1932

Abstract

Conceptual confusion revolves around how to define, assess, and overcome land, ecosystem, and landscape degradation. Common elements link degradation and recovery processes, offering ways to advance local, regional, and global initiatives to reduce degradation and promote the recovery of ecosystems and landscapes in forest biomes. Biophysical attributes of degradation and recovery can be measured, but the relevance of selected attributes across scales is subject to values that determine preferred states. Degradation defined in the context of a resilience-based approach is a state where the capacity for regeneration is greatly reduced or lost, recovery is arrested, core interactions and feedbacks are broken, and human intervention is required to initiate a trajectory of recovery. Another approach combines degradation and recovery processes through the concept of recovery debt, the cumulative lost benefits incurred, relative to a target state during phases of degradation and recovery. Degradation and recovery can also be described in terms of societal willingness to invest in improved management or restoration. Interventions can facilitate recovery to new stable or persistent states that provide multiple social and ecological benefits at land, ecosystem, and landscape scales. Multiple trajectories of recovery, as well as historic and ongoing chronic environmental change, might, however, mean that recovery to an original reference state is not possible.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102016-060736
2017-10-17
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/energy/42/1/annurev-environ-102016-060736.html?itemId=/content/journals/10.1146/annurev-environ-102016-060736&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Food Agric. Organ. UN (FAO). 2011. Assessing Forest Degradation: Towards the Development of Globally Applicable Guidelines Rome: FAO
  2. Asner GP, Rudel TK, Aide TM, Defries R, Emerson R. 2.  2009. A contemporary assessment of change in humid tropical forests. Conserv. Biol. 23:1386–95 [Google Scholar]
  3. 3. Int. Trop. Timber Organ. (ITTO). 2002. ITTO Guidelines for the Restoration, Management and Rehabilitation of Degraded and Secondary Tropical Forests Yokohama, Jpn.: Int. Trop. Timber Organ.
  4. Willis KJ, Birks HJB. 4.  2006. What is natural? The need for a long-term perspective in biodiversity conservation. Science 314:1261–65 [Google Scholar]
  5. Gilliam FS. 5.  2016. Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytol 212:871–87 [Google Scholar]
  6. Wroe S, Field J, Grayson DK. 6.  2006. Megafaunal extinction: climate, humans and assumptions. Trends Ecol. Evol. 21:61–62 [Google Scholar]
  7. Diamond J. 7.  2005. Collapse: How Societies Choose to Fail or Succeed London, UK: Viking
  8. Tainter JA. 8.  2006. Archaeology of overshoot and collapse. Annu. Rev. Anthropol. 35:59–74 [Google Scholar]
  9. Jacks GV, Whyte RO. 9.  1939. The Rape of the Earth: A World Survey of Soil Erosion London: Faber & Faber
  10. Osborn F. 10.  1948. Our Plundered Planet Boston, MA: Little, Brown
  11. Leopold A. 11.  1949. A Sand County Almanac Oxford, UK: Oxford Univ. Press
  12. Carson R. 12.  1962. Silent Spring New York: Houghton Mifflin
  13. 13. UN Conv. Combat Desertif. (UN CCD). 2011. Submission by the United Nations Convention to Combat Desertification on Decision 6/CP.17 Bonn, Ger: UN CCD http://unfccc.int/resource/docs/2012/smsn/igo/99.pdf
  14. Veldman JW. 14.  2016. Clarifying the confusion: old-growth savannahs and tropical ecosystem degradation. Philos. Trans. R. Soc. B 371:20150306 [Google Scholar]
  15. Morales-Barquero L, Skutsch M, Jardel-Peláez EJ, Ghilardi A, Kleinn C, Healey JR. 15.  2014. Operationalizing the definition of forest degradation for REDD+, with application to Mexico. Forests 5:1653–81 [Google Scholar]
  16. Blaikie P, Brookfield H. 16.  1987. Land Degradation and Society London: Methuen
  17. Hobbs RJ. 17.  2016. Degraded or just different? Perceptions and value judgements in restoration decisions. Restor. Ecol. 24:153–58 [Google Scholar]
  18. Sasaki N, Putz FE. 18.  2009. Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv. Lett. 2:226–32 [Google Scholar]
  19. Schmidt-Vogt D. 19.  1998. Defining degradation: the impacts of swidden on forests in northern Thailand. Mt. Res. Dev. 18:135–49 [Google Scholar]
  20. McElwee P. 20.  2009. Reforesting “bare hills” in Vietnam: social and environmental consequences of the 5 million hectare reforestation program. Ambio 38:325–33 [Google Scholar]
  21. Chazdon RL, Brancalion PHS, Laestadius L, Bennett-Curry A, Buckingham K. 21.  et al. 2016. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45:538–50 [Google Scholar]
  22. Filer C, Keenan RJ, Allen BJ, McAlpine JR. 22.  2009. Deforestation and forest degradation in Papua New Guinea. Ann. Forest Sci. 66:813 [Google Scholar]
