1932

Abstract

In this review, we examine the debate surrounding the role for organic agriculture in future food production systems. Typically represented as a binary organic–conventional question, this debate perpetuates an either/or mentality. We question this framing and examine the pitfalls of organic–conventional cropping systems comparisons. The review assesses current knowledge about how these cropping systems compare across a range of metrics related to four sustainability goals: productivity, environmental health, economic viability, and quality of life. We conclude by arguing for reframing the debate, recognizing that farming systems fall along gradients between three philosophical poles—industrial, agrarian, and ecological—and that different systems will be appropriate in different contexts. Despite evidence for lower yields in organic crop systems, we found considerable evidence for environmental and social benefits. Given these advantages, and the potential for improving organic systems, we echo calls for increased investment in organic and ecologically based cropping systems research and extension.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-110615-085750
2017-10-17
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/energy/42/1/annurev-environ-110615-085750.html?itemId=/content/journals/10.1146/annurev-environ-110615-085750&mimeType=html&fmt=ahah

Literature Cited

  1. Thompson P. 1.  2010. The Agrarian Vision: Sustainability and Environmental Ethics Lexington, KY: Univ. Press Ky.
  2. 2. National Research Council. 2010. Toward Sustainable Agricultural Systems in the 21st Century Washington, DC: Natl. Acad. Sci. Eng. Med.
  3. Timmermann C, Félix GF. 3.  2015. Agroecology as a vehicle for contributive justice. Agric. Hum. Values 32:523–38 [Google Scholar]
  4. Wezel A, Bellon S, Dore T, Francis C, Vallod D, David C. 4.  2009. Agroecology as a science, a movement and a practice. A review. Agron. Sustain. Dev. 29:503–15 [Google Scholar]
  5. Tomich TP, Brodt S, Ferris H, Galt R, Horwath WR. 5.  et al. 2011. Agroecology: a review from a global-change perspective. Annu. Rev. Environ. Resour. 36:193–22 [Google Scholar]
  6. Kremen C, Iles A, Bacon C. 6.  2012. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17:44 [Google Scholar]
  7. Legun K. 7.  2011. Cultivating institutions: organic agriculture and integrative economic choice. Soc. Nat. Resour. 24:455–68 [Google Scholar]
  8. Pudak J, Bokan N. 8.  2011. Organic agriculture—indicator of social values. Sociol. I Prostor 49:137–63 [Google Scholar]
  9. Letourneau D, van Bruggen AHC. 9.  2006. Crop protection in organic agriculture. Organic Agriculture—A Global Perspective P Kristiansen, A Taji, J Reganold 93–121 Collingwood, Aust.: CSIRO Publ. [Google Scholar]
  10. Ponisio L, Ehrlich P. 10.  2016. Diversification, yield and a new agricultural revolution: problems and prospects. Sustainability 8:111118 [Google Scholar]
  11. Kremen C, Miles A. 11.  2012. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17:40 [Google Scholar]
  12. Reganold J, Wachter J. 12.  2016. Organic agriculture in the twenty-first century. Nat. Plants 2:15221 [Google Scholar]
  13. Connor D. 13.  2008. Organic agriculture cannot feed the world. Field Crops Res 106:187–90 [Google Scholar]
  14. Connor DJ. 14.  2013. Organically grown crops do not a cropping system make and nor can organic agriculture nearly feed the world. Field Crops Res 144:145–47 [Google Scholar]
  15. Cassman KG. 15.  2007. Editorial response by Kenneth Cassman: Can organic agriculture feed the world—science to the rescue?. Renew. Agric. Food Syst. 22:83–84 [Google Scholar]
  16. Herrero M, Wirsenius S, Henderson B, Rigolot C, Thornton P. 16.  et al. 2015. Livestock and the environment: What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40:177–202 [Google Scholar]
  17. Crowder DW, Reganold JP. 17.  2015. Financial competitiveness of organic agriculture on a global scale. PNAS 112:7611–6 [Google Scholar]
