1932

Abstract

Recent advances in imaging techniques have allowed physicians to obtain robust measurements of intracardiac flows in the clinical setting. Consequently, the physiological implications of intraventricular fluid dynamics are beginning to be understood. Initial data show that these flows involve complex fluid-structure interactions and mixing phenomena that are modified by disease. Here we critically review the most important aspects of intraventricular fluid mechanics relevant for clinical applications. We discuss current image and numerical methods for assessing intraventricular flows, as well as implemented approaches to analyze their impact on cardiac function. The physiological and clinical insights provided by such techniques are discussed both in health and in disease. The final goal is to encourage research in the application of fluid dynamic foundations to patient-based clinical data. A huge potential is anticipated not only in terms of the basic science of large-scale biological systems, but also in practical terms of improving patient care.

Associated Article

There are media items related to this article:
The Clinical Assessment of Intraventricular Flows: Supplemental Video 3

Associated Article

There are media items related to this article:
The Clinical Assessment of Intraventricular Flows: Supplemental Video 1

Associated Article

There are media items related to this article:
The Clinical Assessment of Intraventricular Flows: Supplemental Video 2
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010814-014728
2015-01-03
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/fluid/47/1/annurev-fluid-010814-014728.html?itemId=/content/journals/10.1146/annurev-fluid-010814-014728&mimeType=html&fmt=ahah

Literature Cited

  1. Abe H, Caracciolo G, Kheradvar A, Pedrizzetti G, Khandheria BK. et al. 2013. Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study. Eur. Heart J. Cardiovasc. Imaging 14:1049–60 [Google Scholar]
  2. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR. et al. 2002. Cardiac resynchronization in chronic heart failure. N. Engl. J. Med. 346:1845–53 [Google Scholar]
  3. Adams PC, Cohen M, Chesebro JH, Fuster V. 1986. Thrombosis and embolism from cardiac chambers and infected valves. J. Am. Coll. Cardiol. 8:B76–87 [Google Scholar]
  4. Angelone A, Coulter NA Jr. 1964. Respiratory sinus arrhythemia: a frequency dependent phenomenon. J. Appl. Physiol. 19:479–82 [Google Scholar]
  5. Armstrong WF, Ryan T. 2005. Feigenbaum's Echocardiography Philadelphia: Lippincott Williams & Wilkins
  6. Arzani A, Shadden SC. 2012. Characterization of the transport topology in patient-specific abdominal aortic aneurysm models. Phys. Fluids 24:81901 [Google Scholar]
  7. Baker DW, Rubenstein SA, Lorch GS. 1977. Pulsed Doppler echocardiography: principles and applications. Am. J. Med. 63:69–80 [Google Scholar]
  8. Balaras E, Cha KS, Griffith BP, Gammie JS. 2009. Treatment of aortic stenosis with aortic valve bypass (apicoaortic conduit) surgery: an assessment using computational modeling. J. Thorac. Cardiovasc. Surg. 137:680–87 [Google Scholar]
  9. Batchelor GK. 2000. An Introduction to Fluid Dynamics Cambridge, UK: Cambridge Univ. Press
  10. Bazilevs Y, del Álamo JC, Humphrey JD. 2010. From imaging to prediction: emerging non-invasive methods in pediatric cardiology. Prog. Pediatr. Cardiol. 30:81–89 [Google Scholar]
  11. Bellhouse BJ, Bellhouse FH. 1969. Fluid mechanics of the mitral valve. Nature 224:615–16 [Google Scholar]
  12. Benito Y, Bermejo J, Alhama M, Yotti R, Pérez del Villar C. et al. 2012. Heart rate and AV delay modify left ventricular filling vortex properties. Circulation 126:A18099 [Google Scholar]
  13. Bermejo J, Antoranz JC, Yotti R, Moreno M, Garcia-Fernandez MA. 2001. Spatio-temporal mapping of intracardiac pressure gradients: a solution to Euler's equation from digital postprocessing of color Doppler M-mode echocardiograms. Ultrasound Med. Biol. 27:621–30 [Google Scholar]