  23. Filotas E, Parrott L, Burton PJ, Chazdon RL, Coates KD. 23.  et al. 2014. Viewing forests through the lens of complex systems science. Ecosphere 5:1–23 [Google Scholar]
  24. Messier C, Puettmann K, Chazdon R, Andersson KP, Angers VA. 24.  et al. 2015. From management to stewardship: viewing forests as complex adaptive systems in an uncertain world. Conserv. Lett. 8:368–77 [Google Scholar]
  25. Moreno-Mateos D, Barbier EB, Jones PC, Jones HP, Aronson J. 25.  et al. 2017. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8:14163 [Google Scholar]
  26. Lamb D, Stanturf J, Madsen P. 26.  2012. What is forest landscape restoration?. Forest Landscape Restoration: Integrating Natural and Social Sciences J Stanturf, D Lamb, P Madsen 3–23 Dordrecht, Neth.: Springer Sci. [Google Scholar]
  27. Burger J, Gochfeld M, Pletnikoff K, Snigaroff R, Snigaroff D, Stamm T. 27.  2008. Ecocultural attributes: evaluating ecological degradation in terms of ecological goods and services versus subsistence and tribal values. Risk Anal 28:1261–72 [Google Scholar]
  28. Ghazoul J, Burivalova Z, Garcia-Ulloa J, King L. 28.  2015. Conceptualizing forest degradation. Trends Ecol. Evol. 30:622–32 [Google Scholar]
  29. Kardol P, Wardle DA. 29.  2010. How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol. Evol. 25:670–79 [Google Scholar]
  30. Gourlet-Fleury S, Rossi V, Rejou-Mechain M, Freycon V, Fayolle A. 30.  et al. 2011. Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests. J. Ecol. 99:981–90 [Google Scholar]
  31. Chazdon RL. 31.  2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 6:51–71 [Google Scholar]
  32. Islam KR, Ahmed MR, Bhuiyan MK, Badruddin A. 32.  2001. Deforestation effects on vegetative regeneration and soil quality in tropical semi-evergreen degraded and protected forests of Bangladesh. Land Degrad. Dev. 12:45–56 [Google Scholar]
  33. Labriere N, Laumonier Y, Locatelli B, Vieilledent G, Comptour M. 33.  2015. Ecosystem services and biodiversity in a rapidly transforming landscape in northern Borneo. PLOS ONE 10:e0140423 [Google Scholar]
  34. Sidle RC, Ziegler AD, Negishi JN, Nik AR, Siew R, Turkelboom F. 34.  2006. Erosion processes in steep terrain: truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag. 224:199–225 [Google Scholar]
  35. Sloan S. 35.  2008. Reforestation amidst deforestation: simultaneity and succession. Glob. Environ. Change Hum. Policy Dimens. 18:425–41 [Google Scholar]
  36. Thompson J, Brokaw N, Zimmerman JK, Waide RB, Everham EM. 36.  et al. 2002. Land use history, environment, and tree composition in a tropical forest. Ecol. Appl. 12:1344–63 [Google Scholar]
  37. Johst K, Drechsler M, van Teeffelen AJA, Hartig F, Vos CC. 37.  et al. 2011. Biodiversity conservation in dynamic landscapes: trade-offs between number, connectivity and turnover of habitat patches. J. Appl. Ecol. 48:1227–35 [Google Scholar]
  38. Mitchell MGF, Bennett EM, Gonzalez A. 38.  2015. Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales. Environ. Res. Lett. 10:094014 [Google Scholar]
  39. Ruzicka KJ, Groninger JW, Zaczek JJ. 39.  2010. Deer browsing, forest edge effects, and vegetation dynamics following bottomland forest restoration. Restor. Ecol. 18:702–10 [Google Scholar]
  40. Tanentzap AJ, Burrows LE, Lee WG, Nugent G, Maxwell JM, Coomes DA. 40.  2009. Landscape-level vegetation recovery from herbivory: progress after four decades of invasive red deer control. J. Appl. Ecol. 46:1064–72 [Google Scholar]
  41. Doyle M, Drew CA. 41. , eds. 2008. Large-Scale Ecosystem Restoration: Five Case Studies from the United States Washington, DC: Island
  42. Sabogal C, Besacier C, McGuire D. 42.  2015. Forest and landscape restoration: concepts, approaches and challenges for implementation. Unasylva 66:3–10 [Google Scholar]
  43. Rudel TK. 43.  2005. Tropical Forests: Regional Pathways of Destruction and Regeneration in the Late Twentieth Century New York: Columbia Univ. Press
  44. Lambin EF. 44.  1999. Monitoring forest degradation in tropical regions by remote sensing: some methodological issues. Glob. Ecol. Biogeogr. 8:191–98 [Google Scholar]
  45. Thompson ID, Guariguata MR, Okabe K, Bahamondez C, Nasi R. 45.  et al. 2013. An operational framework for defining and monitoring forest degradation. Ecol. Soc. 18:20 [Google Scholar]
  46. Crouzeilles R, Curran M, Ferreira MS, Lindenmayer DB, Grelle CEV, Benayas JMR. 46.  2016. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7:11666 [Google Scholar]
  47. Robbins P, Fraser A. 47.  2003. A forest of contradictions: producing the landscapes of the Scottish highlands. Antipode 35:95–118 [Google Scholar]
  48. Stott PA, Sullivan S. 48. , eds. 2000. Political Ecology: Science, Myth and Power London: Arnold
  49. Cairns MF. 49.  2015. Shifting Cultivation and Environmental Change: Indigenous People, Agriculture and Forest Conservation Abingdon, UK: Routledge