  18. Greene C. 18.  2009. Emerging Issues in the US Organic Industry Collingdale, PA: Diane Publ. Co.
  19. Shennan C. 19.  2008. Biotic interactions, ecological knowledge and agriculture. Philos. Trans. R. Soc. B 363:717–39 [Google Scholar]
  20. Tittonell P. 20.  2014. Ecological intensification of agriculture—sustainable by nature. Curr. Opin. Environ. Sustain. 8:53–61 [Google Scholar]
  21. Ponisio LC, M'Gonigle LK, Mace KC, Palomino J, de Valpine P, Kremen C. 21.  2014. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 282:20141396 [Google Scholar]
  22. Poudel DD, Ferris H, Klonsky K, Horwath WR, Scow KM. 22.  et al. 2001. The sustainable agriculture farming system project in California's Sacramento Valley. Outlook Agric 30:109–16 [Google Scholar]
  23. Martini EA, Buyer JS, Bryant DC, Hartz TK, Denison RF. 23.  2004. Yield increases during the organic transition: improving soil quality or increasing experience?. Field Crops Res 86:255–66 [Google Scholar]
  24. Kirchmann H, Kätterer T, Bergström L, Börjesson G, Bolinder M. 24.  2016. Flaws and criteria for design and evaluation of comparative organic and conventional cropping systems. Field Crops Res 186:99–106 [Google Scholar]
  25. Goulding K, Trewavas AJ, Giller K. 25.  2011. Feeding the world—a contribution to the debate. World Agric 2:32–38 [Google Scholar]
  26. Kravchenko AN, Snapp SS, Robertson GP. 26.  2017. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. PNAS 114:926–31 [Google Scholar]
  27. Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J. 27.  et al. 2016. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ. 221:198–204 [Google Scholar]
  28. Drinkwater LE, Letourneau DK, Workneh F, van Bruggen AHC, Shennan C. 28.  1995. Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol. Appl. 5:1098–112 [Google Scholar]
  29. Bowles TM, Hollander AD, Steenwerth K, Jackson LE. 29.  2015. Tightly-coupled plant-soil nitrogen cycling: comparison of organic farms across an agricultural landscape. PLOS ONE 10:e0131888 [Google Scholar]
  30. Kniss AR, Savage SD, Jabbour R. 30.  2016. Commercial crop yields reveal strengths and weaknesses for organic agriculture in the United States. PLOS ONE 11:e0165851 [Google Scholar]
  31. Cavero J, Plant RE, Shennan C, Williams JR, Kiniry JR, Benson VW. 31.  1998. Application of epic model to nitrogen cycling in irrigated processing tomatoes under different management systems. Agric. Syst. 56:391–414 [Google Scholar]
  32. Groot JC, Oomen GJ, Rossing WA. 32.  2012. Multi-objective optimization and design of farming systems. Agric. Syst. 110:63–77 [Google Scholar]
  33. Reganold JP, Wachter JM. 33.  2016. Organic agriculture in the twenty-first century. Nat. Plants 2:15221 [Google Scholar]
  34. Ponisio L, Kremen C. 34.  2016. System-level approach needed to evaluate the transition to more sustainable agriculture. Proc. R. Soc. B 283:20152913 [Google Scholar]
  35. Stanhill G. 35.  1990. The comparative productivity of organic agriculture. Agric. Ecosyst. Environ. 30:1–26 [Google Scholar]
  36. Badgley C, Moghtader J, Quintero E, Zakem E, Chappell MJ. 36.  2007. Organic agriculture and the global food supply. Renew. Agric. Food. Syst. 22:86–108 [Google Scholar]
  37. Seufert V, Ramankutty N, Foley JA. 37.  2012. Comparing the yields of organic and conventional agriculture. Nature 485:229–33 [Google Scholar]
  38. de Ponti T, Rijk B, van Ittersum MK. 38.  2012. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108:1–9 [Google Scholar]
  39. Leifeld J. 39.  2016. Current approaches neglect possible agricultural cutback under large-scale organic farming. A comment to Ponisio et al. Proc. R. Soc. B. 283:20151623 [Google Scholar]
  40. Meyfroidt P, Carlson K, Fagan M, Gutierrez-Velez V, Macedo M. 40.  et al. 2014. Multiple pathways of commodity crop expansion in tropical forest landscapes. Environ. Res. Lett. 9:074012 [Google Scholar]
  41. Freibauer A, Rounsevell MDA, Smith P, Verhagen J. 41.  2004. Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23 [Google Scholar]
  42. Papadopoulos A, Bird NRA, Whitmore AP, Mooney SJ. 42.  2014. Does organic management lead to enhanced soil physical quality?. Geoderma 213:435–43 [Google Scholar]
  43. Reeve JR, Hoagland LA, Villalba JJ, Carr PM, Atucha A. 43.  et al. 2016. Organic farming, soil health, and food quality: considering possible links. Adv. Agron. 137:319–67 [Google Scholar]
  44. Fernandez AL, Sheaffer CC, Wyse DL, Staley C, Gould TJ, Sadowsky MJ. 44.  2016. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Sci. Total Environ. 566:949–59 [Google Scholar]
  45. Messmer M, Hildermann I, Thorup-Kristensen K, Rengel Z. 45.  2012. Nutrient management in organic farming and consequences for direct and indirect selection strategies. Organic Crop Breeding ET Lammerts van Buren, JR Myers 15–38 Oxford, UK: Wiley-Blackwell [Google Scholar]
  46. Lynch DH, MacRae R, Martin RC. 46.  2011. The carbon and global warming potential impacts of organic farming: Does it have a significant role in an energy constrained world?. Sustainability 3:322–62 [Google Scholar]
  47. Teasdale JR, Coffman CB, Mangum RW. 47.  2007. Potential long-term benefits of no-tillage and organic cropping systems for grain production and soil improvement. Agron. J. 99:1297–305 [Google Scholar]
  48. Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A. 48.  et al. 2012. Enhanced top soil carbon stocks under organic farming. PNAS 109:18226–31 [Google Scholar]
