1932

Abstract

This review uses as a vehicular example the jet-flame configuration to examine some phenomena that emerge in nonpremixed gaseous combustion as a result of the interaction between the temperature-sensitive chemical reaction, typical of combustion, and the convective and diffusive transport. These include diffusion-controlled flames, edge flames and their role in flame attachment, triple flames and their role as ignition fronts, and strain-induced extinction, including flame-vortex interactions. The aim is to give an overall view of the fluid dynamics of nonpremixed combustion and to review the most relevant contributions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010814-014711
2015-01-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/fluid/47/1/annurev-fluid-010814-014711.html?itemId=/content/journals/10.1146/annurev-fluid-010814-014711&mimeType=html&fmt=ahah

Literature Cited

  1. Amantini G, Frank JH, Bennett BAV, Smooke MD, Gomez A. 2007. Comprehensive study of the evolution of an annular edge flame during extinction and reignition of a counterflow diffusion flame perturbed by vortices. Combust. Flame 150:292–319 [Google Scholar]
  2. Bilger RW. 1988. The structure of turbulent nonpremixed flames. Proc. Combust. Inst. 22:475–88 [Google Scholar]
  3. Bilger RW, Pope SB, Bray KNC, Driscoll JF. 2005. Paradigms in turbulent combustion research. Proc. Combust. Inst. 30:21–42 [Google Scholar]
  4. Buckmaster JD. 1996. Edge flames and their stability. Combust. Sci. Technol. 115:41–68 [Google Scholar]
  5. Buckmaster JD. 2002. Edge-flames. Prog. Energy Combust. Sci. 28:435–75 [Google Scholar]
  6. Buckmaster JD, Peters N. 1986. The infinite candle and its instability: a paradigm for flickering diffusion flames. Proc. Combust. Inst. 23:1829–36 [Google Scholar]
  7. Burke SP, Schumann TEW. 1928. Diffusion flames. Ind. Eng. Chem. 20:998–1004 [Google Scholar]
  8. Carpio J, Iglesias I, Vera M, Sánchez A, Liñán A. 2013. Critical radius for hot-jet ignition of hydrogen-air mixtures. Int. J. Hydrog. Energy 38:3105–9 [Google Scholar]
  9. Carpio J, Prieto J. 2014. An anisotropic, fully adaptive algorithm for the solution of convection dominated equations with semi-Lagrangian schemes. Comput. Methods Appl. Mech. 273:77–99 [Google Scholar]
  10. Carpio J, Sánchez-Sanz M, Fernández-Tarrazo E. 2012. Pinch-off in forced and non-forced, buoyant laminar jet diffusion flames. Combust. Flame 159:161–69 [Google Scholar]
  11. Cha MS, Ronney PD. 2006. Propagation rates of nonpremixed edge flames. Combust. Flame 146:312–28 [Google Scholar]
  12. Chamberlin DS, Rose A. 1948. The flicker of luminous flames. Proc. Combust. Inst. 1–227–32
  13. Chen LD, Roquemore WM. 1986. Visualization of jet flames. Combust. Flame 66:81–86 [Google Scholar]
  14. Chen LD, Seaba JP, Roquemore WM, Goss LP. 1988. Buoyant diffusion flames. Proc. Combust. Inst. 22:677–84 [Google Scholar]
  15. Chung SH. 2007. Stabilization, propagation and instability of tribrachial triple flames. Proc. Combust. Inst. 31:877–92 [Google Scholar]
  16. Cuenot B, Poinsot TJ. 1994. Effects of curvature and unsteadiness in diffusion flames: implications for turbulent diffusion flames. Proc. Combust. Inst. 25:1383–90 [Google Scholar]
  17. Daou J, Liñán A. 1998. The role of unequal diffusivities in ignition and extinction fronts in strained mixing layers. Combust. Theor. Model. 2:449–77 [Google Scholar]
  18. Dimotakis PE. 2005. Turbulent mixing. Annu. Rev. Fluid Mech. 37:329–56 [Google Scholar]
  19. Dold JW. 1989. Flame propagation in a nonuniform mixture: analysis of a slowly varying triple flame. Combust. Flame 76:71–88 [Google Scholar]
  20. Dold JW, Hartley LJ, Green D. 1991. Dynamics of laminar triple-flamelet structures in nonpremixed turbulent combustion. Dynamical Issues in Combustion Theory PC Fife, A Liñán, FA Williams 83–106 New York: Springer [Google Scholar]
  21. Dowling AP, Morgans AS. 2005. Feedback control of combustion oscillations. Annu. Rev. Fluid Mech. 37:151–82 [Google Scholar]