  50. van Vliet N, Mertz O, Heinimann A, Langanke T, Pascual U. 50.  et al. 2012. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: a global assessment. Glob. Environ. Change Hum. Policy Dimens. 22:418–29 [Google Scholar]
  51. Mertz O, Padoch C, Fox J, Cramb RA, Leisz SJ. 51.  et al. 2009. Swidden change in Southeast Asia: understanding causes and consequences. Hum. Ecol. 37:259–64 [Google Scholar]
  52. de Carvalho CM, Silveira S, La Rovere EL, Iwama AY. 52.  2015. Deforested and degraded land available for the expansion of palm oil for biodiesel in the state of Pará in the Brazilian Amazon. Renew. Sustain. Energy Rev. 44:867–76 [Google Scholar]
  53. Edwards DP, Tobias JA, Sheil D, Meijaard E, Laurance WF. 53.  2014. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 29:511–20 [Google Scholar]
  54. Thomas HJD, Paterson JS, Metzger MJ, Sing L. 54.  2015. Towards a research agenda for woodland expansion in Scotland. For. Ecol. Manag. 349:149–61 [Google Scholar]
  55. Patru-Stupariu I, Tudor CA, Stupariu MS, Buttler A, Peringer A. 55.  2016. Landscape persistence and stakeholder perspectives: the case of Romania's Carpathians. Appl. Geogr. 69:87–98 [Google Scholar]
  56. Price B, Kienast F, Seidl I, Ginzler C, Verburg PH, Bolliger J. 56.  2015. Future landscapes of Switzerland: risk areas for urbanisation and land abandonment. Appl. Geogr. 57:32–41 [Google Scholar]
  57. Ray R, Chandran MDS, Ramachandra TV. 57.  2014. Socio-cultural protection of endemic trees in humanised landscape. Biodivers. Conserv. 23:1977–94 [Google Scholar]
  58. Sowinska-Swierkosz B, Chmielewski TJ. 58.  2014. Comparative assessment of public opinion on the landscape quality of two biosphere reserves in Europe. Environ. Manag. 54:531–56 [Google Scholar]
  59. Star SL. 59.  2010. This is not a boundary object: reflections on the origin of a concept. Sci. Technol. Hum. Values 35:601–17 [Google Scholar]
  60. Cash DW, Clark WC, Alcock F, Dickson NM, Eckley N. 60.  et al. 2003. Knowledge systems for sustainable development. PNAS 100:8086–91 [Google Scholar]
  61. Abson DJ, von Wehrden H, Baumgartner S, Fischer J, Hanspach J. 61.  et al. 2014. Ecosystem services as a boundary object for sustainability. Ecol. Econ. 103:29–37 [Google Scholar]
  62. Chazdon RL, Laestadius L. 62.  2016. Forest and landscape restoration: toward a shared vision and vocabulary. Am. J. Bot. 103:1869–71 [Google Scholar]
  63. McCormick N, Jenkins M, Maginnis S. 63.  2014. Biofuels and Degraded Land: The Potential Role of Intensive Agriculture in Landscape Restoration Gland, Switz.: IUCN
  64. Stefanes M, Ochoa-Quintero JM, de Oliveira Roque F, Sugai LSM, Tambosi LR. 64.  et al. 2016. Incorporating resilience and cost in ecological restoration strategies at landscape scale. Ecol. Soc. 21:54 [Google Scholar]
  65. Tambosi LR, Martensen AC, Ribeiro MC, Metzger JP. 65.  2014. A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity. Restor. Ecol. 22:169–77 [Google Scholar]
  66. Alves-Pinto HN, Latawiec AE, Strassburg BBN, Barros FSM, Sansevero JBB. 66.  et al. 2017. Reconciling rural development and ecological restoration: strategies and policy recommendations for the Brazilian Atlantic Forest. Land Use Policy 60:419–26 [Google Scholar]
  67. Latawiec AE, Strassburg BBN, Brancalion PHS, Rodrigues RR, Gardner T. 67.  2015. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 13:211–18 [Google Scholar]
  68. Murcia C. 68.  1997. Evaluation of Andean alder as a catalyst for the recovery of tropical cloud forests in Colombia. For. Ecol. Manag. 99:163–70 [Google Scholar]
  69. Meli P, Holl KD, Benayas JMR, Jones HP, Jones PC. 69.  et al. 2017. A global review of past land use, climate, and active versus passive restoration effects on forest recovery. PLOS ONE 12:e0171368 [Google Scholar]
  70. de Souza HN, de Graaff J, Pulleman MM. 70.  2012. Strategies and economics of farming systems with coffee in the Atlantic Rainforest Biome. Agrofor. Syst. 84:227–42 [Google Scholar]
  71. Le HD, Smith C, Herbohn J. 71.  2014. What drives the success of reforestation projects in tropical developing countries? The case of the Philippines. Glob. Environ. Change Hum. Policy Dimens. 24:334–48 [Google Scholar]
  72. Richards RC, Rerolle J, Aronson J, Pereira PH, Goncalyes H, Brancalion PHS. 72.  2015. Governing a pioneer program on payment for watershed services: stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil. Ecosyst. Serv. 16:23–32 [Google Scholar]
  73. Suding KN, Hobbs RJ. 73.  2009. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24:271–79 [Google Scholar]
  74. Birch JC, Newton AC, Aquino CA, Cantarello E, Echeverria C. 74.  et al. 2010. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services. PNAS 107:21925–30 [Google Scholar]
  75. Vergara W, Lomeli LG, Rios AR, Isbell P, Prager S, De Camino R. 75.  2016. The Economic Case for Landscape Restoration in Latin America Washington, DC: World Resour. Inst.
