1932

Abstract

“If you find yourself in a hole, stop digging.” Although Denis Healey's famous adage (Metcalfe 2007) may offer sound advice for politicians, it is less relevant to worms, clams, and other higher organisms that rely on their digging ability for survival. In this article, we review recent work on the development of simple models that elucidate the fundamental principles underlying digging and burrowing strategies employed by biological systems. Four digging regimes are identified based on dimensionless digger size and the dimensionless inertial number. We select biological organisms to represent three of the four regimes: razor clams, sandfish, and nematodes. Models for all three diggers are derived and discussed, and analogies are drawn to low–Reynolds number swimmers.

Keyword(s): bio-inspired designdiggingsand

Associated Article

There are media items related to this article:
Beneath Our Feet: Strategies for Locomotion in Granular Media: Supplemental Video 2

Associated Article

There are media items related to this article:
Beneath Our Feet: Strategies for Locomotion in Granular Media: Supplemental Video 1

Associated Article

There are media items related to this article:
Beneath Our Feet: Strategies for Locomotion in Granular Media: Supplemental Video 3
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010313-141324
2015-01-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/fluid/47/1/annurev-fluid-010313-141324.html?itemId=/content/journals/10.1146/annurev-fluid-010313-141324&mimeType=html&fmt=ahah

Literature Cited

  1. Attum O, Eason P, Cobbs G. 2007. Morphology, niche segregation, and escape tactics in a sand dune lizard community. J. Arid Environ. 68:564–73 [Google Scholar]
  2. Avron JE, Kenneth O, Oaknin DH. 2005. Pushmepullyou: an efficient micro-swimmer. New J. Phys. 7:234 [Google Scholar]
  3. Avron JE, Raz O. 2008. A geometric theory of swimming: Purcell's swimmer and its symmetrized cousin. New J. Phys. 10:063016 [Google Scholar]
  4. Bagnold RA. 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225:49–63 [Google Scholar]
  5. Batchelor GK, Green JT. 1972. The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56:375–400 [Google Scholar]
  6. Becker LE, Koehler SA, Stone HA. 2003. On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer. J. Fluid Mech. 490:15–35 [Google Scholar]
  7. Bloch AM. 2003. Nonholonomic Mechanics and Control New York: Springer
  8. Ding Y, Gravish N, Goldman DI. 2011. Drag induced lift in granular media. Phys. Rev. Lett. 106:028001 [Google Scholar]
  9. Ding Y, Sharpe SS, Masse A, Goldman DI. 2012. Mechanics of undulatory swimming in a frictional fluid. PLoS Comput. Biol. 8:e1002810 [Google Scholar]
  10. Dorgan KM, Arwade SR, Jumars PA. 2007. Burrowing in marine muds by crack propagation: kinematics and forces. J. Exp. Biol. 210:4198–212 [Google Scholar]
  11. Dorgan KM, Jumars PA, Johnson B, Boudreau BP, Landis E. 2005. Burrowing mechanics: burrow extension by crack propagation. Nature 433:475 [Google Scholar]
  12. Eilers H. 1941. Die viscositat von emulsionen hochviskoser stoffe als funktion der konzentration. Kolloid Z. 97:313–21 [Google Scholar]
  13. Einstein A. 1906. Eine neue bestimmung der moleküldimensionen. Ann. Phys. 19:289–306 [Google Scholar]
  14. Ferrini F, Ercolani D, de Cindio B, Nicodemo L, Nicolais L, Ranaudo S. 1979. Shear viscosity of settling suspensions. Rheol. Acta 18:289–96 [Google Scholar]
  15. Forterre Y, Pouliquen O. 2009. Granular flows. Sémin. Poincaré 13:69–100 [Google Scholar]
  16. Fraenkel GV. 1927. Die grabbewegung der soleniden. Z. Vgl. Physiol. 6:167–220 [Google Scholar]
  17. Frankel NA, Acrivos A. 1967. On the viscosity of a concentrated suspension of solid spheres. Chem. Eng. Sci. 22:847–53 [Google Scholar]
  18. Gidmark NJ, Strother JA, Horton JM, Summers AP, Brainerd EL. 2011. Locomotory transition from water to sand and its effects on undulatory kinematics in sand lances (Ammodytidae). J. Exp. Biol. 214:657–64 [Google Scholar]