  49. Marriott EE, Wander M. 49.  2006. Qualitative and quantitative differences in particulate organic matter fractions in organic and conventional farming systems. Soil Biol. Biochem. 38:1527–36 [Google Scholar]
  50. Six J, Elliott E, Paustian K. 50.  2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32:2099–103 [Google Scholar]
  51. Govaerts B, Verhulst N, Castellanos-Navarrete A, Sayre KD, Dixon J, Dendooven L. 51.  2009. Conservation agriculture and soil carbon sequestration: between myth and farmer reality. Crit. Rev. Plant Sci. 28:97–122 [Google Scholar]
  52. Mader P, Berner A. 52.  2012. Development of reduced tillage systems in organic farming in Europe. Renew. Agric. Food Syst. 27:7–11 [Google Scholar]
  53. Lorenz K, Lal R. 53.  2016. Environmental impact of organic agriculture. Adv. Agron. 139:99–152 [Google Scholar]
  54. Macrae RJ, Lynch D, Martin RC. 54.  2010. Improving energy efficiency and GHG mitigation potentials in Canadian organic farming systems. J. Sustain. Agric. 34:549–80 [Google Scholar]
  55. Bender SF, van der Heijden MGA. 55.  2015. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52:228–39 [Google Scholar]
  56. Snapp SS, Gentry LE, Harwood R. 56.  2010. Management intensity—not biodiversity—the driver of ecosystem services in a long-term row crop experiment. Agric. Ecosyst. Environ. 138:242–48 [Google Scholar]
  57. Gardner JB, Drinkwater LE. 57.  2009. The fate of nitrogen in grain cropping systems: a meta-analysis of N-15 field experiments. Ecol. Appl. 19:2167–84 [Google Scholar]
  58. Mondelaers K, Aertsens J, Van Huylenbroeck G. 58.  2009. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br. Food J. 111:1098–119 [Google Scholar]
  59. Anglade J, Billen G, Gamier J, Makridis T, Puech T, Tittel C. 59.  2015. Nitrogen soil surface balance of organic versus conventional cash crop farming in the Seine watershed. Agric. Syst. 139:82–92 [Google Scholar]
  60. Benoit M, Garnier J, Beaudoin N, Billen G. 60.  2016. A participative network of organic and conventional crop farms in the Seine Basin (France) for evaluating nitrate leaching and yield performance. Agric. Syst. 148:105–13 [Google Scholar]
  61. Benoit M, Garnier J, Anglade J, Billen G. 61.  2014. Nitrate leaching from organic and conventional arable crop farms in the Seine Basin (France). Nutr. Cycl. Agroecosyst. 100:285–99 [Google Scholar]
  62. Scialabba NEH, Muller-Lindenlauf M. 62.  2010. Organic agriculture and climate change. Renew. Agric. Food Syst. 25:158–69 [Google Scholar]
  63. Stenberg M, Ulén B, Söderström M, Roland B, Delin K, Helander CA. 63.  2012. Tile drain losses of nitrogen and phosphorus from fields under integrated and organic crop rotations. A four-year study on a clay soil in southwest Sweden. Sci. Total Environ. 434:79–89 [Google Scholar]
  64. Kirchmann H, Bergstrom L, Katterer T, Mattsson L, Gesslein S. 64.  2007. Comparison of long-term organic and conventional crop-livestock systems on a previously nutrient-depleted soil in Sweden. Agron. J. 99:960–72 [Google Scholar]
  65. Askegaard M, Olesen JE, Rasmussen IA, Kristensen K. 65.  2011. Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management. Agric. Ecosyst. Environ. 142:149–60 [Google Scholar]
  66. Doltra J, Olesen JE. 66.  2013. The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate. Eur. J. Agron. 44:98–108 [Google Scholar]
  67. Smith LG, Williams AG, Pearce BD. 67.  2015. The energy efficiency of organic agriculture: a review. Renew. Agric. Food Syst. 30:280–301 [Google Scholar]
  68. Gomiero T, Pimentel D, Paoletti MG. 68.  2011. Is there a need for a more sustainable agriculture?. Crit. Rev. Plant Sci. 30:6–23 [Google Scholar]
  69. Li C, Frolking S, Butterbach-Bahl K. 69.  2005. Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim. Change 72:321–38 [Google Scholar]
  70. Lee KS, Choe YC, Park SH. 70.  2015. Measuring the environmental effects of organic farming: a meta-analysis of structural variables in empirical research. J. Environ. Manag. 162:263–74 [Google Scholar]
  71. Oerke EC. 71.  2006. Crop losses to pests. J. Agric. Sci. 144:31–43 [Google Scholar]
  72. Pretty J, Bharucha ZP. 72.  2015. Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 6:152–82 [Google Scholar]
  73. Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR. 73.  2016. Effects of pesticides on environment. Plant, Soil and Microbes 1 Implications in Crop Science KR Hakeem, MS Akhtar, SNA Abdullah 253–69 Cham, Switz.: Springer Intl. Publ. [Google Scholar]
  74. Blair A, Ritz B, Wesseling C, Beane Freeman L. 74.  2014. Pesticides and human health. Occup. Environ. Med. 72:81–82 [Google Scholar]
  75. Zehnder G, Gurr GM, Kühne S, Wade MR, Wratten SD, Wyss E. 75.  2007. Arthropod pest management in organic crops. Annu. Rev. Entomol. 52:57–80 [Google Scholar]
  76. Mortensen DA, Egan JF, Maxwell BD, Ryan MR, Smith RG. 76.  2012. Navigating a critical juncture for sustainable weed management. BioScience 62:75–84 [Google Scholar]
  77. Robertson GP, Gross KL, Hamilton SK, Landis DA, Schmidt TM. 77.  et al. 2014. Farming for ecosystem services: an ecological approach to production agriculture. BioScience 64:5404–15 [Google Scholar]
  78. Ratnadass A, Fernandes P, Avelino J, Habib R. 78.  2012. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron. Sustain. Dev. 32:273–303 [Google Scholar]
  79. Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA. 79.  2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347–75 [Google Scholar]