  76. Brancalion PHS, Schweizer D, Gaudare U, Mangueira JR, Lamonato F. 76.  et al. 2016. Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil. Biotropica 48:856–67 [Google Scholar]
  77. Franklin JF, Hagmann RK, Urgenson LS. 77.  2014. Interactions between societal goals and restoration of dry forest landscapes in western North America. Landsc. Ecol. 29:1645–55 [Google Scholar]
  78. Moritz MA, Batllori E, Bradstock RA, Gill AM, Handmer J. 78.  et al. 2014. Learning to coexist with wildfire. Nature 515:58–66 [Google Scholar]
  79. Ryan KC, Knapp EE, Varner JM. 79.  2013. Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Front. Ecol. Environ. 11:E15–24 [Google Scholar]
  80. Mesquita RDG, Massoca PED, Jakovac CC, Bentos TV, Williamson GB. 80.  2015. Amazon rain forest succession: stochasticity or land-use legacy?. BioScience 65:849–61 [Google Scholar]
  81. Li SY, Verburg PH, Lv SH, Wu JL, Li XB. 81.  2012. Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China. Reg. Environ. Change 12:461–74 [Google Scholar]
  82. Hanson C, Buckingham K, DeWitt S, Laestadius L. 82.  2015. The Restoration Diagnostic. A Method for Developing Forest Landscape Restoration Strategies by Rapidly Assessing the Status of Key Success Factors. Washington, DC: World Resour. Inst.
  83. Hiers JK, Jackson ST, Hobbs RJ, Bernhardt ES, Valentine LE. 83.  2016. The precision problem in conservation and restoration. Trends Ecol. Evol. 31:820–30 [Google Scholar]
  84. Hughes FMR, Adams WM, Stroh PA. 84.  2012. When is open-endedness desirable in restoration projects?. Restor. Ecol. 20:291–95 [Google Scholar]
  85. Chapin FS, Carpenter SR, Kofinas GP, Folke C, Abel N. 85.  et al. 2010. Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol. Evol. 25:241–49 [Google Scholar]
  86. Petraitis P. 86.  2013. Multiple Stable States in Natural Ecosystems Oxford, UK: Oxford Univ. Press
  87. Hirota M, Holmgren M, Van Nes EH, Scheffer M. 87.  2011. Global resilience of tropical forest and savanna to critical transitions. Science 334:232–35 [Google Scholar]
  88. Martinez-Garza C, Osorio-Beristain M, Valenzuela-Galvan D, Nicolás-Medina A. 88.  2011. Intra and inter-annual variation in seed rain in a secondary dry tropical forest excluded from chronic disturbance. For. Ecol. Manag. 262:2207–18 [Google Scholar]
  89. Souza JT, Ferraz EMN, Albuquerque UP, Araújo EL. 89.  2014. Does proximity to a mature forest contribute to the seed rain and recovery of an abandoned agriculture area in a semiarid climate?. Plant Biol 16:748–56 [Google Scholar]
  90. Standish RJ, Hobbs RJ, Mayfield MM, Bestelmeyer BT, Suding KN. 90.  et al. 2014. Resilience in ecology: abstraction, distraction, or where the action is?. Biol. Conserv. 177:43–51 [Google Scholar]
  91. Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA. 91.  et al. 2011. The human dimension of fire regimes on Earth. J. Biogeogr. 38:2223–36 [Google Scholar]
  92. Cochrane MA, Alencar A, Schulze MD, Souza CM Jr., Lefebvre P, Nepstad DC. 92.  2002. Investigating positive feedbacks in the fire dynamic of closed canopy tropical forests. Deforestation and Land Use in the Amazon CH Wood, R Porro 285–98 Gainesville, FL: Univ. Press Florida [Google Scholar]
  93. Mori AS, Furukawa T, Sasaki T. 93.  2013. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88:349–64 [Google Scholar]
  94. Aslan CE, Bronstein JL, Rogers HS, Gedan KB, Brodie J. 94.  et al. 2016. Leveraging nature's backup plans to incorporate interspecific interactions and resilience into restoration. Restor. Ecol. 24:434–40 [Google Scholar]
  95. Churchill DJ, Larson AJ, Dahlgreen MC, Franklin JF, Hessburg PF, Lutz JA. 95.  2013. Restoring forest resilience: from reference spatial patterns to silvicultural prescriptions and monitoring. For. Ecol. Manag. 291:442–57 [Google Scholar]
  96. Strahan RT, Meador AJS, Huffman DW, Laughlin DC. 96.  2016. Shifts in community-level traits and functional diversity in a mixed conifer forest: a legacy of land-use change. J. Appl. Ecol. 53:1755–65 [Google Scholar]
  97. Laliberte E, Wells JA, DeClerck F, Metcalfe DJ, Catterall CP. 97.  et al. 2010. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 13:76–86 [Google Scholar]
  98. Cavallero L, Lopez DR, Raffaele E, Aizen MA. 98.  2015. Structural-functional approach to identify post-disturbance recovery indicators in forests from northwestern Patagonia: a tool to prevent state transitions. Ecol. Indic. 52:85–95 [Google Scholar]
  99. van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB. 99.  et al. 2013. Plant-soil feedbacks: the past, the present and future challenges. J. Ecol. 101:265–76 [Google Scholar]
  100. Ripple WJ, Beschta RL, Painter LE. 100.  2015. Trophic cascades from wolves to alders in Yellowstone. For. Ecol. Manag. 354:254–60 [Google Scholar]
  101. Wallach AD, Ripple WJ, Carroll SP. 101.  2015. Novel trophic cascades: apex predators enable coexistence. Trends Ecol. Evol. 30:146–53 [Google Scholar]
