1932

Abstract

Microrheological study of complex fluids traces its roots to the work of the botanist Robert Brown in the early nineteenth century. Indeed, passive microrheology and Brownian motion are one and the same. Once thought to reveal a fundamental life force, the phenomenon was ultimately leveraged by Einstein in proof of the atomic nature of matter (Haw 2006). His work simultaneously paved the way for modern-day passive microrheology by connecting observable particle motion—diffusion—to solvent properties—the viscosity—via the well-known Stokes–Einstein relation. Advances in microscopy techniques in the last two decades have prompted extensions of the original model to generalized forms for passive probing of complex fluids. In the last decade, active microrheology has emerged as a means by which to interrogate the nonequilibrium behavior of complex fluids, in particular, the non-Newtonian rheology of dynamically heterogeneous and microscopically small systems. Here we review theoretical and computational approaches and advances in both passive and active microrheology, with a focus on the extent to which these techniques preserve the connection between single-particle motion and flow properties, as well as the rather surprising recovery of non-Newtonian flow behavior observed in bulk rheology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122316-044514
2018-01-05
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/fluid/50/1/annurev-fluid-122316-044514.html?itemId=/content/journals/10.1146/annurev-fluid-122316-044514&mimeType=html&fmt=ahah

Literature Cited

  1. Almog Y, Brenner H. 1997. Non-continuum anomalies in the apparent viscosity experienced by a test sphere moving through an otherwise quiescent suspension. Phys. Fluids 9:16–22 [Google Scholar]
  2. App EM, Kieselmann R, Reinhardt D, Lindemann H, Dasgupta B. et al. 1998. Sputum rheology changes in cystic fibrosis lung disease following two different types of physiotherapy: flutter versus autogenic drainage. Chest 114:171–77 [Google Scholar]
  3. Banchio AJ, Brady JF. 2003. Accelerated Stokesian dynamics: Brownian motion. J. Chem. Phys. 118:10323–32 [Google Scholar]
  4. Barnes HA. 1989. Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33:329–66 [Google Scholar]
  5. Barnes HA, Hutton HF, Walters K. 1989. An Introduction to Rheology Oxford: Elsevier
  6. Batchelor GK. 1970. The stress in a suspension of force-free particles. J. Fluid Mech. 41:545–70 [Google Scholar]
  7. Batchelor GK. 1972. Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52:245–68 [Google Scholar]
  8. Batchelor GK. 1976. Brownian diffusion of particles with hydrodynamic interaction. J. Fluid Mech. 74:1–29 [Google Scholar]
  9. Batchelor GK. 1977. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83:97–117 [Google Scholar]
  10. Batchelor GK. 1982. Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory. J. Fluid Mech. 119:379–407 [Google Scholar]
  11. Batchelor GK. 1983. Diffusion in a dilute polydisperse system of interacting spheres. J. Fluid Mech. 131:155–75 [Google Scholar]
  12. Batchelor GK, Green JT. 1972. The determination of the bulk stress in a suspension of spherical particles to order c2. J. Fluid Mech. 56:401–27 [Google Scholar]
  13. Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E. 1998. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead rheometry. Biophys. J. 75:2038–49 [Google Scholar]
  14. Beenakker C. 1984. The effective viscosity of a concentrated suspension of spheres (and its relation to diffusion). Physica A 128:48–81 [Google Scholar]
  15. Beenakker C, Mazur P. 1984. Diffusion of spheres in a concentrated suspension II. Physica A 126:349–70 [Google Scholar]
  16. Bender JW, Wagner NJ. 1995. Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J. Colloid Interface Sci. 172:171–84 [Google Scholar]
  17. Bergenholtz J, Brady JF, Vicic M. 2002. The non-Newtonian rheology of dilute colloidal suspensions. J. Fluid Mech. 456:239–75 [Google Scholar]
