1932

Abstract

This review examines different stages of the coalescence process of liquid drops on a planar interface under different conditions. Depending on the application, drops coalescence under the influence of applied external shear stress. The focus of this review is on the effect of the viscous stress, Marangoni stress, and electric field stress on the outcome of this process, particularly on the time of coalescence and partial coalescence. Theoretical progress and experiments of this phenomenon are examined, and a future outlook of this area of research is given.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010814-014720
2015-01-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/fluid/47/1/annurev-fluid-010814-014720.html?itemId=/content/journals/10.1146/annurev-fluid-010814-014720&mimeType=html&fmt=ahah

Literature Cited

  1. Aarts D, Lekkerkerker HNW, Guo H, Wegdam GH, Bonn D. 2005. Hydrodynamics of droplet coalescence. Phys. Rev. Lett. 95:164503 [Google Scholar]
  2. Adamson AW, Gast AP. 1997. Physical Chemistry of Surfaces New York: Wiley
  3. Adornato PM, Brown RA. 1983. Shape and stability of electrostatically levitated drops. Proc. R. Soc. Lond. A 389:101–17 [Google Scholar]
  4. Arbel N, Levin Z. 1977. Coalescence of water drops I. A theoretical model of approaching drops. Pure Appl. Geophys. 115:869–93 [Google Scholar]
  5. Arp PA, Foister RT, Mason SG. 1980. Some electrohydrodynamic effects in fluid dispersions. Adv. Colloid Interface Sci. 12:295–356 [Google Scholar]
  6. Aryafar H, Kavehpour HP. 2006a. Drop coalescence through planar surfaces. Phys. Fluids 18:072105 [Google Scholar]
  7. Aryafar H, Kavehpour HP. 2006b. Inertia-dominated coalescence of drops. Appl. Math. Res. Exp. 2006:94630 [Google Scholar]
  8. Aryafar H, Kavehpour HP. 2007. Electrocoalescence. Phys. Fluids 19:091107 [Google Scholar]
  9. Aryafar H, Kavehpour HP. 2008. Hydrodynamic instabilities of viscous coalescing droplets. Phys. Rev. E 78:037302 [Google Scholar]
  10. Bach GA, Koch DL, Gopinath A. 2004. Coalescence and bouncing of small aerosol droplets. J. Fluid Mech. 518:157–85 [Google Scholar]
  11. Bailes PJ, Larkai SKL. 1981. An experimental investigation into the use of high-voltage D.C. fields for liquid-phase separation. Trans. Inst. Chem. Eng. 59:229–37 [Google Scholar]
  12. Bailes PJ, Larkai SKL. 1982. Liquid-phase separation in pulsed D.C. fields. Trans. Inst. Chem. Eng. 60:115–21 [Google Scholar]
  13. Bailes PJ, Larkai SKL. 1987. Electrical analysis of an electrostatic coalescer. Chem. Eng. Res. Des. 65:445–47 [Google Scholar]
  14. Baldessari F, Leal LG. 2005. Two touching spherical drops in uniaxial extensional flow: analytic solution to the creeping flow problem. J. Colloid Interface Sci. 289:262–70 [Google Scholar]
  15. Baldessari F, Leal LG. 2006. Effect of overall drop deformation on flow-induced coalescence at low capillary numbers. Phys. Fluids 18:013602 [Google Scholar]
  16. Blanchette F, Bigioni TP. 2006. Partial coalescence of drops at liquid interfaces. Nat. Phys. 2:254–57 [Google Scholar]
  17. Blanchette F, Bigioni TP. 2009. Dynamics of drop coalescence at fluid interfaces. J. Fluid Mech. 620:333–52 [Google Scholar]
  18. Blanchette F, Messio L, Bush JWM. 2009. The influence of surface tension gradients on drop coalescence. Phys. Fluids 21:072107 [Google Scholar]
  19. Borrell M, Yoon Y, Leal LG. 2004. Experimental analysis of the coalescence process via head-on collisions in a time-dependent flow. Phys. Fluids 16:3945–54 [Google Scholar]
  20. Bradley SG, Stow CD. 1978. Collisions between liquid drops. Philos. Trans. R. Soc. Lond. A 287:635–75 [Google Scholar]
  21. Brandenberger H, Nussli D, Piech V, Widmer F. 1999. Monodisperse particle production: a method to prevent drop coalescence using electrostatic forces. J. Electrost. 45:227–38 [Google Scholar]
  22. Brenner MP, Gueyffier D. 1999. On the bursting of viscous films. Phys. Fluids 11:737–39 [Google Scholar]
  23. Brown AH, Hanson C. 1968. Effect of oscillating electric fields on coalescence of liquid drops. Chem. Eng. Sci. 23:841–48 [Google Scholar]
