1932

Abstract

Basic fluid equations are the main ingredient in the development of theories of Rayleigh–Taylor buoyancy-induced instability. Turbulence arises in the late stage of the instability evolution as a result of the proliferation of active scales of motion. Fluctuations are maintained by the unceasing conversion of potential energy into kinetic energy. Although the dynamics of turbulent fluctuations is ruled by the same equations controlling the Rayleigh–Taylor instability, here only phenomenological theories are currently available. The present review provides an overview of the most relevant (and often contrasting) theoretical approaches to Rayleigh–Taylor turbulence together with numerical and experimental evidence for their support. Although the focus is mainly on the classical Boussinesq Rayleigh–Taylor turbulence of miscible fluids, the review extends to other fluid systems with viscoelastic behavior, affected by rotation of the reference frame, and, finally, in the presence of reactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060111
2017-01-03
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/fluid/49/1/annurev-fluid-010816-060111.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060111&mimeType=html&fmt=ahah

Literature Cited

  1. Abarzhi S. 2010a. On fundamentals of Rayleigh-Taylor turbulent mixing. Europhys. Lett. 91:35001 [Google Scholar]
  2. Abarzhi S. 2010b. Review of theoretical modelling approaches of Rayleigh–Taylor instabilities and turbulent mixing. Philos. Trans. R. Soc. Lond. A 368:1809–28 [Google Scholar]
  3. Agee E. 1975. Some inferences of eddy viscosity associated with instabilities in the atmosphere. J. Atmos. Sci. 32:642–46 [Google Scholar]
  4. Ahlers G, Grossmann S, Lohse D. 2009. Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81:503–37 [Google Scholar]
  5. Ahlers G, Nikolaenko A. 2010. Effect of a polymer additive on heat transport in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 104:034503 [Google Scholar]
  6. Andrews M, Dalziel S. 2010. Small Atwood number Rayleigh–Taylor experiments. Philos. Trans. R. Soc. A 368:1663–79 [Google Scholar]
  7. Andrews M, Spalding D. 1990. A simple experiment to investigate two-dimensional mixing by Rayleigh-Taylor instability. Phys. Fluids A 2:922–27 [Google Scholar]
  8. Antonelli M, Lanotte A, Mazzino A. 2007. Anisotropies and universality of buoyancy-dominated turbulent fluctuations: a large-eddy simulation study. J. Atmos. Sci. 64:2642–56 [Google Scholar]
  9. Baldwin K, Scase M, Hill R. 2015. The inhibition of the Rayleigh–Taylor instability by rotation. Sci. Rep. 5:11706 [Google Scholar]
  10. Banerjee A, Andrews M. 2006. Statistically steady measurements of Rayleigh-Taylor mixing in a gas channel. Phys. Fluids 18:035107 [Google Scholar]
  11. Banerjee A, Andrews M. 2009. 3D simulations to investigate initial condition effects on the growth of Rayleigh–Taylor mixing. Int. J. Heat Mass Transf. 52:3906–17 [Google Scholar]
  12. Banerjee A, Kraft W, Andrews M. 2010. Detailed measurements of a statistically steady Rayleigh–Taylor mixing layer from small to high Atwood numbers. J. Fluid Mech. 659:127–90 [Google Scholar]
  13. Bell J, Day M, Rendleman C, Woosley S, Zingale M. 2004. Direct numerical simulations of type Ia supernovae flames. II. The Rayleigh–Taylor instability. Astrophys. J. 608:883–906 [Google Scholar]
  14. Bellman R, Pennington R. 1954. Effects of surface tension and viscosity on Taylor instability. Phys. Rev. Lett. 12:151–62 [Google Scholar]