  80. Newton A, Gravouil C, Fountaine J. 80.  2010. Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann. Appl. Biol. 157:343–59 [Google Scholar]
  81. van Bueren EL, Jones S, Tamm L, Murphy K, Myers J. 81.  et al. 2011. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: a review. NJAS-Wageningen J. Life Sci. 58:193–205 [Google Scholar]
  82. Kinkel LL, Bakker MG, Schlatter DC. 82.  2011. A coevolutionary framework for managing disease-suppressive soils. Annu. Rev. Phytopathol. 49:47–67 [Google Scholar]
  83. Larkin RP. 83.  2015. Soil health paradigms and implications for disease management. Annu. Rev. Phytopathol. 53:199–221 [Google Scholar]
  84. Mazzola M, Manici LM. 84.  2012. Apple replant disease: role of microbial ecology in cause and control. Annu. Rev. Phytopathol. 50:45–65 [Google Scholar]
  85. Chaparro JM, Sheflin AM, Manter DK, Vivanco JM. 85.  2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48:489–99 [Google Scholar]
  86. Verbruggen E, Röling WF, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MG. 86.  2010. Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. N. Phytol. 186:968–79 [Google Scholar]
  87. Pelosi C, Toutous L, Chiron F, Dubs F, Hedde M. 87.  et al. 2013. Reduction of pesticide use can increase earthworm populations in wheat crops in a European temperate region. Agric. Ecosyst. Environ. 181:223–30 [Google Scholar]
  88. Sugiyama A, Vivanco JM, Jayanty SS, Manter DK. 88.  2010. Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant Dis 94:1329–35 [Google Scholar]
  89. Kallenbach C, Grandy AS. 89.  2011. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: a meta-analysis. Agric. Ecosyst. Environ. 144:241–52 [Google Scholar]
  90. Bernard E, Larkin RP, Tavantzis S, Erich MS, Alyokhin A, Gross SD. 90.  2014. Rapeseed rotation, compost and biocontrol amendments reduce soilborne diseases and increase tuber yield in organic and conventional potato production systems. Plant Soil 374:611–27 [Google Scholar]
  91. Rosskopf EN, Serrano-Perez P, Hong J, Shrestha U, Rodriguez-Molina MD. 91.  et al. 2015. Anaerobic soil disinfestation and soilborne pest management. Org. Amend. Soil Suppress. Plant Dis. Manag. 46:277–305 [Google Scholar]
  92. McErlich AF, Boydston RA. 92.  2014. Current state of weed management in organic and conventional cropping systems. Automation: The Future of Weed Control in Cropping Systems SL Young, FJ Pierce 11–32 Dordrecht, Neth.: Springer [Google Scholar]
  93. Harker KN, O'Donovan JT. 93.  2013. Recent weed control, weed management, and integrated weed management. Weed Technol 27:1–11 [Google Scholar]
  94. Menalled FD, Peterson RK, Smith RG, Curran WS, Páez DJ, Maxwell BD. 94.  2016. The eco-evolutionary imperative: revisiting weed management in the midst of an herbicide resistance crisis. Sustainability 8:1297 [Google Scholar]
  95. Kornecki T, Price A, Raper R, Arriaga F. 95.  2009. New roller crimper concepts for mechanical termination of cover crops in conservation agriculture. Renew. Agric. Food Syst. 24:165–73 [Google Scholar]
  96. Shirtliffe SJ, Johnson EN. 96.  2012. Progress towards no-till organic weed control in western Canada. Renew. Agric. Food Syst. 27:60–67 [Google Scholar]
  97. Letourneau DK, Goldstein B. 97.  2001. Pest damage and arthropod community structure in organic versus. Conventional tomato production in California. J. Appl. Ecol. 38:557–70 [Google Scholar]
  98. Macfadyen S, Gibson R, Polaszek A, Morris RJ, Craze PG. 98.  et al. 2009. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control?. Ecol. Lett. 12:229–38 [Google Scholar]
  99. Krauss J, Gallenberger I, Steffan-Dewenter I. 99.  2011. Decreased functional diversity and biological pest control in conventional compared to organic crop fields. PLOS ONE 6:e19502 [Google Scholar]
  100. Letourneau DK, Armbrecht I, Rivera BS, Lerma JM, Carmona EJ. 100.  et al. 2011. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21:9–21 [Google Scholar]
  101. Winqvist C, Bengtsson J, Aavik T, Berendse F, Clement LW. 101.  et al. 2011. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J. Appl. Ecol. 48:570–79 [Google Scholar]
  102. Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M. 102.  et al. 2011. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 12:386–87 [Google Scholar]
  103. Puech C, Poggi S, Baudry J, Aviron S. 103.  2014. Do farming practices affect natural enemies at the landscape scale?. Landscape Ecol 30:125 [Google Scholar]
  104. Ekroos J, Hyvönen T, Tiainen J, Tiira M. 104.  2010. Responses in plant and carabid communities to farming practises in boreal landscapes. Agric. Ecosyst. Environ. 135:288–93 [Google Scholar]
  105. Gaigher R, Samways MJ. 105.  2014. Landscape mosaic attributes for maintaining ground-living spider diversity in a biodiversity hotspot. Insect Conserv. Divers. 7:470–79 [Google Scholar]
  106. Foley JA, Defries R, Asner GP, Barford C, Bonan G. 106.  et al. 2005. Global consequences of land use. Science 8:570–74 [Google Scholar]
  107. Marja R, Herzon I, Viik E, Elts J, Mand M. 107.  et al. 2014. Environmentally friendly management as an intermediate strategy between organic and conventional agriculture to support biodiversity. Biol. Conserv. 178:146–54 [Google Scholar]
  108. Schneider MK, Luscher G, Jeanneret P, Arndorfer M, Ammari Y. 108.  et al. 2014. Gains to species diversity in organically farmed fields are not propagated at the farm level. Nat. Commun. 5:4151 [Google Scholar]