  22. Faraday M. 1861. Chemical History of a Candle London: Griffin, Bohn & Co.
  23. Fendell FE. 1965. Ignition and extinction of initially unmixed reactants. J. Fluid Mech. 21:281–303 [Google Scholar]
  24. Fernández E, Kurdyumov V, Liñán A. 2000. Diffusion flame attachment and lift-off in the near wake of a fuel injector. Proc. Combust. Inst. 28:2125–31 [Google Scholar]
  25. Fernández-Tarrazo E, Liñán A. 2002. Flame spread over solid fuels in opposite natural convection. Proc. Combust. Inst. 29:219–25 [Google Scholar]
  26. Fernández-Tarrazo E, Sánchez AL, Liñán A, Williams FA. 2006a. A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame 147:32–38 [Google Scholar]
  27. Fernández-Tarrazo E, Vera M, Liñán A. 2006b. Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air. Combust. Flame 144:261–76 [Google Scholar]
  28. Friedlander SK, Keller KH. 1963. The structure of the zone of diffusion controlled combustion. Chem. Eng. Sci. 18:365–75 [Google Scholar]
  29. Gaydon AG, Wolfhard HG. 1953. Flames: Their Structure, Radiation, and Temperature London: Chapman & Hall
  30. Hermanns M, Vera M, Liñán A. 2007. On the dynamics of flame edges in diffusion-flame/vortex interactions. Combust. Flame 149:32–48 [Google Scholar]
  31. Higuera FJ. 2002. Flame spread along horizontal solid fuel cylinders. Proc. Combust. Inst. 29:211–17 [Google Scholar]
  32. Higuera FJ, Liñán A. 1996. Flow field of a diffusion flame attached to a thick-walled injector between two coflowing reactant streams. J. Fluid Mech. 329:389–411 [Google Scholar]
  33. Jiang X, Luo KH. 2000. Combustion-induced buoyancy effects of an axisymmetric reactive plume. Proc. Combust. Inst. 28:1989–95 [Google Scholar]
  34. Katta VR, Carter CD, Fiechtner GJ, Roquemore WM, Gord JR, Rolon JC. 1998. Interaction of a vortex with a flat flame formed between opposing jets of hydrogen and air. Proc. Combust. Inst. 27:587–94 [Google Scholar]
  35. Katta VR, Roquemore WM. 1993. Role of inner and outer structures in transitional jet diffusion flame. Combust. Flame 93:274–82 [Google Scholar]
  36. Kioni PN, Rogg B, Bray KNC, Liñán A. 1993. Flame spread in laminar mixing layers: the triple flame. Combust. Flame 95:276–90 [Google Scholar]
  37. Kurdyumov V, Fernández-Tarrazo E, Liñán A. 2002. The anchoring of gaseous diffusion flames in stagnant air. Aerosp. Sci. Technol. 6:507–16 [Google Scholar]
  38. Lee BJ, Chung SH. 1997. Stabilization of lifted tribrachial flames in a laminar nonpremixed jet. Combust. Flame 109:163–72 [Google Scholar]
  39. Li SC, Gordon AS, Williams FA. 1995. A simplified method for the computation of Burke-Schumann flames in infinite atmospheres. Combust. Sci. Technol. 104:75–91 [Google Scholar]
  40. Libby P, Williams FA. 1994. Turbulent Reacting Flows London: Academic
  41. Liñán A. 1961. On the internal structure of laminar diffusion flames Tech. Rep. OSR/EOAR TN 62-24, INTA, Madrid
  42. Liñán A. 1963. On the structure of laminar diffusion flames Aeronaut. Eng. Thesis, Calif. Inst. Technol., Pasadena
  43. Liñán A. 1974. The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronaut. 1:1007–39 [Google Scholar]
  44. Liñán A. 1991. The structure of diffusion flames. Fluid Dynamical Aspects of Combustion Theory M Onofri, A Tesev 11–29 Harlow, UK: Longman Sci. Tech. [Google Scholar]
  45. Liñán A. 2001. Diffusion-controlled combustion. Mechanics for a New Millennium H Aref, JW Phillips 487–502 Dordrecht: Kluwer Acad. [Google Scholar]
  46. Liñán A, Crespo A. 1976. An asymptotic analysis of unsteady diffusion flames for large activation energies. Combust. Sci. Technol. 14:95–117 [Google Scholar]