  24. Burrill KA, Woods DR. 1969. Change in interface and film shapes for a deformable drop at a deformable liquid-liquid interface: Part I. Film hydrodynamic pressure distribution and interface shapes. J. Colloid Interface Sci. 30:511–24 [Google Scholar]
  25. Burrill KA, Woods DR. 1973. Film shapes for deformable drops at liquid-liquid interfaces. II. The mechanisms of film drainage. J. Colloid Interface Sci. 42:15–34 [Google Scholar]
  26. Cai YK. 1989. Phenomena of a liquid drop falling to a liquid surface. Exp. Fluids 7:388–94 [Google Scholar]
  27. Charles GE, Mason SG. 1960a. The coalescence of liquid drops with flat liquid/liquid interfaces. J. Colloid Sci. 15:236–67 [Google Scholar]
  28. Charles GE, Mason SG. 1960b. The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. J. Colloid Sci. 15:105–22 [Google Scholar]
  29. Chatterjee J, Nikolov AD, Wasan DT. 1996. Study of drop-interface coalescence using piezoimaging. Ind. Eng. Chem. Res. 35:2933–38 [Google Scholar]
  30. Chen AU, Notz PK, Basaran OA. 2002. Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett. 88:174501 [Google Scholar]
  31. Chen JD. 1984. Effects of London–van der Waals and electric double-layer forces on the thinning of a dimpled film between a small drop or bubble and a horizontal solid plane. J. Colloid Interface Sci. 98:329–41 [Google Scholar]
  32. Chen X, Mandre S, Feng JJ. 2006a. An experimental study of the coalescence between a drop and an interface in Newtonian and polymeric liquids. Phys. Fluids 18:092103 [Google Scholar]
  33. Chen XP, Mandre S, Feng JJ. 2006b. Partial coalescence between a drop and a liquid-liquid interface. Phys. Fluids 18:051705 [Google Scholar]
  34. Ching B, Golay MW, Johnson TJ. 1984. Droplet impacts upon liquid surfaces. Science 226:535–37 [Google Scholar]
  35. Cooks RG, Busch KL, Glish GL. 1983. Mass spectrometry: analytical capabilities and potentials. Science 222:273–91 [Google Scholar]
  36. Couder Y, Fort E, Gautier CH, Boudaoud A. 2005. From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94:177801 [Google Scholar]
  37. Culick FEC. 1960. Comments on a ruptured soap film. J. Appl. Phys. 31:1128–29 [Google Scholar]
  38. Dooley BS, Warncke AE, Gharib M, Tryggvason G. 1997. Vortex ring generation due to the coalescence of a water drop at a free surface. Exp. Fluids 22:369–74 [Google Scholar]
  39. Duchemin L, Eggers J, Josserand C. 2003. Inviscid coalescence of drops. J. Fluid Mech. 487:167–78 [Google Scholar]
  40. Eggers J. 1997. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69:865–929 [Google Scholar]
  41. Eggers J, Lister JR, Stone HA. 1999. Coalescence of liquid drops. J. Fluid Mech. 401:293–310 [Google Scholar]
  42. Eow JS, Ghadiri M. 2003a. The behaviour of a liquid-liquid interface and drop-interface coalescence under the influence of an electric field. Colloids Surf. A 215:101–23 [Google Scholar]
  43. Eow JS, Ghadiri M. 2003b. Drop-drop coalescence in an electric field: the effects of applied electric field and electrode geometry. Colloids Surf. A 219:253–79 [Google Scholar]
  44. Eow JS, Ghadiri M, Sharif AO. 2002. Electrostatic and hydrodynamic flowing separation of aqueous drops in a viscous oil. Chem. Eng. Process. 41:649–57 [Google Scholar]
  45. Eow JS, Ghadiri M, Sharif AO, Williams TJ. 2001. Electrostatic enhancement of coalescence of water droplets in oil: a review of the current understanding. Chem. Eng. J. 84:173–92 [Google Scholar]
  46. Erneux T, Davis SH. 1993. Nonlinear rupture of free films. Phys. Fluids A 5:1117–22 [Google Scholar]
  47. Fedorchenko AI, Wang AB. 2004. On some common features of drop impact on liquid surfaces. Phys. Fluids 16:1349–65 [Google Scholar]
  48. Fridrikh SV, Yu JH, Brenner MP, Rutledge GC. 2003. Controlling the fiber diameter during electrospinning. Phys. Rev. Lett. 90:144502 [Google Scholar]
  49. Fridrikh SV, Yu JH, Brenner MP, Rutledge GC. 2006. Nonlinear whipping behavior of electrified fluid jets. Polymeric Nanofibers DH Reneker, H Fong 36–55 Washington, DC. Am. Chem. Soc.