  14. Bermejo J, Benito Y, Alhama M, Yotti R, Martínez-Legazpi P. et al. 2014. Intraventricular vortex properties in nonischemic dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 306:H718–29Provides the largest clinical study directly measuring vortex flow properties in normal subjects and DCM patients using ultrasound. [Google Scholar]
  15. Bermejo J, Yotti R, Villar CP, del Álamo JC, Rodriguez-Pérez D. et al. 2013. Diastolic chamber properties of the left ventricle assessed by global fitting of pressure-volume data: improving the gold standard of diastolic function. J. Appl. Physiol. 115556–68
  16. Bohs LN, Geiman BJ, Anderson ME, Gebhart SC, Trahey GE. 2000. Speckle tracking for multi-dimensional flow estimation. Ultrasonics 38:369–75 [Google Scholar]
  17. Bolger AF, Heiberg E, Karlsson M, Wigström L, Engvall J. et al. 2007. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 9:741–47Introduces the concept of direct flow and its implications. [Google Scholar]
  18. Burch G. 1975. The trabeculae carneae—a thought. Am. Heart J. 89:261 [Google Scholar]
  19. Burkhoff D, Mirsky I, Suga H. 2005. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. 289:H501–12 [Google Scholar]
  20. Busch J, Giese D, Wissmann L, Kozerke S. 2013. Reconstruction of divergence-free velocity fields from cine 3D phase-contrast flow measurements. Magn. Reson. Med. 69:200–10 [Google Scholar]
  21. Carlhall CJ, Bolger A. 2010. Passing strange: flow in the failing ventricle. Circ. Heart Fail. 3:326–31 [Google Scholar]
  22. Carlsson M, Heiberg E, Toger J, Arheden H. 2012. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am. J. Physiol. Heart Circ. Physiol. 302:H893–900 [Google Scholar]
  23. Chakraborty P, Balachandar S, Adrian RJ. 2005. On the relationships between local vortex identification schemes. J. Fluid Mech. 535:189–214 [Google Scholar]
  24. Chandrasekhar S. 1943. Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15:1–89 [Google Scholar]
  25. Charonko JJ, Kumar R, Stewart K, Little WC, Vlachos PP. 2013. Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann. Biomed. Eng. 41:1049–61 [Google Scholar]
  26. Cheitlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ. et al. 2003. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography—summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). J. Am. Coll. Cardiol. 42:954–70 [Google Scholar]
  27. Cheng M, Lou J, Luo L-S. 2010. Numerical study of a vortex ring impacting a flat wall. J. Fluid Mech. 660:430–55 [Google Scholar]
  28. Cheng Y, Oertel H, Schenkel T. 2005. Fluid-structure coupled CFD simulation of the left ventricular flow during filling phase. Ann. Biomed. Eng. 33:567–76 [Google Scholar]
  29. Cohn JN, Ferrari R, Sharpe N. 2000. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol. 35:569–82 [Google Scholar]
  30. Cortina C, Bermejo J, Yotti R, Desco MM, Rodriguez-Pérez D. et al. 2007. Noninvasive assessment of the right ventricular filling pressure gradient. Circulation 116:1015–23 [Google Scholar]
  31. Couch L, Krueger P. 2011. Experimental investigation of vortex rings impinging on inclined surfaces. Exp. Fluids 51:1123–38 [Google Scholar]
  32. Dabiri JO. 2009. Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41:17–33 [Google Scholar]
  33. del Álamo JC, Jimenez J, Zandonade P, Moser RD. 2006. Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561:329–58 [Google Scholar]
  34. del Álamo JC, Marsden AL, Lasheras JC. 2009. Recent advances in the application of computational mechanics to the diagnosis and treatment of cardiovascular disease. Rev. Esp. Cardiol. 62:781–805 [Google Scholar]