  19. Goldman D, Komsuoglu H, Koditschek D. 2009. March of the sandbots: a new generation of legged robots will navigate the world's trickiest terrain. IEEE Spectrum 46:430–35 [Google Scholar]
  20. Gravish N, Garcia M, Mazouchova N, Levy L, Umbanhowar PB. et al. 2012. Effects of worker size on the dynamics of fire ant tunnel construction. J. R. Soc. Interface 9:3312–22 [Google Scholar]
  21. Gray J, Hancock GJ. 1955. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32:802–14 [Google Scholar]
  22. Hatton RL, Burton LJ, Hosoi A, Choset H. 2011. Geometric maneuverability with applications to low Reynolds number swimming. Proc. 2011 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS)3893–98 New York: IEEE [Google Scholar]
  23. Hatton RL, Choset H. 2011. Geometric motion planning: the local connection, Stokes' theorem, and the importance of coordinate choice. Int. J. Robot. Res. 30:988–1014 [Google Scholar]
  24. Hatton RL, Ding Y, Choset H, Goldman DI. 2013. Geometric visualization of self-propulsion in a complex medium. Phys. Rev. Lett. 110:078101 [Google Scholar]
  25. Henann DL, Kamrin K. 2013. A predictive, size-dependent continuum model for dense granular flows. Proc. Natl. Acad. Sci. USA 110:6730–35 [Google Scholar]
  26. Holland AF, Dean JM. 1977. The biology of the stout razor clam Tagelus plebeius: I. Animal-sediment relationships, feeding mechanism, and community biology. Chesapeake Sci. 18:58–66 [Google Scholar]
  27. Jayne BC, Daggy MW. 2000. The effects of temperature on the burial performance and axial motor pattern of the sand-swimming of the Mojave fringe-toed lizard Uma scoparia. J. Exp. Biol. 203:1241–52 [Google Scholar]
  28. Jung S. 2010. Caenorhabditis elegans swimming in a saturated particulate system. Phys. Fluids 22:031903 [Google Scholar]
  29. Jung S, Mareck K, Fauci L, Shelley MJ. 2007. Rotational dynamics of a superhelix towed in a Stokes fluid. Phys. Fluids 19:103105 [Google Scholar]
  30. Jung S, Winter AG, Hosoi A. 2011. Dynamics of digging in wet soil. Int. J. Non-Linear Mech. 46:602–6 [Google Scholar]
  31. Krieger IM, Dougherty TJ. 1959. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3:137–52 [Google Scholar]
  32. Kudrolli A. 2008. Granular matter: sticky sand. Nat. Mater. 7:174–75 [Google Scholar]
  33. Kuo AD. 2007. Choosing your steps carefully. IEEE Robot. Automat. Mag. 14:218–29 [Google Scholar]
  34. Lambe T, Whitman R. 1969. Soil Mechanics New York: Wiley
  35. Landau LD, Lifshitz E. 1984. Theory of Elasticity Oxford, UK: Butterworth-Heinemann, 3rd ed..
  36. Lauga E. 2007. Floppy swimming: viscous locomotion of actuated elastica. Phys. Rev. E 75:041916 [Google Scholar]
  37. Lauga E. 2011. Life around the scallop theorem. Soft Matter 7:3060–65 [Google Scholar]
  38. Lauga E, Powers TR. 2009. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72:096601 [Google Scholar]
  39. Li C, Zhang T, Goldman DI. 2013. A terradynamics of legged locomotion on granular media. Science 339:1408–12 [Google Scholar]
  40. Liu B, Powers TR, Breuer KS. 2011. Force-free swimming of a model helical flagellum in viscoelastic fluids. Proc. Natl. Acad. Sci. USA 108:19516–20 [Google Scholar]
  41. Majmudar T, Keaveny EE, Zhang J, Shelley MJ. 2012. Experiments and theory of undulatory locomotion in a simple structured medium. J. R. Soc. Interface 9:1809–23 [Google Scholar]
  42. Maladen RD, Ding Y, Li C, Goldman DI. 2009. Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Science 325:314–18 [Google Scholar]
  43. Maladen RD, Ding Y, Umbanhowar PB, Goldman DI. 2011a. Undulatory swimming in sand: experimental and simulation studies of a robotic sandfish. Int. J. Robot. Res. 30:793–805 [Google Scholar]
  44. Maladen RD, Ding Y, Umbanhowar PB, Kamor A, Goldman DI. 2011b. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming. J. R. Soc. Interface 8:1332–45 [Google Scholar]