  50. Fullana JM, Zaleski S. 1999. Stability of a growing end rim in a liquid sheet of uniform thickness. Phys. Fluids 11:952–54 [Google Scholar]
  51. Ghosh P, Juvekar VA. 2002. Analysis of the drop rest phenomenon. Chem. Eng. Res. Des. 80:715–28 [Google Scholar]
  52. Gilet T, Mulleners K, Lecomte JP, Vandewalle N, Dorbolo S. 2007. Critical parameters for the partial coalescence of a droplet. Phys. Rev. E 75:036303 [Google Scholar]
  53. Gillespie T, Rideal EK. 1956. The coalescence of drops at an oil-water interface. Trans. Faraday Soc. 52:173–83 [Google Scholar]
  54. Ha JW, Yoon Y, Leal LG. 2003. The effect of compatibilizer on the coalescence of two drops in flow. Phys. Fluids 15:849–67 [Google Scholar]
  55. Hamlin BS, Creasey JC, Ristenpart WD. 2012. Electrically tunable partial coalescence of oppositely charged drops. Phys. Rev. Lett. 109:094501 [Google Scholar]
  56. Hampton P, Darde T, James R, Wines TH. 2001. Liquid-liquid separation technology improves IFPEXOL process economics. Oil Gas J. 99:54–57 [Google Scholar]
  57. Hancock MJ, Bush JWM. 2002. Fluid pipes. J. Fluid Mech. 466:285–304 [Google Scholar]
  58. Hartland S. 1967a. Coalescence of a liquid drop at a liquid-liquid interface. Part I. Drop shape. Trans. Inst. Chem. Eng. 45:T97–101 [Google Scholar]
  59. Hartland S. 1967b. Coalescence of a liquid drop at a liquid-liquid interface. Part II. Film thickness. Trans. Inst. Chem. Eng. 45:T102–8 [Google Scholar]
  60. Hartland S. 1967c. Coalescence of a liquid drop at a liquid-liquid interface. Part III. Film rupture. Trans. Inst. Chem. Eng. 45:T109–14 [Google Scholar]
  61. Hiemenz P, Rajagopalan R. 1997. Principles of Colloid and Surface Chemistry New York: Marcel Dekker
  62. Hirato T, Koyama K, Tanaka T, Awakura Y, Majima H. 1991. Demulsification of water-in-oil emulsion by an electrostatic coalescence method. Mater. Trans. 32:257–63 [Google Scholar]
  63. Hodgson TD, Lee JC. 1969. The effect of a surfactant on the coalescence of a drop at an interface I. J. Colloid Interface Sci. 30:94–108 [Google Scholar]
  64. Hodgson TD, Woods DR. 1969. The effect of surfactants on the coalescence of a drop at an interface II. J. Colloid Interface Sci. 30:429–46 [Google Scholar]
  65. Hohman MM, Shin M, Rutledge G, Brenner MP. 2001a. Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 13:2201–20 [Google Scholar]
  66. Hohman MM, Shin M, Rutledge G, Brenner MP. 2001b. Electrospinning and electrically forced jets. II. Applications. Phys. Fluids 13:2221–36 [Google Scholar]
  67. Hsiao M, Lichter S, Quintero LG. 1988. The critical Weber number for vortex and jet formation for drops impinging on a liquid pool. Phys. Fluids 31:3560–62 [Google Scholar]
  68. Hu YT, Pine DJ, Leal LG. 2000. Drop deformation, breakup, and coalescence with compatibilizer. Phys. Fluids 12:484–89 [Google Scholar]
  69. Jayaratne OW, Mason BJ. 1964. The coalescence and bouncing of water drops at an air/water interface. Proc. R. Soc. Lond. A 280:545–65 [Google Scholar]
  70. Jeffreys GV, Hawksley JL. 1965a. Coalescence of liquid droplets in two-component–two-phase systems: Part I. Effect of physical properties on rate of coalescence. AIChE J. 11:413–17 [Google Scholar]
  71. Jeffreys GV, Hawksley JL. 1965b. Coalescence of liquid droplets in two-component-two-phase systems: Part II. Theoretical analysis of coalescence rate. AIChE J. 11:418–24 [Google Scholar]
  72. Jones F, Wilson SDR. 1978. The film drainage problem in droplet coalescence. J. Fluid Mech. 87:263–88 [Google Scholar]