  35. Dickstein K, Vardas PE, Auricchio A, Daubert JC, Linde C. et al. 2010. 2010 Focused Update of ESC Guidelines on device therapy in heart failure: an update of the 2008 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure and the 2007 ESC Guidelines for cardiac and resynchronization therapy. Developed with the special contribution of the Heart Failure Association and the European Heart Rhythm Association. Eur. Heart J. 31:2677–87 [Google Scholar]
  36. Domenichini F, Pedrizzetti G, Baccani B. 2005. Three-dimensional filling flow into a model left ventricle. J. Fluid Mech. 539:179–98 [Google Scholar]
  37. Ebbers T, Wigström L, Bolger AF, Engvall J, Karlsson M. 2001. Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI. Magn. Reson. Med. 45:872–79 [Google Scholar]
  38. Ebbers T, Wigström L, Bolger AF, Wranne B, Karlsson M. 2002. Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J. Biomech. Eng. 124:288–93 [Google Scholar]
  39. Eriksson J, Bolger AF, Ebbers T, Carlhall CJ. 2013. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 14:417–24 [Google Scholar]
  40. Eriksson J, Carlhall CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T. 2010. Semi-automatic quantification of 4D left ventricular blood flow. J. Cardiovasc. Magn. Reson. 12:9 [Google Scholar]
  41. Eriksson J, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T, Carlhall CJ. 2011. Quantification of presystolic blood flow organization and energetics in the human left ventricle. Am. J. Physiol. Heart Circ. Physiol. 300:H2135–41 [Google Scholar]
  42. Esmaily-Moghadam M, Hsia TY, Marsden AL. 2013. A non-discrete method for computation of residence time in fluid mechanics simulations. Phys. Fluids 25:110802 [Google Scholar]
  43. Faludi R, Szulik M, D'Hooge J, Herijgers P, Rademakers F. et al. 2010. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139:1501–10 [Google Scholar]
  44. Fatouraee N, Amini AA. 2003. Regularization of flow streamlines in multislice phase-contrast MR imaging. IEEE Trans. Med. Imaging 22:699–709 [Google Scholar]
  45. Fredriksson AG, Zajac J, Eriksson J, Dyverfeldt P, Bolger AF. et al. 2011. 4-D blood flow in the human right ventricle. Am. J. Physiol. Heart Circ. Physiol. 301:H2344–50 [Google Scholar]
  46. Gao H, Claus P, Amzulescu MS, Stankovic I, D'Hooge J, Voigt JU. 2012. How to optimize intracardiac blood flow tracking by echocardiographic particle image velocimetry? Exploring the influence of data acquisition using computer-generated data sets. Eur. Heart J. Cardiovasc. Imaging 13:490–99 [Google Scholar]
  47. Garcia D, del Álamo JC, Tanne D, Yotti R, Cortina C. et al. 2010. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE Trans. Med. Imaging 29:1701–13 [Google Scholar]
  48. Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO. 2006. Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. USA 103:6305–8Presents the concept of vortex filling time as a metric of diastolic dysfunction. [Google Scholar]
  49. Gharib M, Rambod E, Shariff K. 1998. A universal time scale for vortex ring formation. J. Fluid Mech. 360:121–40 [Google Scholar]
  50. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD. et al. 2014. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129:e28–292 [Google Scholar]
  51. Goliasch G, Goscinska-Bis K, Caracciolo G, Nakabo A, Smolka G. et al. 2013. CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry. JACC Cardiovasc. Imaging 6:704–13 [Google Scholar]
  52. Greatrex NA, Timms DL, Kurita N, Palmer EW, Masuzawa T. 2010. Axial magnetic bearing development for the BiVACOR rotary BiVAD/TAH. IEEE Trans. Biomed. Eng. 57:714–21 [Google Scholar]
  53. Greenberg NL, Vandervoort PM, Firstenberg MS, Garcia MJ, Thomas JD. 2001. Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography. Am. J. Physiol. 280:H2507–15 [Google Scholar]
  54. Greenberg NL, Vandervoort PM, Thomas JD. 1994. Estimation of diastolic intraventricular pressure gradients from color Doppler M-mode spatiotemporal velocities: analytical Euler equation solution. Computers in Cardiology 1994465–68 New York: IEEE [Google Scholar]