  15. Benzi R, Ching E. Angelis E. , De 2010. Effect of polymer additives on heat transport in turbulent thermal convection. Phys. Rev. Lett. 104:024502 [Google Scholar]
  16. Biferale L, Mantovani F, Sbragaglia M, Scagliarini A, Toschi F, Tripiccione R. 2010. High resolution numerical study of Rayleigh–Taylor turbulence using a thermal lattice Boltzmann scheme. Phys. Fluids 22:115112 [Google Scholar]
  17. Biferale L, Mantovani F, Sbragaglia M, Scagliarini A, Toschi F, Tripiccione R. 2011a. Reactive Rayleigh-Taylor systems: front propagation and non-stationarity. Europhys. Lett. 94:54004 [Google Scholar]
  18. Biferale L, Mantovani F, Sbragaglia M, Scagliarini A, Toschi F, Tripiccione R. 2011b. Second-order closure in stratified turbulence: simulations and modeling of bulk and entrainment regions. Phys. Rev. E 84:016305 [Google Scholar]
  19. Bird R, Armstrong R, Hassager O, Curtiss C. 1977. Dynamics of Polymeric Liquids 1 New York: Wiley
  20. Bodenschatz E, Pesch W, Ahlers G. 2000. Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 32:709–78 [Google Scholar]
  21. Boffetta G, De Lillo F, Mazzino A, Musacchio S. 2012a. Bolgiano scale in confined Rayleigh–Taylor turbulence. J. Fluid Mech. 690:426–40 [Google Scholar]
  22. Boffetta G, De Lillo F, Mazzino A, Vozella L. 2012b. The ultimate state of thermal convection in Rayleigh–Taylor turbulence. Physica D 241:137–40 [Google Scholar]
  23. Boffetta G, De Lillo F, Musacchio S. 2010a. Nonlinear diffusion model for Rayleigh-Taylor mixing. Phys. Rev. Lett. 104:034505 [Google Scholar]
  24. Boffetta G, De Lillo F, Musacchio S. 2012c. Anomalous diffusion in confined turbulent convection. Phys. Rev. E 85:066322 [Google Scholar]
  25. Boffetta G, Ecke R. 2012. Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44:427–51 [Google Scholar]
  26. Boffetta G, Mazzino A, Musacchio S. 2011. Effects of polymer additives on Rayleigh-Taylor turbulence. Phys. Rev. E 83:056318 [Google Scholar]
  27. Boffetta G, Mazzino A, Musacchio S, Vozella L. 2009. Kolmogorov scaling and intermittency in Rayleigh–Taylor turbulence. Phys. Rev. E 79:065301 [Google Scholar]
  28. Boffetta G, Mazzino A, Musacchio S, Vozella L. 2010b. Polymer heat transport enhancement in thermal convection: the case of Rayleigh-Taylor turbulence. Phys. Rev. Lett. 104:184501 [Google Scholar]
  29. Boffetta G, Mazzino A, Musacchio S, Vozella L. 2010c. Rayleigh–Taylor instability in a viscoelastic binary fluid. J. Fluid Mech. 643:127–36 [Google Scholar]
  30. Boffetta G, Mazzino A, Musacchio S, Vozella L. 2010d. Statistics of mixing in three-dimensional Rayleigh–Taylor turbulence at low Atwood number and Prandtl number one. Phys. Fluids 22:035109 [Google Scholar]
  31. Bolgiano R. 1959. Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64:2226–29 [Google Scholar]
  32. Cabot W, Cook A. 2006. Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae. Nat. Phys. 2:562–68 [Google Scholar]
  33. Canuto V, Goldman I. 1985. Analytical model for large-scale turbulence. Phys. Rev. Lett. 54:430–33 [Google Scholar]
  34. Carnevale G, Orlandi P, Zhou Y, Kloosterziel R. 2002. Rotational suppression of Rayleigh–Taylor instability. J. Fluid Mech. 457:181–90 [Google Scholar]
  35. Celani A, Matsumoto T, Mazzino A, Vergassola M. 2002. Scaling and universality in turbulent convection. Phys. Rev. Lett. 88:054503 [Google Scholar]