  73. Kim WT, Mitra SK, Li XG, Prociw LA, Hu TCJ. 2003. A predictive model for the initial droplet size and velocity distributions in sprays and comparison with experiments. Part. Part. Syst. Charact. 20:135–49 [Google Scholar]
  74. Kourio MJ, Gourdon C, Casamatta G. 1994. Study of drop-interface coalescence: drainage time measurement. Chem. Eng. Technol. 17:249–54 [Google Scholar]
  75. Leal LG. 2004. Flow induced coalescence of drops in a viscous fluid. Phys. Fluids 16:1833–51 [Google Scholar]
  76. Lesser MB. 1981. Analytic solutions of liquid-drop impact problems. Proc. R. Soc. Lond. A 377:289–308 [Google Scholar]
  77. Lesser MB. 1995. 30 years of liquid impact research: a tutorial review. Wear 186:28–34 [Google Scholar]
  78. Levin Z, Hobbs PV. 1971. Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Philos. Trans. R. Soc. Lond. A 269:555–85 [Google Scholar]
  79. Liow JL. 2001. Splash formation by spherical drops. J. Fluid Mech. 427:73–105 [Google Scholar]
  80. List R, Whelpdale DM. 1969. A preliminary investigation of factors affecting the coalescence of colliding water drops. J. Atmos. Sci. 26:305–8 [Google Scholar]
  81. Lukyanets AS, Kavehpour HP. 2008. Effect of electric fields on the rest time of coalescing drops. Appl. Phys. Lett. 93:194101 [Google Scholar]
  82. Marrucci G. 1969. A theory of coalescence. Chem. Eng. Sci. 24:975–85 [Google Scholar]
  83. Melcher JR. 1981. Continuum Electromechanics Cambridge, MA: MIT Press
  84. Melcher JR, Taylor GI. 1969. Electrohydrodynamics: a review of role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1:111–46 [Google Scholar]
  85. Menchaca-Rocha A, Martinez-Davalos A, Nunez R, Popinet S, Zaleski S. 2001. Coalescence of liquid drops by surface tension. Phys. Rev. E 63:046309 [Google Scholar]
  86. Miksis MJ. 1981. Shape of a drop in an electric field. Phys. Fluids 24:1967–72 [Google Scholar]
  87. Mohamed-Kassim Z, Longmire EK. 2003. Drop impact on a liquid-liquid interface. Phys. Fluids 15:3263–73 [Google Scholar]
  88. Mohamed-Kassim Z, Longmire EK. 2004. Drop coalescence through a liquid/liquid interface. Phys. Fluids 16:2170–81 [Google Scholar]
  89. Morton D, Rudman M, Liow JL. 2000. An investigation of the flow regimes resulting from splashing drops. Phys. Fluids 12:747–63 [Google Scholar]
  90. Neitzel GP, Dell'Aversana P. 2002. Noncoalescence and nonwetting behavior of liquids. Annu. Rev. Fluid Mech. 34:267–89 [Google Scholar]
  91. Nigen S, Walters K. 2001. On the two-dimensional splashing experiment for Newtonian and slightly elastic fluids. J. Non-Newton. Fluid Mech. 97:233–50 [Google Scholar]
  92. Oak Ridge Natl. Lab 2002. ORNL and oil research. Oak Ridge Natl. Lab. Review 35:212–13 [Google Scholar]
  93. Orme M. 1997. Experiments on droplet collisions, bounce, coalescence and disruption. Prog. Energy Combust. Sci. 23:65–97 [Google Scholar]
  94. Oron A, Davis SH, Bankoff SG. 1997. Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69:931–80 [Google Scholar]
  95. Palermo T. 1991. Coalescence phenomena: a review. Rev. Inst. Fr. Petrole 46:325–60 [Google Scholar]
  96. Park CC, Baldessari F, Leal LG. 2003. Study of molecular weight effects on coalescence: interface slip layer. J. Rheol. 47:911–42 [Google Scholar]
  97. Peck B, Sigurdson L, Faulkner B, Buttar I. 1995. An apparatus to study drop-formed vortex rings. Meas. Sci. Technol. 6:1538–45 [Google Scholar]
  98. Pikhitsa P, Tsargorodskaya A. 2000. Possible mechanism for multistage coalescence of a floating droplet on the air/liquid interface. Colloids Surf. A 167:287–91 [Google Scholar]