  47. Liñán A, Fernández-Tarrazo E, Vera M, Sánchez AL. 2005. Lifted laminar jet diffusion flames. Combust. Sci. Technol. 177:933–53 [Google Scholar]
  48. Liñán A, Orlandi P, Verzicco R, Higuera FJ. 1994. Effects of nonunity Lewis numbers on diffusion flames. Studying Turbulence Using Numerical Databases V5–18 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  49. Liñán A, Williams F. 1993. Ignition in an unsteady mixing layer subject to strain and variable pressure. Combust. Flame 95:31–46 [Google Scholar]
  50. Liñán A, Williams F. 1995. Autoignition of nonuniform mixtures in chambers of variable volume. Combust. Sci. Technol. 105:245–63 [Google Scholar]
  51. Matalon M. 2007. Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39:163–91 [Google Scholar]
  52. Messiter AF. 1970. Boundary-layer flow near the trailing edge of a flat plate. SIAM J. Appl. Math. 18:241–57 [Google Scholar]
  53. Michaelis B, Rogg B. 2005. FEM-simulation of laminar flame propagation II: twin and triple flames in counterflow. Combust. Sci. Technol. 177:955–78 [Google Scholar]
  54. Miller JA, Pilling MJ, Troe J. 2005. Unravelling combustion mechanisms through a quantitative understanding of elementary reactions. Proc. Combust. Inst. 30:43–88 [Google Scholar]
  55. Muñiz L, Mungal MG. 1997. Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame 111:16–31 [Google Scholar]
  56. Nayagam V, Balasubramaniam R, Ronney PD. 1999. Diffusion flame-holes. Combust. Theor. Model. 3:727–42 [Google Scholar]
  57. Pantano C, Pullin DI. 2003. On the dynamics of the collapse of a diffusion-flame hole. J. Fluid Mech. 480:311–32 [Google Scholar]
  58. Pantano C, Pullin DI. 2004. A statistical description of turbulent diffusion flame holes. Combust. Flame 137:295–305 [Google Scholar]
  59. Peters N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10:319–39 [Google Scholar]
  60. Peters N. 1986. Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21:1231–50 [Google Scholar]
  61. Peters N. 2000. Turbulent Combustion Cambridge, UK: Cambridge Univ. Press
  62. Peters N, Göttgens J. 1991. Scaling of buoyant turbulent jet diffusion flames. Combust. Flame 85:206–14 [Google Scholar]
  63. Phillips H. 1965. Flame in a buoyant methane layer. Proc. Combust. Inst. 10:1277–83 [Google Scholar]
  64. Pitsch H. 2006. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38:453–82 [Google Scholar]
  65. Renard PH, Thévenin D, Rolon JC, Candel S. 2000. Dynamics of flame/vortex interactions. Prog. Energy Combust. Sci. 26:225–82 [Google Scholar]
  66. Revuelta A, Sánchez AL, Liñán A. 2002. Laminar mixing in diluted and undiluted fuel jets upstream from lifted flames. Combust. Flame 128:199–210 [Google Scholar]
  67. Rolon JC, Aguerre F, Candel S. 1995. Experiments on the interaction between a vortex and a strained diffusion flame. Combust. Flame 100:422–29 [Google Scholar]
  68. Roquemore WM, Chen LD, Goss LP, Lynn WF. 1989. Structure of jet diffusion flames. Turbulent Reactive Flows B Borghi, SNB Murthy 49–63 Berlin: Springer-Verlag [Google Scholar]
  69. Roquemore WM, Katta VR. 2000. Role of flow visualization in the development of UNICORN. J. Vis. 2:257–72 [Google Scholar]
  70. Ruetsch GR, Vervish L, Liñán A. 1995. Effects of heat release on triple flames. Phys. Fluids A 7:1447–54 [Google Scholar]
  71. Sánchez AL, Urzay J, Liñán A. 2014. The role of separation of scales in the description of spray flames. Proc. Combust. Inst. 35: In press. http://dx.doi.org/10.1016/j.proci.2014.08.018 [Google Scholar]
  72. Sánchez AL, Williams FA. 2014. Recent advances in understanding of flammability characteristics of hydrogen. Prog. Energy Combust. Sci. 41:1–55 [Google Scholar]