  36. Celani A, Mazzino A, Muratore-Ginanneschi P, Vozella L. 2009. Phase-field model for the Rayleigh–Taylor instability of immiscible fluids. J. Fluid Mech. 622:115–34 [Google Scholar]
  37. Celani A, Mazzino A, Vozella L. 2006. Rayleigh–Taylor turbulence in two dimensions. Phys. Rev. Lett. 96:134504 [Google Scholar]
  38. Chandrasekhar S. 1961. Hydrodynamics and Hydromagnetic Stability New York: Oxford Univ. Press
  39. Chang C. 1959. Dynamic instability of accelerated fluids. Phys. Fluids 2:656–63 [Google Scholar]
  40. Chertkov M. 2003. Phenomenology of Rayleigh-Taylor turbulence. Phys. Rev. Lett. 91:115001 [Google Scholar]
  41. Chertkov M, Kolokolov I, Lebedev V. 2005. Effects of surface tension on immiscible Rayleigh-Taylor turbulence. Phys. Rev. E 71:055301 [Google Scholar]
  42. Chertkov M, Lebedev V, Vladimirova N. 2009. Reactive Rayleigh–Taylor turbulence. J. Fluid Mech. 633:1–16 [Google Scholar]
  43. Cholemari M, Arakeri J. 2009. Axially homogeneous, zero mean flow buoyancy-driven turbulence in a vertical pipe. J. Fluid Mech. 621:69–102 [Google Scholar]
  44. Cook A, Cabot W, Miller P. 2004. The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech. 511:333–62 [Google Scholar]
  45. Corrsin S. 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22:469–73 [Google Scholar]
  46. Dalziel S. 1993. Rayleigh-Taylor instability: experiments with image analysis. Dyn. Atmos. Oceans 20:127–53 [Google Scholar]
  47. Dalziel S, Linden P, Youngs D. 1999. Self-similarity and internal structure of turbulence induced by Rayleigh–Taylor instability. J. Fluid Mech. 399:1–48 [Google Scholar]
  48. Dalziel S, Patterson M, Caulfield C, Coomaraswamy I. 2008. Mixing efficiency in high-aspect-ratio Rayleigh–Taylor experiments. Phys. Fluids 20:065106 [Google Scholar]
  49. De Angelis E, Casciola C, Benzi R, Piva R. 2005. Homogeneous isotropic turbulence in dilute polymers. J. Fluid Mech. 531:1–10 [Google Scholar]
  50. Dimonte G, Schneider M. 1996. Turbulent Rayleigh-Taylor instability experiments with variable acceleration. Phys. Rev. E 54:3740–43 [Google Scholar]
  51. Dimonte G, Youngs D, Dimits A, Weber S, Marinak M. et al. 2004. A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration. Phys. Fluids 16:1668–93 [Google Scholar]
  52. Drazin P, Reid W. 1981. Hydrodynamic Stability Cambridge, UK: Cambridge Univ. Press
  53. Duff R, Harlow F, Hirt C. 1962. Effects of diffusion on interface instability between gases. Phys. Fluids 5:417–25 [Google Scholar]
  54. Fermi E, von Neumann J. 1955. Taylor instability of incompressible liquids Rep. AECU2979, Los Alamos Sci. Lab., Los Alamos, NM
  55. Fisher R. 1937. The wave of advance of advantageous genes. Ann. Eugen. 7:355–69 [Google Scholar]
  56. Frisch U. 1995. Turbulence: The Legacy of A.N. Kolmogorov. Cambridge, UK: Cambridge Univ. Press
  57. Funfschilling D, Bodenschatz E, Ahlers G. 2009. Search for the ultimate state in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 103:014503 [Google Scholar]
  58. Garabedian P. 1957. On steady-state bubbles generated by Taylor instability. Proc. R. Soc. Lond. A 241:423–31 [Google Scholar]
  59. Gibert M, Pabiou H, Chilla F, Castaing B. 2006. High-Rayleigh-number convection in a vertical channel. Phys. Rev. Lett. 96:084501 [Google Scholar]
  60. Goncharov V. 2002. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88:134502 [Google Scholar]
  61. Grossmann S, Lohse D. 2000. Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407:27–56 [Google Scholar]
  62. Hecht J, Alon U, Shvarts D. 1994. Potential flow models of Rayleigh-Taylor and Richtmyer-Meshkov bubble fronts. Phys. Fluids 6:4019–30 [Google Scholar]