  55. Greenberg NL, Vandervoort PM, Thomas JD. 1996. Instantaneous diastolic transmitral pressure differences from color Doppler M mode echocardiography. Am. J. Physiol. 271:H1267–76 [Google Scholar]
  56. Griffith BE, Hornung RD, McQueen DM, Peskin CS. 2007. An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223:10–49 [Google Scholar]
  57. Griffith BE, Luo X, McQueen DM, Peskin CS. 2009. Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech. 1:137–77 [Google Scholar]
  58. Guyton AC, Hall JE. 2006. Textbook of Medical Physiology. Amsterdam: Elsevier
  59. Harker M, O'Leary P. 2008. Least squares surface reconstruction from measured gradient fields. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.1–7 New York: IEEE [Google Scholar]
  60. Hatle L, Angelsen BA, Tromsdal A. 1980. Non-invasive assessment of aortic stenosis by Doppler ultrasound. Br. Heart J. 43:284–92 [Google Scholar]
  61. Hatle L, Brubakk A, Tromsdal A, Angelsen B. 1978. Noninvasive assessment of pressure drop in mitral stenosis by Doppler ultrasound. Br. Heart J. 40:131–40 [Google Scholar]
  62. Hayano J, Sakakibara Y, Yamada A, Yamada M, Mukai S. et al. 1991. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am. J. Cardiol. 67:199–204 [Google Scholar]
  63. Hendabadi S, Bermejo J, Benito Y, Yotti R, Fernández-Avilés F. et al. 2013a. Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography. Ann. Biomed. Eng. 41:2603–16 [Google Scholar]
  64. Hendabadi S, del Álamo JC, Shadden SC. 2012. Healthy versus diseased transport and mixing in the human left ventricle. Proc. ASME 2012 Summer Bioeng. Conf.81–82 New York: ASME [Google Scholar]
  65. Hendabadi S, Martínez-Legazpi P, Benito Y, Bermejo J, del Álamo JC, Shadden SC. 2013b. Influence of heart rate and atrioventricular delays on vortex evolution and blood transport inside the left ventricle Presented at APS Annu. Meet. Div. Fluid Dyn., 66th, Pittsburgh
  66. Hong GR, Kim M, Pedrizzetti G, Vannan MA. 2013. Current clinical application of intracardiac flow analysis using echocardiography. J. Cardiovasc. Ultrasound 21:155–62 [Google Scholar]
  67. Hong GR, Pedrizzetti G, Tonti G, Li P, Wei Z. et al. 2008. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc. Imaging 1:705–17 [Google Scholar]
  68. Hornberger LK, Sanders SP, Rein AJ, Spevak PJ, Parness IA, Colan SD. 1995. Left heart obstructive lesions and left ventricular growth in the midtrimester fetus: a longitudinal study. Circulation 92:1531–38 [Google Scholar]
  69. Humphrey JD. 2006. Towards a theory of vascular growth and remodeling. Mechanics of Biological Tissue GA Holzapfel, RW Ogden 3–15 Berlin: Springer [Google Scholar]
  70. Ishizu T, Seo Y, Ishimitsu T, Obara K, Moriyama N. et al. 2006. The wake of a large vortex is associated with intraventricular filling delay in impaired left ventricles with a pseudonormalized transmitral flow pattern. Echocardiography 23:369–75 [Google Scholar]
  71. Jensen JA. 1996. Estimation of Blood Velocities Using Ultrasound: A Signal Processing Approach Cambridge, UK: Cambridge Univ. Press
  72. Jiamsripong P, Calleja AM, Alharthi MS, Dzsinich M, McMahon EM. et al. 2009. Impact of acute moderate elevation in left ventricular afterload on diastolic transmitral flow efficiency: analysis by vortex formation time. J. Am. Soc. Echocardiogr. 22:427–31 [Google Scholar]
  73. Kass DA. 2000. Assessment of diastolic dysfunction: invasive modalities. Cardiol. Clin. 18:571–86 [Google Scholar]
  74. Kass DA, Midei M, Graves W, Brinker JA, Maughan WL. 1988. Use of a conductance (volume) catheter and transient inferior vena caval occlusion for rapid determination of pressure-volume relationships in man. Catheter. Cardiovasc. Diagn. 15:192–202 [Google Scholar]
  75. Kheradvar A, Assadi R, Falahatpisheh A, Sengupta PP. 2012. Assessment of transmitral vortex formation in patients with diastolic dysfunction. J. Am. Soc. Echocardiogr. 25:220–27 [Google Scholar]
