. 99.  et al. 2010. The next generation of scenarios for climate change research and assessment. Nature 463:747–56 [Google Scholar]
  100. Hawkins E, Sutton R. 100.  2009. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90:1095–107 [Google Scholar]
  101. Hawkins E, Sutton R. 101.  2011. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 37:407–18 [Google Scholar]
  102. Déqué M, Jones RG, Wild M, Giorgi F, Christensen JH. 102.  et al. 2005. Global high resolution versus limited area model climate change scenarios over Europe: quantifying confidence level from PRUDENCE results. Clim. Dyn. 25:653–70 [Google Scholar]
  103. Giorgi F, Diffenbaugh NS, Gao XJ, Coppola E, Dash SK. 103.  et al. 2008. The regional climate change hyper-matrix framework. EOS Trans. Am. Geophys. Union 89:445–46 [Google Scholar]
  104. McSweeney CF, Jones RG, Lee RW, Rowell DP. 104.  2015. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 44:3237–60 [Google Scholar]
  105. Mearns LO, Sain S, Leung LR, Bukovsky MS, McGinnis S. 105.  et al. 2013. Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP). Clim. Change 120:965–75 [Google Scholar]
  106. Mitchell TD. 106.  2003. Pattern scaling: an examination of the accuracy of the technique for describing future climates. Clim. Change 60:217–42 [Google Scholar]
  107. Piani C, Haerter JO, Coppola E. 107.  2010. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 99:187–92 [Google Scholar]
  108. Christensen JH, Kjellstrom E, Giorgi F, Lenderink G, Rummukainen M. 108.  2010. Assigning relative weights to regional climate models: exploring the concept. Clim. Res. 44:179–84 [Google Scholar]
  109. Endris HS, Omondi P, Jain S, Lennard C, Hewitson B. 109.  et al. 2013. Assessment of the performance of CORDEX regional climate models in simulating East African rainfall. J. Clim. 26:8453–75 [Google Scholar]
  110. Kalognomou E-A, Lennard C, Shongwe M, Pinto I, Favre A. 110.  et al. 2013. A diagnostic evaluation of precipitation in CORDEX models over southern Africa. J. Clim. 26:9477–506 [Google Scholar]
  111. Gbobaniyi E, Sarr A, Sylla MB, Diallo I, Lennard C. 111.  et al. 2014. Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int. J. Climatol. 34:2241–57 [Google Scholar]
  112. Ruti PM, Somot S, Giorgi F, Dubois C, Flaounas E. 112.  et al. 2015. The MED-CORDEX initiative for Mediterranean climate studies. Bull. Am. Meteorol. Soc. In press
  113. Somot S, Sevault F, Déqué M, Crépon M. 113.  2008. 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Glob. Planet. Change 63:112–26 [Google Scholar]
  114. Diro GT, Giorgi F, Fuentes-Franco R, Walsh KJE, Giuliani G, Coppola E. 114.  2014. Tropical cyclones in a regional climate change projection with RegCM4 for the CORDEX Central America domain. Clim. Change 125:79–94 [Google Scholar]
  115. Mishra V, Kumar D, Ganguly AR, Sanjay J, Mujumdar M. 115.  et al. 2014. Reliability of regional and global climate models to simulate precipitation extremes over India. J. Geophys. Res. Atmos. 119:9301–23 [Google Scholar]
  116. Hewitson BC, Daro J, Crane RG, Zermoglio MF, Jack C. 116.  2014. Interrogating empirical-statistical downscaling. Clim. Change 122:539–54 [Google Scholar]
  117. Rosenzweig B, Vörösmarty C, Gutowski WJ, Steiner AL. 117.  2014. Joining scientists and stakeholders in regional Earth system modeling. EOS Trans. Am. Geophys. Union 95:247–48 [Google Scholar]
  118. Giorgi F. 118.  1995. Perspectives for regional Earth system modeling. Global Planet. Change 10:23–42 [Google Scholar]
  119. Artale V, Calmanti S, Carillo A, Dell'Aquila A, Hermann M. 119.  et al. 2010. An atmosphere-ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim. Dyn. 35:721–40 [Google Scholar]
  120. Doscher R, Willen U, Jones C, Rutgersson A, Meier HEM. 120.  et al. 2002. The development of the regional coupled ocean-atmosphere model RCAO. Boreal Environ. Res. 7:183–92 [Google Scholar]
  121. Lehmann A, Lorenz P, Jacob D. 121.  2004. Modelling the exceptional Baltic Sea inflow events in 2002–2003. Geophys. Res. Lett. 31:L21308 [Google Scholar]
  122. Ratnam JV, Giorgi F, Kaginalkar A, Cozzini S. 122.  2009. Simulation of the Indian monsoon using the RegCM3-ROMS regional coupled model. Clim. Dyn. 33:119–39 [Google Scholar]
  123. Turuncoglu UU, Giuliani G, Elguindi N, Giorgi F. 123.  2013. Modeling the Caspian Sea and its catchment area using a coupled regional atmosphere-ocean model (RegCM4-ROMS): model design and preliminary results. Geosci. Model Dev. 6:283–99 [Google Scholar]
  124. Roberts A, Walsh JE, Hinzman L, Doescher R, Sumi A. 124.  et al. 2009. Towards a community Arctic System Model. Ice Clim. News 10:14–15 [Google Scholar]
  125. Hostetler SW, Bates GT, Giorgi F. 125.  1993. Interactive nesting of a lake thermal model within a regional climate model for climate change studies. J. Geophys. Res. 98:5045–57 [Google Scholar]
  126. Small EE, Sloan LC, Hostetler SW, Giorgi F. 126.  1999. Simulating the water balance of the Aral Sea with a coupled regional climate-lake model. J. Geophys. Res. 104:6583–602 [Google Scholar]