  63. Hicks E. 2015. Rayleigh-Taylor unstable flames—fast or faster?. Astrophys. J. 803:72 [Google Scholar]
  64. Hicks E, Rosner R. 2010. Effects of burning on the development of 2D turbulence. Physica Scr. 142:014046 [Google Scholar]
  65. Hillebrandt W, Niemeyer J. 2000. Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys. 38:191–230 [Google Scholar]
  66. Huang Z, De Luca A, Atherton T, Bird M, Rosenblatt C, Carlès P. 2007. Rayleigh-Taylor instability experiments with precise and arbitrary control of the initial interface shape. Phys. Rev. Lett. 99:204502 [Google Scholar]
  67. Kilkenny J, Glendinning S, Haan S, Hammel B, Lindl J. et al. 1994. A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas 1:1379–89 [Google Scholar]
  68. Kolmogorov A. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C.R. Acad. Sci. URSS 30:301–5 [Google Scholar]
  69. Kraichnan R. 1962. Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5:1374–89 [Google Scholar]
  70. Kruskal M, Schwarzschild M. 1954. Some instabilities of a completely ionized plasma. Proc. R. Soc. Lond. A 223:348–60 [Google Scholar]
  71. Kull H. 1991. Theory of the Rayleigh-Taylor instability. Phys. Rep. 206:197–325 [Google Scholar]
  72. Lamb H. 1932. Hydrodynamics Cambridge, UK: Cambridge Univ. Press
  73. Lawrie A, Dalziel S. 2011. Turbulent diffusion in tall tubes. I. Models for Rayleigh-Taylor instability. Phys. Fluids 23:085109 [Google Scholar]
  74. Lewis D. 1950. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II. Proc. R. Soc. Lond. A 202:81–96 [Google Scholar]
  75. Linden P, Redondo J, Youngs D. 1994. Molecular mixing in Rayleigh–Taylor instability. J. Fluid Mech. 265:97–124 [Google Scholar]
  76. Livescu D. 2004. Compressibility effects on the Rayleigh-Taylor instability growth between immiscible fluids. Phys. Fluids 16:118–27 [Google Scholar]
  77. Livescu D. 2013. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh–Taylor instability. Philos. Trans. R. Soc. Lond. A 371:20120185 [Google Scholar]
  78. Lohse D, Toschi F. 2003. Ultimate state of thermal convection. Phys. Rev. Lett. 90:034502 [Google Scholar]
  79. Lohse D, Xia K. 2010. Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 42:335–64 [Google Scholar]
  80. Matsumoto T. 2009. Anomalous scaling of three-dimensional Rayleigh-Taylor turbulence. Phys. Rev. E 79:055301 [Google Scholar]
  81. Menikoff R, Mjolsness R, Sharp D, Zemach C. 1977. Unstable normal mode for Rayleigh–Taylor instability in viscous fluids. Phys. Fluids 20:2000–4 [Google Scholar]
  82. Mikaelian K. 1989. Turbulent mixing generated by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Physica D 36:343–57 [Google Scholar]
  83. Mikaelian K. 1993. Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Phys. Rev. E 47:375–83 [Google Scholar]
  84. Mitchner M, Landshoff R. 1964. Rayleigh-Taylor instability for compressible fluids. Phys. Fluids 7:862–66 [Google Scholar]
  85. Mueschke N, Andrews M, Schilling O. 2006. Experimental characterization of initial conditions and spatio-temporal evolution of a small-Atwood-number Rayleigh–Taylor mixing layer. J. Fluid Mech. 567:27–63 [Google Scholar]
  86. Neil E, Houseman G. 1999. Rayleigh-Taylor instability of the upper mantle and its role in intraplate orogeny. Geophys. J. Int. 138:89–107 [Google Scholar]
  87. Newcomb W. 1983. Compressibility effect on instability growth rates. Phys. Fluids 26:3246 [Google Scholar]