  76. Kheradvar A, Falahatpisheh A. 2012. The effects of dynamic saddle annulus and leaflet length on transmitral flow pattern and leaflet stress of a bileaflet bioprosthetic mitral valve. J. Heart Valve Dis. 21:225–33 [Google Scholar]
  77. Kheradvar A, Houle H, Pedrizzetti G, Tonti G, Belcik T. et al. 2010. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23:86–94 [Google Scholar]
  78. Kheradvar A, Pedrizzetti G. 2012. Vortex Formation in the Cardiovascular System Berlin: Springer-Verlag
  79. Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH. 2000. Asymmetric redirection of flow through the heart. Nature 404:759–61Provides a landmark PC-MRI study qualitatively describing flow patterns in the human LV and proposes physiological implications. [Google Scholar]
  80. Kim HB, Hertzberg J, Shandas R. 2004a. Development and validation of echo PIV. Exp. Fluids 36:455–62 [Google Scholar]
  81. Kim HB, Hertzberg JR, Shandas R. 2004b. Echo PIV for flow field measurements in vivo. Biomed. Sci. Instrum. 40:357–63 [Google Scholar]
  82. Kim WY, Walker PG, Pedersen EM, Poulsen JK, Oyre S. et al. 1995. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. J. Am. Coll. Cardiol. 26:224–38 [Google Scholar]
  83. Kiserud T, Acharya G. 2004. The fetal circulation. Prenat. Diagn. 24:1049–59 [Google Scholar]
  84. Krueger PS, Gharib M. 2003. The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys. Fluids 15:1271–81 [Google Scholar]
  85. Le TB, Sotiropoulos F. 2012. On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle. Eur. J. Mech. B Fluids 35:20–24 [Google Scholar]
  86. Lengyel M, Fuster V, Keltai M, Roudaut R, Schulte HD. et al. 1997. Guidelines for management of left-sided prosthetic valve thrombosis: a role for thrombolytic therapy. Consensus Conference on Prosthetic Valve Thrombosis. J. Am. Coll. Cardiol. 301521–26
  87. Lim TT. 1989. An experimental study of a vortex ring interacting with an inclined wall. Exp. Fluids 7:453–63 [Google Scholar]
  88. Lin LC, Ho YL, Kao SL, Wu CC, Liau CS, Lee YT. 2000. Power Doppler-derived speckle tracking image of intraventricular flow in patients with anterior myocardial infarction: correlation with left ventricular thrombosis. Ultrasound Med. Biol. 26:341–46 [Google Scholar]
  89. Little WC. 2005. Diastolic dysfunction beyond distensibility: adverse effects of ventricular dilatation. Circulation 112:2888–90 [Google Scholar]
  90. Long Q, Merrifield R, Xu XY, Kilner P, Firmin DN, Yang G-Z. 2008. Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging. Proc. Inst. Mech. Eng. H 222:475–85 [Google Scholar]
  91. Mangual JO, Domenichini F, Pedrizzetti G. 2012. Describing the highly three dimensional Right Ventricle flow. Ann. Biomed. Eng. 40:1790–801 [Google Scholar]
  92. Mangual JO, Kraigher-Krainer E, De Luca A, Toncelli L, Shah A. et al. 2013. Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. J. Biomech. 46:1611–17 [Google Scholar]
  93. Markl M, Geiger J, Stiller B, Arnold R. 2011a. Impaired continuity of flow in congenital heart disease with single ventricle physiology. Interact. Cardiovasc. Thorac. Surg. 12:87–90 [Google Scholar]
  94. Markl M, Kilner PJ, Ebbers T. 2011b. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13:7Provides an extensive review on the technical basis and applications for cardiovascular applications of PC-MRI. [Google Scholar]
  95. Marsden AL, Reddy VM, Shadden SC, Chan FP, Taylor CA, Feinstein JA. 2010. A new multiparameter approach to computational simulation for Fontan assessment and redesign. Congenit. Heart Dis. 5:104–17 [Google Scholar]
  96. Martínez-Legazpi P, Bermejo J, Benito Y, Yotti R, Pérez del Villar C. et al. 2014. Contribution of the diastolic vortex ring to left ventricular filling. J. Am. Coll. Cardiol. 641711–21Provides the first direct demonstration that the diastolic vortex enters a significant fraction of LV filling volume at no metabolic cost.