  99. Princen HM. 1963. Shape of a fluid drop at a liquid-liquid interface. J. Colloid Sci. 18:178–95 [Google Scholar]
  100. Pruppacher HR, Klett JD. 1997. Microphysics of Clouds and Precipitation Boston, MA: Kluwer Acad.
  101. Rayleigh L. 1879a. On the capillary phenomena of jets. Proc. R. Soc. Lond. 29:71–97 [Google Scholar]
  102. Rayleigh L. 1879b. The influence of electricity on colliding water drops. Proc. R. Soc. Lond. 28:406–9 [Google Scholar]
  103. Rein M. 1993. Phenomena of liquid-drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12:61–93 [Google Scholar]
  104. Rein M. 1996. The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306:145–65 [Google Scholar]
  105. Reynolds O. 1875. On the action of rain to calm the sea. Proc. Literary Philos. Soc. Manch. 14:86–88 [Google Scholar]
  106. Reynolds O. 1881. On the floating of drops on the surface of water depending only on the purity of the surface. Proc. Lit. Philos. Soc. Manch. 21:413–14 [Google Scholar]
  107. Rodriguez F, Mesler R. 1985. Some drops don't splash. J. Colloid Sci. 106:347–52 [Google Scholar]
  108. Rodriguez F, Mesler R. 1988. The penetration of drop-formed vortex rings into pools of liquid. J. Colloid Sci. 121:121–29 [Google Scholar]
  109. Roisman IV, Tropea C. 2002. Impact of a drop onto a wetted wall: description of crown formation and propagation. J. Fluid Mech. 472:373–97 [Google Scholar]
  110. Rommel W. 1992. Drop coalescence at liquid-liquid interfaces: influence of the rheological behavior of the phase boundaries. Chem. Ing. Tech. 64:179–81 [Google Scholar]
  111. Rommel W, Blass E, Meon W. 1993. Plate separators for dispersed liquid-liquid systems: the role of partial coalescence. Chem. Eng. Sci. 48:1735–43 [Google Scholar]
  112. Rommel W, Meon W, Blass E. 1992. Hydrodynamic modeling of droplet coalescence at liquid-liquid interfaces. Sep. Sci. Technol. 27:129–59 [Google Scholar]
  113. Schotland RM. 1960. Experimental results relating to the coalescence of water drops with water surfaces. Discuss. Faraday Soc. 30:72–77 [Google Scholar]
  114. Scriven LE, Sternling CV. 1960. Marangoni effects. Nature 187:186–88 [Google Scholar]
  115. Shankar PN, Kumar M. 1995. Vortex rings generated by drops just coalescing with a pool. Phys. Fluids 7:737–46 [Google Scholar]
  116. Shin J, McMahon TA. 1990. The tuning of a splash. Phys. Fluids A 2:1312–17 [Google Scholar]
  117. Shin WT, Yiacoumi S, Tsouris C. 2004. Electric-field effects on interfaces: electrospray and electrocoalescence. Curr. Opin. Colloid Interface Sci. 9:249–55 [Google Scholar]
  118. Shin YM, Hohman MM, Brenner MP, Rutledge GC. 2001a. Electrospinning: A whipping fluid jet generates submicron polymer fibers. Appl. Phys. Lett. 78:1149–51 [Google Scholar]
  119. Shin YM, Hohman MM, Brenner MP, Rutledge GC. 2001b. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42:9955–67 [Google Scholar]
  120. Sozou C. 1973. Electrohydrodynamics of a liquid drop: development of flow field. Proc. R. Soc. Lond. A 334:343–56 [Google Scholar]
  121. Sternling CV, Scriven LE. 1959. Interfacial turbulence: hydrodynamic instability and the Marangoni effect. AIChE J. 5:514–23 [Google Scholar]
  122. Stone HA. 1994. Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26:65–102 [Google Scholar]
  123. Stone HA, Lister JR, Brenner MP. 1999. Drops with conical ends in electric and magnetic fields. Proc. R. Soc. Lond. A 455:329–47 [Google Scholar]
  124. Stoos JA, Yang SM, Leal LG. 1992. Hydrodynamic interaction of a small fluid particle and a spherical drop in low–Reynolds number flow. Int. J. Multiphase Flow 18:1019–44 [Google Scholar]
  125. Sunderhauf G, Raszillier H, Durst F. 2002. The retraction of the edge of a planar liquid sheet. Phys. Fluids 14:198–208 [Google Scholar]