  127. Turuncoglu UU, Elguindi N, Giorgi F, Fournier N, Giuliani G. 127.  2013. Development and validation of a regional coupled atmosphere-lake model for the Caspian Sea basin. Clim. Dyn. 41:1731–48 [Google Scholar]
  128. Mironov D, Heist E, Kourzeneva E, Ritter B, Schneider N, Terzhevik A. 128.  2010. Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ. Res. 15:218–30 [Google Scholar]
  129. Qian Y, Giorgi F. 129.  1999. Interactive coupling of regional climate and sulfate aerosol models over eastern Asia. J. Geophys. Res. 104:6477–99 [Google Scholar]
  130. Qian Y, Giorgi F, Huang Y, Chameides WL, Luo C. 130.  2001. Simulation of anthropogenic sulfur East Asia with a regional coupled chemistry-climate model. Tellus B 53B:171–91 [Google Scholar]
  131. Giorgi F, Bi X, Qian Y. 131.  2003. Indirect versus direct effects of anthropogenic sulfate on the climate of East Asia as simulated with a regional coupled climate-chemistry/aerosol model. Clim. Change 58:345–76 [Google Scholar]
  132. Solmon F, Giorgi F, Liousse C. 132.  2006. Development of a regional anthropogenic aerosol model for climate studies: application and validation over a European/African domain. Tellus B 58B:51–72 [Google Scholar]
  133. Zakey AS, Solmon F, Giorgi F. 133.  2006. Development and testing of a desert dust module in a regional climate model. Atmos. Chem. Phys. 6:4687–704 [Google Scholar]
  134. Nabat P, Solmon F, Mallet M, Kok JF, Somot S. 134.  2012. Dust emission size distribution impact on aerosol budget and radiative forcing over the Mediterranean region: a regional climate model approach. Atmos. Chem. Phys. 12:10545–67 [Google Scholar]
  135. Qian Y, Leung LR, Ghan SJ, Giorgi F. 135.  2003. Regional climate effects of aerosols over China: modeling and observations. Tellus B 55B:914–34 [Google Scholar]
  136. Konare A, Zakey AS, Solmon F, Giorgi F, Rauscher S. 136.  et al. 2008. A regional climate modeling study of the effect of desert dust on the West African monsoon. J. Geophys. Res. 113:D12206 [Google Scholar]
  137. Solmon F, Mallet M, Elguindi N, Giorgi F, Zakey AS. 137.  et al. 2008. Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys. Res. Lett. 35:L24705 [Google Scholar]
  138. Nabat P, Somot S, Mallet M, Sanchez-Lorenzo A, Wild M. 138.  2014. Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys. Res. Lett. 41:5605–11 [Google Scholar]
  139. Zanis P, Ntogras C, Zakey AS, Pytharoulis I, Karacostas T. 139.  2012. Regional climate feedback of anthropogenic aerosols over Europe using RegCM3. Clim. Res. 52:267–78 [Google Scholar]
  140. Shalaby A, Zakey AS, Tawfik AB, Solmon F, Giorgi F. 140.  et al. 2012. Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4). Geosci. Model Dev. 5741–60
  141. Steiner AL, Tawfik AB, Shalaby A, Zakey AS, Abdel-Wahab MM. 141.  et al. 2014. Climatological simulations of ozone and atmospheric aerosols in the greater Cairo region. Clim. Res. 59:207–28 [Google Scholar]
  142. Smith B, Samuelsson P, Wramneby A, Rimmukainen M. 142.  2011. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications. Tellus A 6387–106
  143. Zhang W, Jansson C, Miller PA, Smith B, Samuelsson P. 143.  2014. Biogeophysical feedbacks enhance the Arctic terrestrial carbon sink in regional Earth system dynamics. Biogeosciences 11:5503–19 [Google Scholar]
  144. Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M. 144.  et al. 2013. Technical description of version 4.5 of the Community Land Model (CLM) NCAR technical note NCAR/TN-503+STR, Natl. Cent. Atmos. Res., Earth System Lab., Clim. Glob. Dyn. Div., Boulder, CO [Google Scholar]
  145. Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE. 145.  et al. 2005. The importance of land-cover change in simulating future climates. Science 310:1674–78 [Google Scholar]
  146. Boysen LR, Brovkin V, Arora VK, Cadule P, de Noblet-Ducoudre N. 146.  et al. 2014. Global and regional effects of land-use change on climate in the 21st century simulations with interactive carbon cycle. Earth Syst. Dyn. 5:309–19 [Google Scholar]
  147. Kanada S, Nakano M, Kato T. 147.  2010. Changes in mean atmospheric structures around Japan during July due to global warming in regional climate experiments using a cloud-system resolving model. Hydrol. Res. Lett. 4:11–14 [Google Scholar]
  148. Kanada S, Wada A, Sugi M. 148.  2013. Future changes in structures of extremely intense tropical cyclones using a 2-km mesh nonhydrostatic model. J. Clim. 26:9986–10005 [Google Scholar]
  149. Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA. 149.  2014. Heavier summer downpours with climate change revealed by weather forecast resolution models. Nat. Clim. Change 4:570–76 [Google Scholar]
  150. Prein AF, Gobiet A, Suklitsch M, Truhetz H, Awan NK. 150.  et al. 2013. Added value of convection permitting seasonal simulations. Clim. Dyn. 41:2655–577 [Google Scholar]
/content/journals/10.1146/annurev-environ-102014-021217
Loading
/content/journals/10.1146/annurev-environ-102014-021217
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error