  97. May-Newman K, Wong YK, Adamson R, Hoagland P, Vu V, Dembitsky W. 2013. Thromboembolism is linked to intraventricular flow stasis in a patient supported with a left ventricle assist device. ASAIO J. 59:452–55 [Google Scholar]
  98. Mehregan F, Tournoux F, Muth S, Pibarot P, Rieu R. et al. 2014. Doppler vortography: a color Doppler approach to quantification of intraventricular blood flow vortices. Ultrasound Med. Biol. 40:210–21 [Google Scholar]
  99. Menzel A, Kuhl E. 2012. Frontiers in growth and remodeling. Mech. Res. Commun. 42:1–14 [Google Scholar]
  100. Millington-Sanders C, Meir A, Lawrence L, Stolinski C. 1998. Structure of chordae tendineae in the left ventricle of the human heart. J. Anat. 192:573–81 [Google Scholar]
  101. Mittal R, Iaccarino G. 2005. Immersed boundary methods. Annu. Rev. Fluid Mech. 37:239–61 [Google Scholar]
  102. Miyatake K, Okamoto M, Kinoshita N, Izumi S, Owa M. et al. 1984. Clinical applications of a new type of real-time two-dimensional Doppler flow imaging system. Am. J. Cardiol. 54:857–68 [Google Scholar]
  103. Ohtsuki S, Tanaka M. 2006. The flow velocity distribution from the Doppler information on a plane in three-dimensional flow. J. Vis. 9:69–82 [Google Scholar]
  104. Omoto R, Yokote Y, Takamoto S, Kyo S, Ueda K. et al. 1984. The development of real-time two-dimensional Doppler echocardiography and its clinical significance in acquired valvular diseases: with special reference to the evaluation of valvular regurgitation. Jpn. Heart J. 25:325–40 [Google Scholar]
  105. Pasipoularides A. 2010. Heart's Vortex: Intracardiac Blood Flow Phenomena Shelton, CT: People's Med.
  106. Pasipoularides A, Shu M, Shah A, Tucconi A, Glower DD. 2003a. RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models. Am. J. Physiol. Heart Circ. Physiol. 285:H1956–65 [Google Scholar]
  107. Pasipoularides A, Shu M, Shah A, Womack MS, Glower DD. 2003b. Diastolic right ventricular filling vortex in normal and volume overload states. Am. J. Physiol. Heart Circ. Physiol. 284:H1064–72Presents a computational fluid dynamics study performed using animal data that describe the channeling effect of the diastolic vortex. [Google Scholar]
  108. Patel AR, Mor-Avi V. 2012. Are trabeculae and papillary muscles an integral part of cardiac anatomy: or annoying features to exclude while tracing endocardial boundaries?. JACC Cardiovasc. Imaging 5:1124–26 [Google Scholar]
  109. Paulus WJ, van Ballegoij JJ. 2010. Treatment of heart failure with normal ejection fraction: an inconvenient truth. ! J. Am. Coll. Cardiol. 55:526–37 [Google Scholar]
  110. Pedley TJ, Hill SJ. 1999. Large-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics. J. Exp. Biol. 202:3431–38 [Google Scholar]
  111. Pedrizzetti G, Domenichini F. 2005. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95:108101Presents a pioneering simulation study anticipating some hemodynamic consequences of physiological vortex formation. [Google Scholar]
  112. Peskin CS, McQueen DM. 1989. A three-dimensional computational method for blood flow in the heart. J. Comput. Phys. 81:372–405Provides the first report of an intracardiac flow-structure simulation. [Google Scholar]
  113. Poh KK, Lee LC, Shen L, Chong E, Tan YL. et al. 2012. Left ventricular fluid dynamics in heart failure: echocardiographic measurement and utilities of vortex formation time. Eur. Heart J. Cardiovasc. Imaging 13:385–93 [Google Scholar]
  114. Puranik R, Muthurangu V, Celermajer DS, Taylor AM. 2010. Congenital heart disease and multi-modality imaging. Heart Lung Circ. 19:133–44 [Google Scholar]
  115. Quaini A, Canic S, Paniagua D. 2011. Numerical characterization of hemodynamics conditions near aortic valve after implantation of Left Ventricular Assist Device. Math. Biosci. Eng. 8:785–806 [Google Scholar]