  109. Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice F, Evans AD. 109.  2005. Does organic farming benefit biodiversity?. Biol. Conserv. 122:113–30 [Google Scholar]
  110. Henneron L, Bernard L, Hedde M, Pelosi C, Villenave C. 110.  et al. 2015. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agron. Sustain. Dev. 35:169–81 [Google Scholar]
  111. Beketov MA, Kefford BJ, Schafer RB, Liess M. 111.  2013. Pesticides reduce regional biodiversity of stream invertebrates. PNAS 110:11039–43 [Google Scholar]
  112. Boutin C, Baril A, McCabe SK, Martin PA, Guy M. 112.  2011. The value of woody hedgerows for moth diversity on organic and conventional farms. Environ. Entomol. 40:560–69 [Google Scholar]
  113. Chiron F, Filippi-Codaccioni O, Jiguet F, Devictor V. 113.  2010. Effects of non-cropped landscape diversity on spatial dynamics of farmland birds in intensive farming systems. Biol. Conserv. 143:2609–16 [Google Scholar]
  114. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. 114.  2005. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8:857–74 [Google Scholar]
  115. Winqvist C, Ahnström J, Bengtsson J. 115.  2012. Effects of organic farming on biodiversity and ecosystem services: taking landscape complexity into account. Ann. N. Y. Acad. Sci. 1249:191–203 [Google Scholar]
  116. Batary P, Sutcliffe L, Dormann CF, Tscharntke T. 116.  2013. Organic farming favours insect-pollinated over non-insect pollinated forbs in meadows and wheat fields. PLOS ONE 8:e54818 [Google Scholar]
  117. Gabriel D, Sait SM, Kunin WE, Benton TG. 117.  2013. Food production versus biodiversity: comparing organic and conventional agriculture. J. Appl. Ecol. 50:355–64 [Google Scholar]
  118. Rader R, Birkhofer K, Schmucki R, Smith HG, Stjernman M, Lindborg R. 118.  2014. Organic farming and heterogeneous landscapes positively affect different measures of plant diversity. J. Appl. Ecol. 51:1544–53 [Google Scholar]
  119. Tuck SL, Winqvist C, Mota F, Ahnstrom J, Turnbull LA, Bengtsson J. 119.  2014. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51:746–55 [Google Scholar]
  120. Kremen C. 120.  2015. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann. N. Y. Acad. Sci. 1355:52–76 [Google Scholar]
  121. Nielsen UN, Wall DH, Six J. 121.  2015. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40:63–90 [Google Scholar]
  122. Pywell RF, Heard MS, Woodcock BA, Hinsley S, Ridding L. 122.  et al. 2015. Wildlife-friendly farming increases crop yield: evidence for ecological intensification. Proc. R. Soc. B 282:20151740 [Google Scholar]
  123. Deguines N, Jono C, Baude M, Henry M, Julliard R, Fontaine C. 123.  2014. Large- scale trade-off between agricultural intensification and crop pollination services. Front. Ecol. Environ. 12:212–17 [Google Scholar]
  124. Benayas JMR, Bullock JM, Newton AC. 124.  2008. Creating woodland islets to reconcile ecological restoration, conservation, and agricultural land use. Front. Ecol. Environ. 6:329–36 [Google Scholar]
  125. Phalan B, Onial M, Balmford A, Green RE. 125.  2011. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–91 [Google Scholar]
  126. Andersson GKS, Birkhofer K, Rundlöf M, Smith HG. 126.  2013. Landscape heterogeneity and farming practice alter the species composition and taxonomic breadth of pollinator communities. Basic Appl. Ecol. 14:540–46 [Google Scholar]
  127. Woodcock BA, Isaac NJB, Bullock JM, Roy DB, Garthwaite DG. 127.  et al. 2016. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7:12459 [Google Scholar]
  128. Carvalheiro LG, Seymour CL, Veldtman R, Nicolson SW. 128.  2010. Pollination services decline with distance from natural habitat even in biodiversity-rich areas. J. Appl. Ecol. 47:810–20 [Google Scholar]
  129. Park KJ. 129.  2015. Mitigating the impacts of agriculture on biodiversity: bats and their potential role as bioindicators. Mamm. Biol. 80:191–204 [Google Scholar]
  130. Balzan MV, Bocci G, Moonen A-C. 130.  2014. Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. J. Insect Conserv. 18:713–28 [Google Scholar]
  131. Norfolk O, Eichhorn MP, Gilbert F. 131.  2016. Flowering ground vegetation benefits wild pollinators and fruit set of almond within arid smallholder orchards. Insect Conserv. Divers. 9:236–43 [Google Scholar]
  132. Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Taylor H. 132.  et al. 2013. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16:584–99 [Google Scholar]
  133. Morandin LA, Winston ML. 133.  2006. Pollinators provide economic incentive to preserve natural land in agroecosystems. Agric. Ecosyst. Environ. 116:289–92 [Google Scholar]
  134. Holzschuh A, Steffan-Dewenter I, Tscharntke T. 134.  2010. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids?. J. Anim. Ecol. 79:491–500 [Google Scholar]
  135. Klein A-M, Brittain C, Hendrix SD, Thorp R, Williams N, Kremen C. 135.  2012. Wild pollination services to California almond rely on semi-natural habitat. J. Appl. Ecol. 49:723–32 [Google Scholar]
  136. Chateil C, Porcher E. 136.  2015. Landscape features are a better correlate of wild plant pollination than agricultural practices in an intensive cropping system. Agric. Ecosyst. Environ. 201:51–57 [Google Scholar]
  137. Willer H, Lernoud J. 137.  2016. The World of Organic Agriculture. Statistics and Emerging Trends 2016 Bonn, Ger.: Res. Inst. Org. Agric. (FiBL)/IFOAM–Org. Int https://shop.fibl.org/CHen/mwdownloads/download/link/id/785/?ref=1