  102. Blackham GV, Webb EL, Corlett RT. 102.  2014. Natural regeneration in a degraded tropical peatland, central Kalimantan, Indonesia: implications for forest restoration. For. Ecol. Manag. 324:8–15 [Google Scholar]
  103. Kaiser-Bunbury CN, Mougal J, Whittington AE, Valentin T, Gabriel R. 103.  et al. 2017. Ecosystem restoration strengthens pollination network resilience and function. Nature 542:223–27 [Google Scholar]
  104. Kollmann J, Meyer ST, Bateman R, Conradi T, Gossner MM. 104.  et al. 2016. Integrating ecosystem functions into restoration ecology: recent advances and future directions. Restor. Ecol. 24:722–30 [Google Scholar]
  105. Doherty JM, Callaway JC, Zedler JB. 105.  2011. Diversity-function relationships changed in a long-term restoration experiment. Ecol. Appl. 21:2143–55 [Google Scholar]
  106. Morelli F, Tryjanowski P. 106.  2016. The dark side of the “redundancy hypothesis” and ecosystem assessment. Ecol. Complexity 28:222–29 [Google Scholar]
  107. Bustamante-Sanchez MA, Armesto JJ. 107.  2012. Seed limitation during early forest succession in a rural landscape on Chiloe Island, Chile: implications for temperate forest restoration. J. Appl. Ecol. 49:1103–12 [Google Scholar]
  108. Leite MD, Tambosi LR, Romitelli I, Metzger JP. 108.  2013. Landscape ecology perspective in restoration projects for biodiversity conservation: a review. Nat. Conserv. 11:108–18 [Google Scholar]
  109. Craven D, Filotas E, Angers VA, Messier C. 109.  2016. Evaluating resilience of tree communities in fragmented landscapes: linking functional response diversity with landscape connectivity. Divers. Distrib. 22:505–18 [Google Scholar]
  110. van der Plas F, Manning P, Soliveres S, Allan E, Scherer-Lorenzen M. 110.  et al. 2016. Biotic homogenization can decrease landscape-scale forest multifunctionality. PNAS 113:3557–62 [Google Scholar]
  111. Schulte LA, Mladenoff DJ, Crow TR, Merrick LC, Cleland DT. 111.  2007. Homogenization of northern US Great Lakes forests due to land use. Landsc. Ecol. 22:1089–103 [Google Scholar]
  112. Thompson JR, Carpenter DN, Cogbill CV, Foster DR. 112.  2013. Four centuries of change in northeastern United States forests. PLOS ONE 8:e72540 [Google Scholar]
  113. Kelly LT, Brotons L. 113.  2017. Using fire to promote biodiversity. Science 355:1264–65 [Google Scholar]
  114. Charnley S, Spies TA, Barros AM, White EM, Olsen KA. 114.  2017. Diversity in forest management to reduce wildfire losses: implications for resilience. Ecol. Soc. 22:22 [Google Scholar]
  115. Hessburg PF, Churchill DJ, Larson AJ, Haugo RD, Miller C. 115.  et al. 2015. Restoring fire-prone inland Pacific landscapes: seven core principles. Landsc. Ecol. 30:1805–35 [Google Scholar]
  116. Tingley MW, Ruiz-Gutierrez V, Wilkerson RL, Howell CA, Siegel RB. 116.  2016. Pyrodiversity promotes avian diversity over the decade following forest fire. Proc. R. Soc. B 283:20161703 [Google Scholar]
  117. Turner MG. 117.  2010. Disturbance and landscape dynamics in a changing world. Ecology 91:2833–49 [Google Scholar]
  118. Frelich LE, Reich PB. 118.  1999. Neighborhood effects, disturbance severity, and community stability in forests. Ecosystems 2:151–66 [Google Scholar]
  119. Prasad AE. 119.  2012. Landscape-scale relationships between the exotic invasive shrub Lantana camara and native plants in a tropical deciduous forest in southern India. J. Trop. Ecol. 28:55–64 [Google Scholar]
  120. McCune JL, Vellend M. 120.  2013. Gains in native species promote biotic homogenization over four decades in a human-dominated landscape. J. Ecol. 101:1542–51 [Google Scholar]
  121. Zahawi RA, Dandois JP, Holl KD, Nadwodny D, Reid JL, Ellis EC. 121.  2015. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biol. Conserv. 186:287–95 [Google Scholar]
  122. Cho MA, Ramoelo A, Debba P, Mutanga O, Mathieu R. 122.  et al. 2013. Assessing the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data. Landsc. Ecol. 28:1479–91 [Google Scholar]
  123. Malhi Y, Gardner TA, Goldsmith GR, Silman MR, Zelazowski P. 123.  2014. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resourc. 39:125–59 [Google Scholar]
  124. Jackson ST, Hobbs RJ. 124.  2009. Ecological restoration in the light of ecological history. Science 325:567–69 [Google Scholar]
  125. Balaguer L, Escudero A, Martin-Duque JF, Mola I, Aronson J. 125.  2014. The historical reference in restoration ecology: re-defining a cornerstone concept. Biol. Conserv. 176:12–20 [Google Scholar]
  126. Hobbs RJ, Higgs E, Harris JA. 126.  2009. Novel ecosystems: implications for conservation and restoration. Trends Ecol. Evol. 24:599–605 [Google Scholar]
  127. Josefsson T, Hornberg G, Ostlund L. 127.  2009. Long-term human impact and vegetation changes in a boreal forest reserve: implications for the use of protected areas as ecological references. Ecosystems 12:1017–36 [Google Scholar]