  88. Niemela J, Skrbek L, Sreenivasan K, Donnelly R. 2000. Turbulent convection at very high Rayleigh numbers. Nature 404:837–40 [Google Scholar]
  89. Obukhov A. 1941. On the distribution of energy in the spectrum of turbulent flow. C.R. Acad. Sci. URSS 32:22–24 [Google Scholar]
  90. Obukhov A. 1949. Temperature field structure in a turbulent flow. Izv. Acad. Nauk SSSR Geogr. Geophys. 13:58–69 [Google Scholar]
  91. Obukhov A. 1959. Effect of Archimedean forces on the structure of the temperature field in a turbulent flow. Dokl. Akad. Nauk SSSR 125:1246–49 [Google Scholar]
  92. Peterson D, Bowers R, Brownell J, Greene A, McLenithan K. et al. 1996. Two-dimensional modeling of magnetically driven Rayleigh–Taylor instabilities in cylindrical Z pinches. Phys. Plasmas 3:368–81 [Google Scholar]
  93. Plesset M. 1954. On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25:96–98 [Google Scholar]
  94. Poujade O. 2006. Rayleigh-Taylor turbulence is nothing like Kolmogorov turbulence in the self-similar regime. Phys. Rev. Lett. 97:185002 [Google Scholar]
  95. Qiu X, Liu Y, Zhou Q. 2014. Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence. Phys. Rev. E 90:043012 [Google Scholar]
  96. Ramaprabhu P, Andrews M. 2004. Experimental investigation of Rayleigh–Taylor mixing at small Atwood numbers. J. Fluid Mech. 502:233–71 [Google Scholar]
  97. Read K. 1984. Experimental investigation of turbulent mixing by Rayleigh-Taylor instability. Physica D 12:45–58 [Google Scholar]
  98. Ristorcelli J, Clark T. 2004. Rayleigh–Taylor turbulence: self-similar analysis and direct numerical simulations. J. Fluid Mech. 507:213–53 [Google Scholar]
  99. Rivera M, Ecke R. 2007. The Rayleigh-Taylor instability in small aspect ratio containers. Proc. 10th Int. Workshop Phys. Compressible Turbul. Mixing M Legrand, M Vandenboomgaerde 332–36 Bruyeres-le-Chatel, Fr: Commis. Energie Atom. [Google Scholar]
  100. Sakagami H, Nishihara K. 1990. Three-dimensional Rayleigh–Taylor instability of spherical systems. Phys. Rev. Lett. 65:432–35 [Google Scholar]
  101. Scagliarini A, Biferale L, Sbragaglia M, Sugiyama K, Toschi F. 2010. Lattice Boltzmann methods for thermal flows: continuum limit and applications to compressible Rayleigh–Taylor systems. Phys. Fluids 22:055101 [Google Scholar]
  102. Schneider M, Dimonte G, Remington B. 1998. Large and small scale structure in Rayleigh-Taylor mixing. Phys. Rev. Lett. 80:3507–10 [Google Scholar]
  103. Sharp D. 1984. An overview of Rayleigh-Taylor instability. Physica D 12:3–18 [Google Scholar]
  104. Shultz D, Kanak K, Straka JM, Trapp R, Gordon B. et al. 2006. The mysteries of mammatus clouds: observations and formation mechanisms. J. Atmos. Sci. 63:2409–35 [Google Scholar]
  105. Siggia E. 1994. High Rayleigh number convection. Annu. Rev. Fluid Mech. 26:137–68 [Google Scholar]
  106. Snider D, Andrews M. 1994. Rayleigh–Taylor and shear driven mixing with an unstable thermal stratification. Phys. Fluids 6:3324–34 [Google Scholar]
  107. Soulard O. 2012. Implications of the Monin-Yaglom relation for Rayleigh-Taylor turbulence. Phys. Rev. Lett. 109:254501 [Google Scholar]
  108. Soulard O, Griffond J. 2012. Inertial-range anisotropy in Rayleigh-Taylor turbulence. Phys. Fluids 24:025101 [Google Scholar]
  109. Soulard O, Griffond J, Gréa B. 2015. Large-scale analysis of unconfined self-similar Rayleigh–Taylor turbulence. Phys. Fluids 27:095103 [Google Scholar]
