1932

Abstract

This article presents a brief account of the life and work of Hans W. Liepmann, a distinguished fluid dynamicist, an outstanding teacher and leader, and the third Director of the Graduate Aeronautical Laboratories, California Institute of Technology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120710-101108
2013-01-03
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/fluid/45/1/annurev-fluid-120710-101108.html?itemId=/content/journals/10.1146/annurev-fluid-120710-101108&mimeType=html&fmt=ahah

Literature Cited

  1. Abernathy FH, Kronauer RE. 1962. The formation of vortex streets. J. Fluid Mech. 13:1–20 [Google Scholar]
  2. Brown GL, Roshko A. 1974. On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64:775–816 [Google Scholar]
  3. Coles DE, Liepmann HW, Roshko A, Sturtevant B. 1969. Shock tubes in rarefied gas flow research. Phys. Fluids 12:I–179 [Google Scholar]
  4. Corrsin S. 1943. Investigations of flow in an axially symmetric heated jet of air. NACA Adv. Conf. Rep. 3123 Natl. Advis. Comm. Aeronaut. Washington, DC: [Google Scholar]
  5. Cummings JC. 1974. Development of a high-performance cryogenic shock tube. J. Fluid Mech. 66:177–87 [Google Scholar]
  6. Dhawan S. 1953. Direct measurement of skin friction. NACA Rep. 1121 Natl. Advis. Comm. Aeronaut. Washington, DC: [Google Scholar]
  7. Dimotakis PE, Broadwell JE. 1973. Local temperature measurements in supercritical counter-flow in liquid helium II. Phys. Fluids 16:787–95 [Google Scholar]
  8. Gorter CJ, Mellink JH. 1949. On the irreversible processes in liquid helium II. Physica 15:285–304 [Google Scholar]
  9. Kapitza P. 1941. The study of heat transfer in helium II. J. Phys. (USSR) 4:181–210 [Google Scholar]
  10. Laufer J. 1947. Investigation of turbulent flow in a two-dimensional channel. NACA Tech. Note 1257 Natl. Advis. Comm. Aeronaut. Washington, DC: [Google Scholar]
  11. Laufer J. 1954. The structure of turbulence in fully developed pipe flow. NACA Tech. Rep. 1174 Natl. Advis. Comm. Aeronaut. Washington, DC: [Google Scholar]
  12. Liepmann HW. 1943. Investigations in laminar boundary-layer stability and transition on curved boundaries. NACA Adv. Confid. Rep. 3H30 Natl. Advis. Comm. Aeronaut. Washington, DC: [Google Scholar]
  13. Liepmann HW. 1949. Die Anwendung eines Satzes über die Nullstellen Stochastischer Funktionen auf Turbulenzmessungen. Helv. Phys. Acta 22:119–26 [Google Scholar]
  14. Liepmann HW. 1952a. Aspects of the turbulence problem. ZAMP 3:321–42407–26 [Google Scholar]
  15. Liepmann HW. 1952b. Deflection and diffusion of a light ray passing through a boundary layer. Rep. SM 14397 Douglas Aircr. Co. Santa Monica, CA: [Google Scholar]
  16. Liepmann HW. 1961. Gaskinetics and gasdynamics of orifice flow. J. Fluid Mech. 10:65–79 [Google Scholar]
  17. Liepmann HW. 1962. Free turbulent flows. The Mechanics of Turbulence211–27 Paris: Cent. Natl. Res. Sci. [Google Scholar]
  18. Liepmann HW. 1979a. Engineering education for a rapidly changing technology. Eng. Sci. 42:520–23 [Google Scholar]
  19. Liepmann HW. 1979b. The rise and fall of ideas in turbulence. Am. Sci. 67:221–28 [Google Scholar]
  20. Liepmann HW. 1981. Education, training and research in the engineering sciences Presented at Aachen Jubilee Symp. Aachen, Ger.
  21. Liepmann HW. 1982. To know, to understand, to do. Eng. Sci. 46:18–11 [Google Scholar]
  22. Liepmann HW. 1989. Caltech survival Presented at SURF kick-off dinner Pasadena, CA:
  23. Liepmann HW. 1997. Boundary layer transition: the early days. Appl. Mech. Rev. 50:R1–4 [Google Scholar]