  126. Taylor GI. 1964. Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280:383–97 [Google Scholar]
  127. Thompson DG, Taylor AS, Graham DE. 1985. Emulsification and demulsification related to crude-oil production. Colloids Surf. 15:175–89 [Google Scholar]
  128. Thomson JJ, Newall HF. 1885. On the formation of vortex rings by drops falling into liquids, and some allied phenomena. Proc. R. Soc. Lond. 39:417–36 [Google Scholar]
  129. Thoroddsen ST, Takehara K. 2000. The coalescence cascade of a drop. Phys. Fluids 12:1265–67 [Google Scholar]
  130. Thoroddsen ST, Takehara K, Etoh TG. 2005. The coalescence speed of a pendent and a sessile drop. J. Fluid Mech. 527:85–114 [Google Scholar]
  131. Tomotika S. 1935. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous liquid. Proc. R. Soc. Lond. A 150:322–37 [Google Scholar]
  132. Torza S, Cox RG, Mason SG. 1971. Electrohydrodynamic deformation and burst of liquid drops. Philos. Trans. R. Soc. Lond. A 269:295–319 [Google Scholar]
  133. Vacek V. 1977. Coalescence of single drops at two different interfaces. Colloid Polym. Sci. 255:368–73 [Google Scholar]
  134. Vijayan S, Ponter AB. 1975. Drop-drop and drop-interface coalescence in primary liquid-liquid dispersion separators. Chem. Ing. Tech. 47:748–55 [Google Scholar]
  135. Wang AB, Chen CC. 2000. Splashing impact of a single drop onto very thin liquid films. Phys. Fluids 12:2155–58 [Google Scholar]
  136. Ward T, Homsy GM. 2001. Electrohydrodynamically driven chaotic mixing in a translating drop. Phys. Fluids 13:3521–25 [Google Scholar]
  137. Ward T, Homsy GM. 2003. Electrohydrodynamically driven chaotic mixing in a translating drop. II. Experiments. Phys. Fluids 15:2987–94 [Google Scholar]
  138. Ward T, Homsy GM. 2006. Chaotic streamlines in a translating drop with a uniform electric field. J. Fluid Mech. 547:215–30 [Google Scholar]
  139. Weiss DA, Yarin AL. 1999. Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J. Fluid Mech. 385:229–54 [Google Scholar]
  140. Wiley RM. 1954. Limited coalescence of oil droplets in coarse oil-in-water emulsions. J. Colloid Sci. 9:427–37 [Google Scholar]
  141. Williams MB, Davis SH. 1982. Non-linear theory of film rupture. J. Colloid Interface Sci. 90:220–28 [Google Scholar]
  142. Wu MM, Cubaud T, Ho CM. 2004. Scaling law in liquid drop coalescence driven by surface tension. Phys. Fluids 16:L51–54 [Google Scholar]
  143. Yang H, Park CC, Hu YT, Leal LG. 2001. The coalescence of two equal-sized drops in a two-dimensional linear flow. Phys. Fluids 13:1087–106 [Google Scholar]
  144. Yang SM, Leal LG, Kim YS. 2002. Hydrodynamic interaction between spheres coated with deformable thin liquid films. J. Colloid Interface Sci. 250:457–65 [Google Scholar]
  145. Yao W, Maris HJ, Pennington P, Seidel GM. 2005. Coalescence of viscous liquid drops. Phys. Rev. E 71:016309 [Google Scholar]
  146. Yarin AL. 2006. Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38:159–92 [Google Scholar]
  147. Yoon Y, Borrell M, Park CC, Leal LG. 2005. Viscosity ratio effects on the coalescence of two equal-sized drops in a two-dimensional linear flow. J. Fluid Mech. 525:355–79 [Google Scholar]
  148. Yue P, Feng JJ, Liu C, Shen J. 2005. Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. J. Non-Newton. Fluid Mech. 129:163–76 [Google Scholar]
  149. Yue P, Zhou C, Feng JJ. 2006. A computational study of the coalescence between a drop and an interface in Newtonian and viscoelastic fluids. Phys. Fluids 18:102102 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010814-014720
Loading
/content/journals/10.1146/annurev-fluid-010814-014720
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error