  128. van Gemerden BS, Olff H, Parren MPE, Bongers F. 128.  2003. The pristine rain forest? Remnants of historical human impacts on current tree species composition and diversity. J. Biogeogr. 30:1381–90 [Google Scholar]
  129. Gomez-Pompa A, Kaus A. 129.  1992. Taming the wilderness myth. BioScience 42:271–79 [Google Scholar]
  130. Heckenberger MJ, Russell JC, Toney JR, Schmidt MJ. 130.  2007. The legacy of cultural landscapes in the Brazilian Amazon: implications for biodiversity. Philos. Trans. R. Soc. B 362:197–208 [Google Scholar]
  131. Gourlet-Fleury S, Beina D, Fayolle A, Ouedraogo DY, Mortier F. 131.  et al. 2013. Silvicultural disturbance has little impact on tree species diversity in a central African moist forest. For. Ecol. Manag. 304:322–32 [Google Scholar]
  132. Truitt AM, Granek EF, Duveneck MJ, Goldsmith KA, Jordan MP, Yazzie KC. 132.  2015. What is novel about novel ecosystems: managing change in an ever-changing world. Environ. Manag. 55:1217–26 [Google Scholar]
  133. Mascaro J, Hughes RF, Schnitzer SA. 133.  2012. Novel forests maintain ecosystem processes after the decline of native tree species. Ecol. Monogr. 82:221–38 [Google Scholar]
  134. Kitchen SG. 134.  2012. Historical fire regime and forest variability on two eastern Great Basin fire-sheds (USA). For. Ecol. Manag. 285:53–66 [Google Scholar]
  135. Addington RN, Knapp BO, Sorrell GG, Elmore ML, Wang GG, Walker JL. 135.  2015. Factors affecting broadleaf woody vegetation in upland pine forests managed for longleaf pine restoration. For. Ecol. Manag. 354:130–38 [Google Scholar]
  136. Pasanen H, Rehu V, Junninen K, Kouki J. 136.  2015. Prescribed burning of canopy gaps facilitates tree seedling establishment in restoration of pine-dominated boreal forests. Can. J. For. Res. 45:1225–31 [Google Scholar]
  137. Taylor RS, Watson SJ, Nimmo DG, Kelly LT, Bennett AF, Clarke MF. 137.  2012. Landscape-scale effects of fire on bird assemblages: Does pyrodiversity beget biodiversity?. Divers. Distrib. 18:519–29 [Google Scholar]
  138. Olander LP, Gibbs HK, Steininger M, Swenson JJ, Murray BC. 138.  2008. Reference scenarios for deforestation and forest degradation in support of REDD: a review of data and methods. Environ. Res. Lett. 3:025011 [Google Scholar]
  139. Frelich LE, Reich PB. 139.  1995. Spatial patterns and succession in a Minnesota southern-boreal forest. Ecol. Monogr. 65:325–46 [Google Scholar]
  140. Walker B, Holling CS, Carpenter SR, Kinzig A. 140.  2004. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 9:5 [Google Scholar]
  141. Newton AC, Cantarello E. 141.  2015. Restoration of forest resilience: an achievable goal?. New For 46:645–68 [Google Scholar]
  142. Haeussler S, Canham C, Coates KD. 142.  2013. Complexity in temperate forest dynamics. Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change C Messier, KJ Puettmann, KD Coates 60–78 Abingdon, UK: Routledge [Google Scholar]
  143. Peterken GF, Jones EW. 143.  1987. Forty years of change in Lady Park Wood: the old-growth stands. J. Ecol. 75:477–512 [Google Scholar]
  144. Longworth JB, Mesquita RC, Bentos TV, Moreira MP, Massoca PE, Williamson GB. 144.  2014. Shifts in dominance and species assemblages over two decades in alternative successions in central Amazonia. Biotropica 46:529–37 [Google Scholar]
  145. Williamson GB, Bentos TV, Longworth JB, Mesquita RCG. 145.  2014. Convergence and divergence in alternative successional pathways in central Amazonia. Plant Ecol. Divers. 7:341–48 [Google Scholar]
  146. Krause A, Pugh TAM, Bayer AD, Lindeskog M, Arneth A. 146.  2016. Impacts of land-use history on the recovery of ecosystems after agricultural abandonment. Earth Syst. Dyn. 7:745–66 [Google Scholar]
  147. Jakovac CC, Pena-Claros M, Kuyper TW, Bongers F. 147.  2015. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103:67–77 [Google Scholar]
  148. Arroyo-Rodriguez V, Melo FPL, Martinez-Ramos M, Bongers F, Chazdon RL. 148.  et al. 2017. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. 92:326–40 [Google Scholar]
  149. Norden N, Angarita HA, Bongers F, Martinez-Ramos M, Granzow-de la Cerda I. 149.  et al. 2015. Successional dynamics in Neotropical forests are as uncertain as they are predictable. PNAS 112:8013–18 [Google Scholar]
  150. Bengtsson J, Angelstam P, Elmqvist T, Emanuelsson U, Folke C. 150.  et al. 2003. Reserves, resilience and dynamic landscapes. Ambio 32:389–96 [Google Scholar]
  151. Jakovac ACC, Bentos TV, Mesquita RCG, Williamson GB. 151.  2014. Age and light effects on seedling growth in two alternative secondary successions in central Amazonia. Plant Ecol. Divers. 7:349–58 [Google Scholar]
  152. Schnitzer SA, Carson WP. 152.  2010. Lianas suppress tree regeneration and diversity in treefall gaps. Ecol. Lett. 13:849–57 [Google Scholar]