  116. Querzoli G, Fortini S, Cenedese A. 2010. Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys. Fluids 22:041901 [Google Scholar]
  117. Raisinghani A, Rafter P, Phillips P, Vannan MA, DeMaria AN. 2004. Microbubble contrast agents for echocardiography: rationale, composition, ultrasound interactions, and safety. Cardiol. Clin. 22:171–80 [Google Scholar]
  118. Richter Y, Edelman ER. 2006. Cardiology is flow. Circulation 113:2679–82 [Google Scholar]
  119. Rodevand O, Bjornerheim R, Edvardsen T, Smiseth OA, Ihlen H. 1999. Diastolic flow pattern in the normal left ventricle. J. Am. Soc. Echocardiogr. 12:500–7 [Google Scholar]
  120. Rodriguez EK, Hoger A, McCulloch AD. 1994. Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27:455–67 [Google Scholar]
  121. Rojo-Alvarez JL, Bermejo J, Rodriguez-González AB, Martínez-Fernández A, Yotti R. et al. 2007. Impact of image spatial, temporal, and velocity resolutions on cardiovascular indices derived from color-Doppler echocardiography. Med. Image Anal. 11:513–25 [Google Scholar]
  122. Schenkel T, Malve M, Reik M, Markl M, Jung B, Oertel H. 2009. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann. Biomed. Eng. 37:503–15 [Google Scholar]
  123. Sengupta PP, Khandheria BK, Korinek J, Jahangir A, Yoshifuku S. et al. 2007. Left ventricular isovolumic flow sequence during sinus and paced rhythms: new insights from use of high-resolution Doppler and ultrasonic digital particle imaging velocimetry. J. Am. Coll. Cardiol. 49:899–908Provides a pioneering implementation of echo-PIV techniques in a clinical setting. [Google Scholar]
  124. Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA. et al. 2006. Left ventricular structure and function: basic science for cardiac imaging. J. Am. Coll. Cardiol. 48:1988–2001 [Google Scholar]
  125. Seo JH, Mittal R. 2013. Effect of diastolic flow patterns on the function of the left ventricle. Phys. Fluids 25:110801Provides the first report of high-resolution LV flow simulation including preload and afterload pressure data. [Google Scholar]
  126. Shadden SC. 2011. Lagrangian coherent structures. Transport and Mixing in Laminar Flows: From Microfluidics to Oceanic Currents R Grigoriev 59–89 New York: Wiley [Google Scholar]
  127. Shadden SC, Astorino M, Gerbeau JF. 2010. Computational analysis of an aortic valve jet with Lagrangian coherent structures. Chaos 20:017512 [Google Scholar]
  128. Shadden SC, Lekien F, Marsden JE. 2005. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212:271–304 [Google Scholar]
  129. Shadden SC, Taylor CA. 2008. Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Eng. 36:1152–62 [Google Scholar]
  130. Shortland AP, Black RA, Jarvis JC, Henry FS, Iudicello F. et al. 1996. Formation and travel of vortices in model ventricles: application to the design of skeletal muscle ventricles. J. Biomech. 29:503–11 [Google Scholar]
  131. Song SM, Napel S, Glover GH, Pelc NJ. 1993. Noise reduction in three-dimensional phase-contrast MR velocity measurements. J. Magn. Reson. Imaging 3:587–96 [Google Scholar]
  132. Stewart KC, Charonko JC, Niebel CL, Little WC, Vlachos PP. 2012a. Left ventricular vortex formation is unaffected by diastolic impairment. Am. J. Physiol. Heart Circ. Physiol. 303:H1255–62 [Google Scholar]
  133. Stewart KC, Niebel CL, Jung B, Vlachos PP. 2012b. The decay of confined vortex rings. Exp. Fluids 53:163–71 [Google Scholar]
  134. Taylor CA, Draney MT. 2004. Experimental and computational methods in cardiovascular fluid mechanics. Annu. Rev. Fluid Mech. 36:197–231 [Google Scholar]
  135. Thomas JD, Popovic ZB. 2005. Intraventricular pressure differences: a new window into cardiac function. Circulation 112:1684–86 [Google Scholar]
  136. Thomas JD, Popovic ZB. 2006. Assessment of left ventricular function by cardiac ultrasound. J. Am. Coll. Cardiol. 48:2012–25 [Google Scholar]