  73. Santoro VS, Gomez A. 2002. Extinction and reignition in counterflow spray diffusion flames interacting with laminar vortices. Proc. Combust. Inst. 29:585–92 [Google Scholar]
  74. Santoro VS, Kyritsis DC, Liñán A, Gomez A. 2000a. Vortex-induced extinction behavior in methanol gaseous flames: a comparison with quasi-steady extinction. Proc. Combust. Inst. 28:2109–16 [Google Scholar]
  75. Santoro VS, Liñán A, Gomez A. 2000b. Propagation of edge flames in counterflow mixing layers: experiments and theory. Proc. Combust. Inst. 28:2039–46 [Google Scholar]
  76. Shay ML, Ronney PD. 1998. Nonpremixed edge flames in spatially varying straining flows. Combust. Flame 112:171–80 [Google Scholar]
  77. Shvab VA. 1948. The relationship between the temperature and velocity fields in a gaseous flame. Research on Combustion Processes in Natural Fuel GF Knorre 231–48 Moscow: Gosenergoizdat [Google Scholar]
  78. Simmie JM. 2003. Detailed chemical kinetic models for the combustion of hydrocarbon fuels. Prog. Energy Combust. Sci. 29:599–634 [Google Scholar]
  79. Sirignano WA. 2010. Fluid Dynamics and Transport of Droplets and Sprays Cambridge, UK: Cambridge Univ. Press
  80. Stewartson K. 1969. On the flow near the trailing edge of a flat plate II. Mathematika 16:106–21 [Google Scholar]
  81. Sunderland PB, Quintiere JG, Tabaka GA, Lian D, Chiu CW. 2011. Analysis and measurement of candle flame shapes. Proc. Combust. Inst. 33:2489–96 [Google Scholar]
  82. Thévenin D, Renard PH, Fiechtner GJ, Gord JR, Rolon JC. 2000. Regimes of non-premixed flame-vortex interactions. Proc. Combust. Inst. 28:2101–8 [Google Scholar]
  83. Tizón JM, Salvá JJ, Liñán A. 1999. Wind-aided flame spread under oblique forced flow. Combust. Flame 119:41–55 [Google Scholar]
  84. Vázquez-Espí C. 2001. Analysis of axisymmetric laminar jet diffusion flames for small values of the stoichiometric mixture fraction. Combust. Sci. Technol. 171:1–38 [Google Scholar]
  85. Venugopal R, Abraham J. 2008. A 2-D DNS investigation of extinction and reignition dynamics in nonpremixed flame-vortex interactions. Combust. Flame 153:442–64 [Google Scholar]
  86. Vera M, Hermanns M, Liñán A. 2007. A combustion diagram to characterize the regimes of interaction of non-premixed flames and strong vortices. Proc. 3rd Eur. Combust. Meet. ECM 2007. Crete: Greek Section Combust. Inst http://www.combustion.org.uk/ECM_2007/ecm2007_papers/18-8.pdf [Google Scholar]
  87. Vera M, Liñán A. 2004. On the interaction of vortices with mixing layers. Phys. Fluids 16:2237–54 [Google Scholar]
  88. Vervisch L, Poinsot T. 1998. Direct numerical simulation of non-premixed turbulent flames. Annu. Rev. Fluid Mech. 30:655–91 [Google Scholar]
  89. Veynante D, Vervisch L. 2002. Turbulent combustion modeling. Prog. Energy Combust. Sci. 28:193–266 [Google Scholar]
  90. Westbrook CK, Dryer FL. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27:31–43 [Google Scholar]
  91. Williams FA. 1971. Theory of combustion in laminar flows. Annu. Rev. Fluid Mech. 3:171–88 [Google Scholar]
  92. Williams FA. 1985. Combustion Theory Menlo Park, CA: Benjamin Cummings, 2nd ed..
  93. Williams FA. 2000. Progress in knowledge of flamelet structure and extinction. Prog. Enery Combust. Sci. 26:657–82 [Google Scholar]
  94. Zel'dovich YB. 1949. Teorii gorenia neperemeshannykh gazov. Z. Tekh. Fiz. 19:1199–1210 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010814-014711
Loading
/content/journals/10.1146/annurev-fluid-010814-014711
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error