  138. Kleemann L, Abdulai A. 138.  2013. Organic certification, agro-ecological practices and return on investment: evidence from pineapple producers in Ghana. Ecol. Econ. 93:330–41 [Google Scholar]
  139. Panneerselvam P, Hermansen JE, Halberg N, Arthanari PM. 139.  2015. Impact of large-scale organic conversion on food production and food security in two Indian states, Tamil Nadu and Madhya Pradesh. Renew. Agric. Food Syst. 30:252–62 [Google Scholar]
  140. Patil S, Reidsma P, Shah P, Purushothaman S, Wolf J. 140.  2014. Comparing conventional and organic agriculture in Karnataka, India: Where and when can organic farming be sustainable?. Land Use Policy 37:40–51 [Google Scholar]
  141. Forster D, Andres C, Verma R, Zundel C, Messmer MM, Mader P. 141.  2013. Yield and economic performance of organic and conventional cotton-based farming systems—results from a field trial in India. PLOS ONE 8:e81039 [Google Scholar]
  142. Castro LM, Calvas B, Knoke T. 142.  2015. Ecuadorian banana farms should consider organic banana with low price risks in their land-use portfolios. PLOS ONE 10:e0120384 [Google Scholar]
  143. Testa R, Fodera M, Di Trapani AM, Tudisca S, Sgroi F. 143.  2015. Choice between alternative investments in agriculture: the role of organic farming to avoid the abandonment of rural areas. Ecol. Eng. 83:227–32 [Google Scholar]
  144. Taotawin N. 144.  2011. The transition from conventional to organic rice production in northeastern Thailand: prospect and challenges. Environmental Change and Agricultural Sustainability in the Mekong Delta MA Stewart, PA Coclanis 411–35 Amsterdam: Springer [Google Scholar]
  145. Pawlewicz A. 145.  2014. Importance of horizontal integration in organic farming. Econ. Sci. Rural Dev. 34:112–20 [Google Scholar]
  146. Rezvanfar A, Eraktan G, Olhan E. 146.  2011. Determine of factors associated with the adoption of organic agriculture among small farmers in Iran. Afr. J. Agric. Res. 6:2950–56 [Google Scholar]
  147. Karki L, Schleenbecker R, Hamm U. 147.  2012. Factors influencing a conversion to organic farming in Nepalese tea farms. J. Agric. Rural Dev. Trop. Subtropics (JARTS) 112:113–23 [Google Scholar]
  148. Salazar RC. 148.  2014. Going organic in the Philippines: social and institutional features. Agroecol. Sustain. Food Syst. 38:199–229 [Google Scholar]
  149. Galt RE. 149.  2013. From Homo economicus to complex subjectivities: reconceptualizing farmers as pesticide users. Antipode 45:336–56 [Google Scholar]
  150. Dalcin D, Leal de Souza AR, de Freitas JB, Padula ÂD, Dewes H. 150.  2014. Organic products in Brazil: from an ideological orientation to a market choice. Br. Food J. 116:1998–2015 [Google Scholar]
  151. Malek-Saeidi H, Rezaei-Moghaddam K, Ajili A. 151.  2012. Professionals’ attitudes towards organic farming: the case of Iran. J. Agric. Sci. Technol. 14:37–50 [Google Scholar]
  152. Jaime MM, Coria J, Liu XP. 152.  2016. Interactions between CAP agricultural and agri-environmental subsidies and their effects on the uptake of organic farming. Am. J. Agric. Econ. 98:1114–45 [Google Scholar]
  153. Koloszko-Chomentowska Z. 153.  2015. The economic consequences of supporting organic farms by public funds: case of Poland. Technol. Econ. Dev. Econ. 21:332–50 [Google Scholar]
  154. Jacobi J, Schneider M, Mariscal MP, Huber S, Weidmann S. 154.  et al. 2015. Farm resilience in organic and nonorganic cocoa farming systems in Alto Beni, Bolivia. Agroecol. Sustain. Food Syst. 39:798–823 [Google Scholar]
  155. Marasteanu IJ, Jaenicke EC. 155.  2016. The role of US organic certifiers in organic hotspot formation. Renew. Agric. Food Syst. 31:230–45 [Google Scholar]
  156. Nelson E, Tovar LG, Gueguen E, Humphries S, Landman K, Rindermann RS. 156.  2016. Participatory guarantee systems and the re-imagining of Mexico's organic sector. Agric. Hum. Values 33:373–88 [Google Scholar]
  157. Pray C, Ledermann S. 157.  2016. Genetically engineered crops and certified organic agriculture for improving nutrition security in Africa and South Asia. Hidden Hunger: Malnutrition and the First 1,000 Days of Life: Causes, Consequences and Solutions HK Biesalski, RE Black 175–83 Basel, Switz.: Karger Publ. [Google Scholar]
  158. Suh J. 158.  2015. Community-based organic agriculture in the Philippines. Outlook Agric 44:291–6 [Google Scholar]
  159. Torres J, Valera DL, Belmonte LJ, Herrero-Sánchez C. 159.  2016. Economic and social sustainability through organic agriculture: study of the restructuring of the citrus sector in the “Bajo Andarax” District (Spain). Sustainability 8:918 [Google Scholar]
  160. Mzoughi N. 160.  2014. Do organic farmers feel happier than conventional ones? An exploratory analysis. Ecol. Econ. 103:38–43 [Google Scholar]
  161. de los Rios I, Rivera M, Garcia C. 161.  2016. Redefining rural prosperity through social learning in the cooperative sector: 25 years of experience from organic agriculture in Spain. Land Use Policy 54:85–94 [Google Scholar]
  162. de Olde EM, Oudshoorn FW, Bokkers EAM, Stubsgaard A, Sorensen CAG, de Boer IJM. 162.  2016. Assessing the sustainability performance of organic farms in Denmark. Sustainability 8:957 [Google Scholar]
  163. Harrison JL, Getz C. 163.  2015. Farm size and job quality: mixed-methods studies of hired farm work in California and Wisconsin. Agric. Hum. Values 32:617–34 [Google Scholar]