  110. Spiegel E. 1971. Convection in stars: I. Basic Boussinesq convection. Annu. Rev. Astron. Astrophys. 9:323–52 [Google Scholar]
  111. Sreenivasan KR, Abarzhi SI. 2013. Acceleration and turbulence in Rayleigh–Taylor mixing. Philos. Trans. R. Soc. Lond. A 371:20130267 [Google Scholar]
  112. Sreenivasan KR, Antonia R. 1997. The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29:435–72 [Google Scholar]
  113. Stevens R, Verzicco R, Lohse D. 2010. Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643:495–507 [Google Scholar]
  114. Sultan P. 1996. Linear theory and modeling of the Rayleigh–Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res. Space Phys. 101:26875–91 [Google Scholar]
  115. Sureshkumar R, Beris A. 1995. Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows. J. Non-Newton. Fluid Mech. 60:53–80 [Google Scholar]
  116. Tabak M, Hammer J, Glinsky M, Kruer W, Wilks S. et al. 1994. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1:1626–34 [Google Scholar]
  117. Tao J, He X, Ye W, Busse F. 2013. Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids. Phys. Rev. E 87:013001 [Google Scholar]
  118. Tritton D. 1988. Physical Fluid Dynamics Oxford, UK: Clarendon
  119. Virk P. 1975. Drag reduction fundamentals. AIChE J. 21:625–56 [Google Scholar]
  120. Vladimirova N, Chertkov M. 2009. Self-similarity and universality in Rayleigh–Taylor, Boussinesq turbulence. Phys. Fluids 21:015102 [Google Scholar]
  121. Vladimirova N, Rosner R. 2003. Model flames in the Boussinesq limit: the effects of feedback. Phys. Rev. E 67:066305 [Google Scholar]
  122. Warhaft Z. 2000. Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32:203–40 [Google Scholar]
  123. Watanabe T, Gotoh T. 2004. Statistics of a passive scalar in homogeneous turbulence. N. J. Phys. 6:40 [Google Scholar]
  124. Watanabe T, Gotoh T. 2006. Intermittency in passive scalar turbulence under the uniform mean scalar gradient. Phys. Fluids 18:058105 [Google Scholar]
  125. Wei T, Livescu D. 2012. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Phys. Rev. E 86:046405 [Google Scholar]
  126. Weinberg R, Schmeling H. 1992. Polydiapirs: multiwavelength gravity structures. J. Struct. Geol. 14:425–36 [Google Scholar]
  127. Wilson P, Andrews M. 2002. Spectral measurements of Rayleigh–Taylor mixing at small Atwood number. Phys. Fluids 14:938–45 [Google Scholar]
  128. Xie Y, Huang S, Funfschilling D, Li X, Ni R, Xia K. 2015. Effects of polymer additives in the bulk of turbulent thermal convection. J. Fluid Mech. 784:R3 [Google Scholar]
  129. Young Y, Tufo H, Dubey A, Rosner R. 2001. On the miscible Rayleigh–Taylor instability: two and three dimensions. J. Fluid Mech. 447:377–408 [Google Scholar]
  130. Youngs D. 1991. Three-dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Phys. Fluids A 3:1312–20 [Google Scholar]
  131. Youngs D. 1992. Experimental investigation of turbulent mixing by Rayleigh-Taylor instability. Advances in Compressible Turbulent Mixing WP Dannevik, AC Buckingham, CE Leith 607–26 Washington, DC: US Gov. Print. Off. [Google Scholar]
  132. Zhou Q. 2013. Temporal evolution and scaling of mixing in two-dimensional Rayleigh-Taylor turbulence. Phys. Fluids 25:085107 [Google Scholar]
  133. Zhou Y. 2001. A scaling analysis of turbulent flows driven by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Fluids 13:538–43 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060111
Loading
/content/journals/10.1146/annurev-fluid-010816-060111
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error