  24. Liepmann HW. 2002. Remembering Satish Dhawan. Eng. Sci. 65:441–43 [Google Scholar]
  25. Liepmann HW. 2003. Thoughts on engineering education. The Dynamics of Technology R Narasimha, J Srinivasan, SK Biswas 265–75 Thousand Oaks, CA: Sage [Google Scholar]
  26. Liepmann HW. 2004. May you live in interesting times Unpublished manuscript, for private circulation
  27. Liepmann HW, Brown GL, Nosenchuck DM. 1982. Control of laminar instability waves using a new technique. J. Fluid. Mech. 118:187–200 [Google Scholar]
  28. Liepmann HW, Cummings JC, Rupert VC. 1973. Cryogenic shock tube. Phys. Fluids 16:332–33 [Google Scholar]
  29. Liepmann HW, Dhawan S. 1951. Direct measurement of skin friction in low speed and high speed flow. Proc. First US Natl. Cong. Appl. Mech. E Sternberg 869–73 New York: Am. Soc. Mech. Eng. [Google Scholar]
  30. Liepmann HW, Fila GH. 1947. Investigations of effects of surface temperature and single roughness elements on boundary layer transition. NACA Tech. Note 1196 Natl. Advis. Comm. Aeronaut. Washington, DC: [Google Scholar]
  31. Liepmann HW, Laguna GA. 1984. Nonlinear interactions in the fluid mechanics of helium II. Annu. Rev. Fluid Mech. 16:139–77 [Google Scholar]
  32. Liepmann HW, Laufer J. 1947. Investigations of free turbulent mixing. NACA Tech. Note 1257 Natl. Advis. Comm. Aeronaut. Washington, DC: [Google Scholar]
  33. Liepmann HW, Laufer J, Liepmann K. 1951a. On the spectrum of isotropic turbulence. NACA Tech. Note 2473 Natl. Advis. Comm. Aeronaut. Washington, DC: [Google Scholar]
  34. Liepmann HW, Narasimha R, Chahine MT. 1962a. Structure of a plane shock layer. Phys. Fluids 5:1313–24 [Google Scholar]
  35. Liepmann HW, Nosenchuck DM. 1982. Active control of laminar-turbulent transition. J. Fluid Mech. 118:201–4 [Google Scholar]
  36. Liepmann HW, Puckett AE. 1947. Aerodynamics of a Compressible Fluid New York: Wiley
  37. Liepmann HW, Roshko A. 1957. Elements of Gasdynamics New York: Wiley
  38. Liepmann HW, Roshko A, Coles DE, Sturtevant B. 1962b. A 17 inch diameter shock tube for studies in rarefied gasdynamics. Rev. Sci. Instrum. 33:625–31 [Google Scholar]
  39. Liepmann HW, Roshko A, Dhawan S. 1951b. On reflection of shock waves from boundary layers. NACA Rep. 1100 Natl. Advis. Comm. Aeronaut. Washington, DC: [Google Scholar]
  40. Narasimha R. 1961a. Orifice flow at high Knudsen numbers. J. Fluid Mech. 10:371–84 [Google Scholar]
  41. Narasimha R. 1961b. Some flow problems in rarefied gas dynamics PhD thesis. Calif. Inst. Technol.
  42. Narasimha R. 1962. Collisionless expansion of gases into vacuum. J. Fluid Mech. 12:294–308 [Google Scholar]
  43. Onsager L. 1949. Statistical hydrodynamics. Nuovo Cim. 6:Suppl.) 279–87 [Google Scholar]
  44. Pai S-I. 1943. Turbulent flow between rotating cylinders. NACA Tech. Note 892 Natl. Advis. Comm. Aeronaut. Washington, DC: [Google Scholar]
  45. Roshko A. 1952. On the development of turbulent wakes from vortex streets PhD thesis. Calif. Inst. Technol.
  46. Schneider SP. 1989. Effects of controlled three-dimensional perturbations on boundary layer transition PhD diss. Calif. Inst. Technol.
  47. Taylor GI. 1915. Eddy motion in the atmosphere. Philos. Trans. R. Soc. Lond. Ser. A 215:1–26 [Google Scholar]
  48. Townsend AA. 1947. Measurements in the turbulent wake of a cylinder. Proc. R. Soc. A 190:551 [Google Scholar]
  49. von Kármán T, Howarth L. 1938. On the statistical theory of isotropic turbulence. Proc. R. Soc. A 164:192 [Google Scholar]
/content/journals/10.1146/annurev-fluid-120710-101108
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error