  164. Popp J, Peto K, Nagy J. 164.  2013. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 33:243–55 [Google Scholar]
  165. Simelton E, Fraser EDG, Termansen M, Forster PM, Dougill AJ. 165.  2009. Typologies of crop-drought vulnerability: an empirical analysis of the socio-economic factors that influence the sensitivity and resilience to drought of three major food crops in China (1961–2001). Environ. Sci. Policy 12:438–52 [Google Scholar]
  166. Lee DH, Steffes MW, Sjodin A, Jones RS, Needham LL, Jacobs DR. 166.  2011. Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes. PLOS ONE 6:e15977 [Google Scholar]
  167. Smith-Spangler C, Brandeau ML, Hunter GE, Bavinger C, Pearson M. 167.  et al. 2012. Are organic foods safer or healthier than conventional alternatives?: A systemic review. Ann. Intern. Med. 157:348–66 [Google Scholar]
  168. Stayner LT, Almberg K, Jones R, Graber J, Pedersen M, Turyk M. 168.  2017. Atrazine and nitrate in drinking water and the risk of preterm delivery and low birth weight in four Midwestern states. Environ. Res. 152:294–303 [Google Scholar]
  169. Saillenfait AM, Ndiaye D, Sabate JP. 169.  2015. Pyrethroids: exposure and health effects—an update. Int. J. Hyg. Environ. Health 218:281–92 [Google Scholar]
  170. Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T. 170.  et al. 2016. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ. Health 15:19 [Google Scholar]
  171. Parelho C, Bernardo F, Camarinho R, Rodrigues AS, Garcia P. 171.  2016. Testicular damage and farming environments—an integrative ecotoxicological link. Chemosphere 155:135–41 [Google Scholar]
  172. Liu YJ, Huang PL, Chang YF, Chen YH, Chiou YH. 172.  et al. 2006. GSTP1 genetic polymorphism is associated with a higher risk of DNA damage in pesticide-exposed fruit growers. Cancer Epidemiol. Biomark. Prev. 15:659–66 [Google Scholar]
  173. Remor AP, Totti CC, Moreira DA, Dutra GP, Heuser VD, Boeira JM. 173.  2009. Occupational exposure of farm workers to pesticides: biochemical parameters and evaluation of genotoxicity. Environ. Int. 35:273–78 [Google Scholar]
  174. Costa C, Garcia-Leston J, Costa S, Coelho P, Silva S. 174.  et al. 2014. Is organic farming safer to farmers’ health? A comparison between organic and traditional farming. Toxicol. Lett. 230:166–76 [Google Scholar]
  175. Curl CL, Fenske RA, Elgethun K. 175.  2003. Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Environ. Health Perspect. 111:377–82 [Google Scholar]
  176. Roselli M, Finamore A, Brasili E, Capuani G, Kristensen HL. 176.  et al. 2012. Impact of organic and conventional carrots on intestinal and peripheral immunity. J. Sci. Food Agric. 92:2913–22 [Google Scholar]
  177. Baker BP, Benbrook CM, Groth E, Benbrook KL. 177.  2002. Pesticide residues in conventional, integrated pest management (IPM)-grown and organic foods: insights from three US data sets. Food Addit. Contam. 19:427–46 [Google Scholar]
  178. Bourn D, Prescott J. 178.  2002. A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Crit. Rev. Food Sci. Nutr. 42:1–34 [Google Scholar]
  179. Karp D, Gennet S, Kilonzo C, Partyka M, Chaumont N. 179.  et al. 2015. Comanaging fresh produce for nature conservation and food safety. PNAS 112:11126–31 [Google Scholar]
  180. Franz E, van Bruggen AHC. 180.  2008. Ecology of E. coli O157:H7 and Salmonella enterica in the primary vegetable production chain. Crit. Rev. Microbiol. 34:143–61 [Google Scholar]
  181. Johansson E, Hussain A, Kuktaite R, Andersson SC, Olsson ME. 181.  2014. Contribution of organically grown crops to human health. Int. J. Environ. Res. Public Health 11:3870–93 [Google Scholar]
  182. Hussain A, Larsson H, Kuktaite R, Olsson ME, Johansson E. 182.  2015. Carotenoid content in organically produced wheat: relevance for human nutritional health on consumption. Int. J. Environ. Res. Public Health 12:14068–83 [Google Scholar]
  183. Karlund A, Hanhineva K, Lehtonen M, Karjalainen RO, Sandell M. 183.  2015. Nontargeted metabolite profiles and sensory properties of strawberry cultivars grown both organically and conventionally. J. Agric. Food Chem. 63:1010–19 [Google Scholar]
  184. Renaud ENC, van Bueren ETL, Myers JR, Paulo MJ, van Eeuwijk FA. 184.  et al. 2014. Variation in broccoli cultivar phytochemical content under organic and conventional management systems: implications in breeding for nutrition. PLOS ONE 9:e95683 [Google Scholar]
  185. Legzdina L, Nakurte I, Kirhnere I, Namniece J, Krigere L. 185.  et al. 2014. Up to 92% increase of cancer-preventing lunasin in organic spring barley. Agron. Sustain. Dev. 34:783–91 [Google Scholar]
  186. Krupnik TJ, Ahmed ZU, Timsina J, Yasmin S, Hossain F. 186.  et al. 2015. Untangling crop management and environmental influences on wheat yield variability in Bangladesh: an application of non-parametric approaches. Agric. Syst. 139:166–79 [Google Scholar]
  187. Luers AL, Lobell DB, Sklar LS, Addams CL, Matson PA. 187.  2003. A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob. Environ. Change 13:255–67 [Google Scholar]
  188. Holt-Giménez E. 188.  2002. Measuring farmers’ agroecological resistance after Hurricane Mitch in Nicaragua: a case study in participatory, sustainable land management impact monitoring. Agric. Ecosyst. Environ. 93:87–105 [Google Scholar]
  189. Schnepf M, Cox C. 189.  2006. Environmental Benefits of Conservation on Cropland: The Status of our Knowledge Ankeny, IA: Soil Water Conserv. Soc.