  137. Thompson RB, McVeigh ER. 2003. Fast measurement of intracardiac pressure differences with 2D breath-hold phase-contrast MRI. Magn. Reson. Med. 49:1056–66 [Google Scholar]
  138. Thornbury JR. 1994. Eugene W. Caldwell Lecture. Clinical efficacy of diagnostic imaging: love it or leave it. Am. J. Roentgenol. 162:1–8 [Google Scholar]
  139. Toger J, Kanski M, Carlsson M, Kovacs SJ, Soderlind G. et al. 2012. Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann. Biomed. Eng. 40:2652–62 [Google Scholar]
  140. Tsujino H, Shiki E, Hirama M, Iinuma K. 1995. Quantitative measurement of volume flow rate (cardiac output) by the multibeam Doppler method. J. Am. Soc. Echocardiogr. 8:621–30 [Google Scholar]
  141. Uejima T, Koike A, Sawada H, Aizawa T, Ohtsuki S. et al. 2010. A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation. Ultrasound Med. Biol. 36:772–88 [Google Scholar]
  142. Vandervoort PM, Thoreau DH, Rivera JM, Levine RA, Weyman AE, Thomas JD. 1993. Automated flow rate calculations based on digital analysis of flow convergence proximal to regurgitant orifices. J. Am. Coll. Cardiol. 22:535–41 [Google Scholar]
  143. Vennemann P, Lindken R, Westerweel J. 2007. In vivo whole-field blood velocity measurement techniques. Exp. Fluids 42:495–511 [Google Scholar]
  144. Verzicco R, Orlandi P. 1994. Normal and oblique collisions of a vortex ring with a wall. Meccanica 29:383–91 [Google Scholar]
  145. Vetel J, Garon A, Pelletier D. 2009. Lagrangian coherent structures in the human carotid artery bifurcation. Exp. Fluids 46:1067–79 [Google Scholar]
  146. Wang JH. 1951. Self-diffusion and structure of liquid water. I. Measurement of self-diffusion of liquid water with deuterium as tracer. J. Am. Chem. Soc. 73:510–13 [Google Scholar]
  147. Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B. et al. 2010. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 92:1369–77 [Google Scholar]
  148. Watanabe H, Sugiura S, Hisada T. 2008. The looped heart does not save energy by maintaining the momentum of blood flowing in the ventricle. Am. J. Physiol. Heart Circ. Physiol. 294:H2191–96 [Google Scholar]
  149. Watanabe H, Sugiura S, Kafuku H, Hisada T. 2004. Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys. J. 87:2074–85 [Google Scholar]
  150. Wigström L, Ebbers T, Fyrenius A, Karlsson M, Engvall J. et al. 1999. Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magn. Reson. Med. 41:793–99 [Google Scholar]
  151. Wong K, Samaroo G, Ling I, Dembitsky W, Ademason R. et al. 2014. Intraventricular flow patterns and stasis in the LVAD-assisted heart. J. Biomech. 47:1485–94 [Google Scholar]
  152. Yellin EL, Meisner JS. 2000. Physiology of diastolic function and transmitral pressure-flow relations. Cardiol. Clin. 18:411–33 [Google Scholar]
  153. Yotti R, Bermejo J, Antoranz JC, Desco MM, Cortina C. et al. 2005a. A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation 112:2921–29 [Google Scholar]
  154. Yotti R, Bermejo J, Antoranz JC, Rojo-Alvarez JL, Allue C. et al. 2004. Noninvasive assessment of ejection intraventricular pressure gradients. J. Am. Coll. Cardiol. 43:1654–62 [Google Scholar]
  155. Yotti R, Bermejo J, Benito Y, Sanz-Ruiz R, Ripoll C. et al. 2014. Validation of noninvasive indices of global systolic function in patients with normal and abnormal loading conditions: a simultaneous echocardiography pressure-volume catheterization study. Circ. Cardiovasc. Imaging 7:164–72 [Google Scholar]
  156. Yotti R, Bermejo J, Desco MM, Antoranz JC, Rojo-Alvarez JL. et al. 2005b. Doppler-derived ejection intraventricular pressure gradients provide a reliable assessment of left ventricular systolic chamber function. Circulation 112:1771–79 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010814-014728
Loading
/content/journals/10.1146/annurev-fluid-010814-014728
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error