  153. Wagner A, Yap DLT, Yap HT. 153.  2015. Drivers and consequences of land use patterns in a developing country rural community. Agric. Ecosyst. Environ. 214:78–85 [Google Scholar]
  154. Anderson RC, Schwegman JE, Anderson MR. 154.  2000. Micro-scale restoration: a 25-year history of a southern Illinois barrens. Restor. Ecol. 8:296–306 [Google Scholar]
  155. Bahamondez C, Thompson ID. 155.  2016. Determining forest degradation, ecosystem state and resilience using a standard stand stocking measurement diagram: theory into practice. Forestry 89:290–300 [Google Scholar]
  156. Lugo AE, Scatena FN, Silver WL, Molina Colon S, Murphy PG. 156.  2002. Resilience of tropical wet and dry forests in Puerto Rico. Resilience and the Behavior of Large-Scale Systems LH Gunderson, L Pritchard 195–226 Washington, DC: Island [Google Scholar]
  157. Chazdon RL, Arroyo JP. 157.  2013. Tropical forests as complex adaptive systems. See Ref. 142 35–59
  158. Lawrence D, Radel C, Tully K, Schmook B, Schneider L. 158.  2010. Untangling a decline in tropical forest resilience: constraints on the sustainability of shifting cultivation across the globe. Biotropica 42:21–30 [Google Scholar]
  159. Beaune D, Bretagnolle F, Bollache L, Hohmann G, Surbeck M, Fruth B. 159.  2013. Seed dispersal strategies and the threat of defaunation in a Congo forest. Biodivers. Conserv. 22:225–38 [Google Scholar]
  160. Peres CA, Emilio T, Schietti J, Desmouliere SJM, Levi T. 160.  2016. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. PNAS 113:892–97 [Google Scholar]
  161. Anderson-Teixeira KJ, Miller AD, Mohan JE, Hudiburg TW, Duval BD, DeLucia EH. 161.  2013. Altered dynamics of forest recovery under a changing climate. Glob. Change Biol. 19:2001–21 [Google Scholar]
  162. Reyer CPO, Brouwers N, Rammig A, Brook BW, Epila J. 162.  et al. 2015. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103:5–15 [Google Scholar]
  163. Rozendaal DMA, Chazdon RL, Arreola-Villa F, Balvanera P, Bentos TV. 163.  et al. 2016. Demographic drivers of aboveground biomass dynamics during secondary succession in Neotropical dry and wet forests. Ecosystems 20:340–53 [Google Scholar]
  164. Pardini R, Bueno AD, Gardner TA, Prado PI, Metzger JP. 164.  2010. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLOS ONE 5:e13666 [Google Scholar]
  165. Magnuszewski P, Ostasiewicz K, Chazdon R, Salk C, Pajak M. 165.  et al. 2015. Resilience and alternative stable states of tropical forest landscapes under shifting cultivation regimes. PLOS ONE 10:e0137497 [Google Scholar]
  166. Wortley L, Hero JM, Howes M. 166.  2013. Evaluating ecological restoration success: a review of the literature. Restor. Ecol. 21:537–43 [Google Scholar]
  167. Shoo LP, Catterall CP. 167.  2013. Stimulating natural regeneration of tropical forest on degraded land: approaches, outcomes, and information gaps. Restor. Ecol. 21:670–77 [Google Scholar]
  168. Bateman HL, Merritt DM, Johnson JB. 168.  2012. Riparian forest restoration: conflicting goals, trade-offs, and measures of success. Sustainability 4:2334–47 [Google Scholar]
  169. Buergin R. 169.  2016. Ecosystem restoration concessions in Indonesia: conflicts and discourses. Crit. Asian Stud. 48:278–301 [Google Scholar]
  170. Ager AA, Day MA, Vogler K. 170.  2016. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests. J. Environ. Manag. 176:157–68 [Google Scholar]
  171. Shimizu K, Ponce-Hernandez R, Ahmed OS, Ota T, Win ZC. 171.  et al. 2016. Using Landsat time series imagery to detect forest disturbance in selectively logged tropical forests in Myanmar. Can. J. For. Res. 47:289–96 [Google Scholar]
  172. van Lierop P, Lindquist E, Sathyapala S, Franceschini G. 172.  2015. Global forest area disturbance from fire, insect pests, diseases and severe weather events. For. Ecol. Manag. 352:78–88 [Google Scholar]
  173. Holl KD, Zahawi RA. 173.  2014. Factors explaining variability in woody above-ground biomass accumulation in restored tropical forest. For. Ecol. Manag. 319:36–43 [Google Scholar]
  174. Bustamante MMC, Roitman I, Aide TM, Alencar A, Anderson LO. 174.  et al. 2016. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob. Change Biol. 22:92–109 [Google Scholar]
  175. Chidumayo EN. 175.  2013. Forest degradation and recovery in a Miombo woodland landscape in Zambia: 22 years of observations on permanent sample plots. For. Ecol. Manag. 291:154–61 [Google Scholar]
  176. Shoo LP, Freebody K, Kanowski J, Catterall CP. 176.  2016. Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration. Conserv. Biol. 30:121–32 [Google Scholar]
  177. Xu H, Li YD, Liu SR, Zang RG, He FL, Spence JR. 177.  2015. Partial recovery of a tropical rain forest a half-century after clear-cut and selective logging. J. Appl. Ecol. 52:1044–52 [Google Scholar]