  45. Maron SH, Pierce PE. 1956. Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. J. Colloid Sci. 11:80–95 [Google Scholar]
  46. Melli J, Rowley CW. 2010. Models and control of fish-like locomotion. Exp. Mech. 50:1355–60 [Google Scholar]
  47. Metcalfe E. 2007. The Wit and Wisdom of Denis Healey Milton Keynes, UK: AuthorHouse
  48. Mosauer W. 1932. Adaptive convergence in the sand reptiles of the Sahara and of California: a study in structure and behavior. Copeia 1932:72–78 [Google Scholar]
  49. Norris KS, Kavanau JL. 1966. The burrowing of the western shovel-nosed snake, Chionactis occipitalis Hallowell, and the undersand environment. Copeia 1966:650–64 [Google Scholar]
  50. Ostrowski J, Burdick J. 1998. The geometric mechanics of undulatory robotic locomotion. Int. J. Robot. Res. 17:683–701 [Google Scholar]
  51. Park S, Hwang H, Martinez F, Austin RH, Ryu WS. 2008. Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment. PLoS ONE 3:e2550 [Google Scholar]
  52. Poschel T. 2005. Computational Granular Dynamics: Models and Algorithms Berlin: Springer-Verlag
  53. Purcell EM. 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11 [Google Scholar]
  54. Qian B, Powers TR, Breuer KS. 2008. Shape transition and propulsive force of an elastic rod rotating in a viscous fluid. Phys. Rev. Lett. 100:078101 [Google Scholar]
  55. Raz O, Avron JE. 2008. A comment on optimal stroke patterns for Purcell's three-link swimmer. Phys. Rev. Lett. 100:029801 [Google Scholar]
  56. Rodenborn B, Chen CH, Swinney HL, Liu B, Zhang H. 2013. Propulsion of microorganisms by a helical flagellum. Proc. Natl. Acad. Sci. USA 110:E338–47 [Google Scholar]
  57. Shapere A, Wilczek F. 1987. Self-propulsion at low Reynolds number. Phys. Rev. Lett. 58:2051–54 [Google Scholar]
  58. Sharpe SS, Ding Y, Goldman DI. 2012. Environmental interaction influences muscle activation strategy during sand-swimming in the sandfish lizard Scincus scincus. J. Exp. Biol. 216:260–74 [Google Scholar]
  59. Sharpe SS, Koehler SA, Kuckuk R, Serrano M, Vela P, Goldman DI. 2014a. Locomotor advantages of being a slender and slick sand swimmer. J. Exp. Biol. Manuscript in review
  60. Sharpe SS, Kuckuk R, Goldman DI. 2014b. Locomotion of the ocellated skink in wet granular media. J. R. Soc. Interface. Manuscript in preparation
  61. Tam D, Hosoi AE. 2007. Optimal stroke patterns for Purcell's three-link swimmer. Phys. Rev. Lett. 98:068105 [Google Scholar]
  62. Taylor GI. 1951. Analysis of the swimming of microscopic organisms. Proc. R. Soc. A 209:447–61 [Google Scholar]
  63. Terzaghi K, Peck R, Mesri G. 1996. Soil Mechanics in Engineering Practice New York: Wiley, 3rd ed..
  64. Trueman ER. 1967. The dynamics of burrowing in Ensis (bivalvia). Proc. R. Soc. Lond. B 166:459–76 [Google Scholar]
  65. Trueman ER. 1975. The Locomotion of Soft-Bodied Animals Amsterdam: Elsevier
  66. Wieghardt K. 1975. Experiments in granular flow. Annu. Rev. Fluid Mech. 7:89–114 [Google Scholar]
  67. Wiggins CH, Goldstein RE. 1998. Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80:3879–82 [Google Scholar]
  68. Winter AG, Deits RLH, Dorsch DS, Slocum AH, Hosoi AE. 2014. Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation. Bioinspir. Biomim. 9:036009 [Google Scholar]
  69. Winter AG, Deits RLH, Hosoi AE. 2012. Localized fluidization burrowing mechanics of Ensis directus. J. Exp. Biol. 215:2072–80 [Google Scholar]
  70. Yang J, Wolgemuth CW, Huber G. 2009. Kinematics of the swimming of Spiroplasma. Phys. Rev. Lett. 102:218102 [Google Scholar]
  71. Yu TS, Lauga E, Hosoi AE. 2006. Experimental investigations of elastic tail propulsion at low Reynolds number. Phys. Fluids 18:091701 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010313-141324
Loading
/content/journals/10.1146/annurev-fluid-010313-141324
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error