  190. Jacobi J, Andres C, Schneider M, Pillco M, Calizaya P, Rist S. 190.  2014. Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agroforestry Syst 88:1117–32 [Google Scholar]
  191. Jacobi J, Schneider M, Bottazzi P, Pillco M, Calizaya P, Rist S. 191.  2015. Agroecosystem resilience and farmers' perceptions of climate change impacts on cocoa farms in Alto Beni, Bolivia. Renew. Agric. Food Syst. 30:170–83 [Google Scholar]
  192. Abson DJ, Fraser ED, Benton TG. 192.  2013. Landscape diversity and the resilience of agricultural returns: a portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric. Food Secur. 2:2 [Google Scholar]
  193. Macfadyen S, Tylianakis JM, Letourneau DK, Benton TG, Tittonell P. 193.  et al. 2015. The role of food retailers in improving resilience in global food supply. Glob. Food Secur. 7:1–8 [Google Scholar]
  194. Walker B, Sayer J, Andrew NL, Campbell B. 194.  2010. Should enhanced resilience be an objective of natural resource management research for developing countries?. Crop Sci 50:S10–S19 [Google Scholar]
  195. Cabell JF, Oelofse M. 195.  2012. An indicator framework for assessing agroecosystem resilience. Ecol. Soc. 17:18 [Google Scholar]
  196. Song ZW, Gao HJ, Zhu P, Peng C, Deng AX. 196.  et al. 2015. Organic amendments increase corn yield by enhancing soil resilience to climate change. Crop J 3:110–17 [Google Scholar]
  197. Verhulst N, Carrillo-Garcia A, Moeller C, Trethowan R, Sayre KD, Govaerts B. 197.  2011. Conservation agriculture for wheat-based cropping systems under gravity irrigation: increasing resilience through improved soil quality. Plant Soil 340:467–79 [Google Scholar]
  198. Gaudin ACM, Tolhurst TN, Ker AP, Janovicek K, Tortora C. 198.  et al. 2015. Increasing crop diversity mitigates weather variations and improves yield stability. PLOS ONE 10:e0113261 [Google Scholar]
  199. Darnhofer I, Fairweather J, Moller H. 199.  2010. Assessing a farm's sustainability: insights from resilience thinking. Int. J. Agric. Sustain. 8:186–98 [Google Scholar]
  200. McLeman R, Smit B. 200.  2006. Vulnerability to climate change hazards and risks: crop and flood insurance. Can. Geogr. / Le Géographe Can. 50:217–26 [Google Scholar]
  201. Vogl CR, Kummer S, Leitgeb F, Schunko C, Aigner M. 201.  2015. Keeping the actors in the organic system learning: the role of organic farmers’ experiments. Sustain. Agric. Res. 4:9 [Google Scholar]
  202. Bateman A, van der Horst D, Boardman D, Kansal A, Carliell-Marquet C. 202.  2011. Closing the phosphorus loop in England: the spatio-temporal balance of phosphorus capture from manure versus crop demand for fertiliser. Resour. Conserv. Recycl. 55:1146–53 [Google Scholar]
  203. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z. 203.  et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–92 [Google Scholar]
  204. Elser JJ. 204.  2012. Phosphorus: a limiting nutrient for humanity?. Curr. Opin. Biotechnol. 23:833–38 [Google Scholar]
  205. Hossard L, Archer DW, Bertrand M, Colnenne-David C, Debaeke P. 205.  et al. 2016. A meta-analysis of maize and wheat yields in low-input versus. Conventional and organic systems. Agron. J. 108:1155–67 [Google Scholar]
  206. Shennan C, Sirrine D. 206.  2013. Maize legume relay intercrops in Malawi: meeting short- and long-term sustainability goals. Microb. Ecol. Sustain. Agroecosyst.229–65
  207. Krupnik TJ, Shennan C, Settle WH, Demont M, Ndiaye AB, Rodenburg J. 207.  2012. Improving irrigated rice production in the Senegal River Valley through experiential learning and innovation. Agric. Syst. 109:101–12 [Google Scholar]
  208. Chapin FS, Carpenter SR, Kofinas GP, Folke C, Abel N. 208.  et al. 2010. Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol. Evol. 25:241–9 [Google Scholar]
  209. Nelson MC, Kintigh K, Abbott DR, Anderies JM. 209.  2010. The cross-scale interplay between social and biophysical context and the vulnerability of irrigation-dependent societies: archaeology's long-term perspective. Ecol. Soc. 15:31 [Google Scholar]
/content/journals/10.1146/annurev-environ-110615-085750
Loading
/content/journals/10.1146/annurev-environ-110615-085750
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error