  178. Austin KG, Lee ME, Clark C, Forester BR, Urban DL. 178.  et al. 2017. An assessment of high carbon stock and high conservation value approaches to sustainable oil palm cultivation in Gabon. Environ. Res. Lett. 12:014005 [Google Scholar]
  179. Lohbeck M, Poorter L, Martinez-Ramos M, Bongers F. 179.  2015. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96:1242–52 [Google Scholar]
  180. Norden N, Chazdon RL, Chao A, Jiang Y-H, Vilchez-Alvarado B. 180.  2009. Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecol. Lett. 12:385–94 [Google Scholar]
  181. Buma B, Wessman CA. 181.  2011. Disturbance interactions can impact resilience mechanisms of forests. Ecosphere 2:1–13 [Google Scholar]
  182. Meyer ST, Koch C, Weisser WW. 182.  2015. Towards a standardized Rapid Ecosystem Function Assessment (REFA). Trends Ecol. Evol. 30:390–97 [Google Scholar]
  183. Rishmawi K, Prince SD. 183.  2016. Environmental and anthropogenic degradation of vegetation in the Sahel from 1982 to 2006. Remote Sens 8:948 [Google Scholar]
  184. Yengoh GT, Dent D, Olsson L, Tengberg AE, CJ Tucker III. 184.  2015. Key issues in the use of NDVI for land degradation assessment. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations GT Yengoh, D Dent, L Olsson L, AE Tengberg, CJ Tucker III 31–35 Cham, Switz.: Springer Int. [Google Scholar]
  185. Herrero HV, Southworth J, Bunting E. 185.  2016. Utilizing multiple lines of evidence to determine landscape degradation within protected area landscapes: a case study of Chobe National Park, Botswana from 1982 to 2011. Remote Sens 8:623 [Google Scholar]
  186. Zahawi RA, Duran G, Kormann U. 186.  2015. Sixty-seven years of land-use change in southern Costa Rica. PLOS ONE 10:e0143554 [Google Scholar]
  187. Banks-Leite C, Ewers RM, Metzger JP. 187.  2012. Unraveling the drivers of community dissimilarity and species extinction in fragmented landscapes. Ecology 93:2560–69 [Google Scholar]
  188. Banks-Leite C, Pardini R, Tambosi LR, Pearse WD, Bueno AA. 188.  et al. 2014. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345:1041–45 [Google Scholar]
  189. Pütz S, Groeneveld J, Henle K, Knogge C, Martensen AC. 189.  et al. 2014. Long-term carbon loss in fragmented Neotropical forests. Nat. Commun. 5:5037 [Google Scholar]
  190. Brinck K, Fischer R, Groeneveld J, Lehmann S, De Paula MD. 190.  et al. 2017. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8:14855 [Google Scholar]
  191. Lobo D, Leao T, Melo FPL, Santos AMM, Tabarelli M. 191.  2011. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers. Distrib. 17:287–96 [Google Scholar]
  192. Lopes AV, Girao LC, Santos BA, Peres CA, Tabarelli M. 192.  2009. Long-term erosion of tree reproductive trait diversity in edge-dominated Atlantic forest fragments. Biol. Conserv. 142:1154–65 [Google Scholar]
  193. Groeneveld J, Alves LF, Bernacci LC, Catharino ELM, Knogge C. 193.  et al. 2009. The impact of fragmentation and density regulation on forest succession in the Atlantic rain forest. Ecol. Model. 220:2450–59 [Google Scholar]
  194. Pütz S, Groeneveld J, Alves LF, Metzger JP, Huth A. 194.  2011. Fragmentation drives tropical forest fragments to early successional states: a modelling study for Brazilian Atlantic forests. Ecol. Model. 222:1986–97 [Google Scholar]
  195. Thompson I. 195.  2011. Biodiversity, ecosystem thresholds, resilience and forest degradation. Unasylva 62:25–30 [Google Scholar]
  196. Bonner MTL, Schmidt S, Shoo LP. 196.  2013. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manag. 291:73–86 [Google Scholar]
  197. Johnson DL, Ambrose SH, Bassett TJ, Bowen ML, Crummey DE. 197.  et al. 1997. Meanings of environmental terms. J. Environ. Qual. 26:581–89 [Google Scholar]
  198. Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D. 198.  et al., eds. 2003. Definitions and methodological options to inventory emissions from direct human-induced degradation of forests and devegetation of other vegetation types. Rep., Inst. Glob. Environ. Strateg., Int. Panel Clim. Change, Geneva
  199. Hobley M. 199.  2005. The impacts of degradation and forest loss on human well-being and its social and political relevance for restoration. Forest Restoration in Landscapes: Beyond Planting Trees S Mansourian, D Vallauri, N Dudley 22–30 Berlin, Ger.: Springer [Google Scholar]
  200. Howell EA, Harrington JA, Glass SB. 200.  2012. Introduction to Restoration Ecology Washington, DC: Island
  201. Van Andel J, Aronson J. 201.  2012. Restoration Ecology: The New Frontier Oxford, UK: Blackwell
  202. Clewell AF, Aronson J. 202.  2013. Ecological Restoration: Principles, Values and Structure of an Emerging Profession Washington, DC: Island
  203. Stanturf JA. 203.  2015. Future landscapes: opportunities and challenges. New For 46:615–44 [Google Scholar]
/content/journals/10.1146/annurev-environ-102016-060736
Loading
/content/journals/10.1146/annurev-environ-102016-060736
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error