  18. Brady JF. 1994. The long-time self-diffusivity in concentrated colloidal dispersions. J. Fluid Mech. 272:109–33 [Google Scholar]
  19. Brady JF, Bossis G. 1985. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech. 155:105–29 [Google Scholar]
  20. Brady JF, Morris JF. 1997. Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348:103–39 [Google Scholar]
  21. Brady JF, Vicic M. 1995. Normal stresses in colloidal suspensions. J. Rheol. 39:545–66 [Google Scholar]
  22. Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA. 2008. Cytoplasmic diffusion: Molecular motors mix it up. J. Cell Biol. 183:583–87 [Google Scholar]
  23. Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA. 2009. Intracellular transport by active diffusion. Trends Cell Biol 19:423–27 [Google Scholar]
  24. Breedveld V, Pine DJ. 2003. Microrheology as a tool for high-throughput screening. J. Mater. Sci. 38:4461–70 [Google Scholar]
  25. Brown R. 1828. A brief account of microscopical observations made on the particles contained in the pollen of plants. Philos. Mag. Ser. 2 4:161–73 [Google Scholar]
  26. Carpen IC, Brady JF. 2005. Microrheology of colloidal dispersions by Brownian dynamics simulations. J. Rheol. 49:1483–502 [Google Scholar]
  27. Caspi A, Granek R, Elbaum M. 2000. Enhanced diffusion in active intracellular transport. Phys. Rev. Lett. 85:5655–58 [Google Scholar]
  28. Cheng Z, Zhu J, Chaikin P, Phan SE, Russel WB. 2002. Nature of the divergence in low shear viscosity of colloidal hard-sphere dispersions. Phys. Rev. E 65:041405 [Google Scholar]
  29. Chu HCW, Zia RN. 2016. Active microrheology of hydrodynamically interacting colloids: normal stresses and entropic energy density. J. Rheol. 60:755–81 [Google Scholar]
  30. Chu HCW, Zia RN. 2017. The non-Newtonian rheology of hydrodynamically interacting colloids via active, nonlinear microrheology. J. Rheol. 61:3551–74 [Google Scholar]
  31. Cichocki B, Felderhof BU. 1988. Short-time diffusion coefficients and high frequency viscosity of dilute suspensions of spherical Brownian particles. J. Chem. Phys. 89:1049–54 [Google Scholar]
  32. Clercx HJH, Schram PPJM. 1992. Brownian particles in shear flow and harmonic potential: a study of long-time tails. Phys. Rev. A 46:19421950 [Google Scholar]
  33. Crocker JC. 1997. Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres. J. Chem. Phys. 106:2837–40 [Google Scholar]
  34. Crocker JC, Grier DG. 1996. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179:298–310 [Google Scholar]
  35. Crocker JC, Matteo JA, Dinsmore AD, Yodh AG. 1999. Entropic attraction and repulsion in binary colloids probed with a line optical tweezer. Phys. Rev. Lett. 82:4352–55 [Google Scholar]
  36. Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD. et al. 2000. Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett. 85:888–91 [Google Scholar]
  37. da Cunha FR, Hinch EJ. 1996. Shear-induced dispersion in a dilute suspension of rough spheres. J. Fluid Mech. 309:211–223 [Google Scholar]
  38. Daniels BR, Masi BC, Wirtz D. 2006. Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys. J. 90:4712–19 [Google Scholar]
  39. Dasgupta BR. 2004. Microrheology and dynamic light scattering studies of polymer solutions PhD Thesis, Harvard Univ.
  40. Dasgupta BR, Tee SY, Crocker JC, Frisken BJ, Weitz DA. 2002. Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys. Rev. E 65:051505 [Google Scholar]
  41. Dasgupta BR, Weitz DA. 2005. Microrheology of cross-linked polyacrylamide networks. Phys. Rev. E 71:021504 [Google Scholar]
  42. Davis RH, Hill NA. 1992. Hydrodynamic diffusion of a sphere sedimenting through a dilute suspension of neutrally buoyant spheres. J. Fluid Mech. 236:513–33 [Google Scholar]
  43. D'Haene P, Mewis J, Fuller G. 1993. Scattering dichroism measurements of flow-induced structure of a shear thickening suspension. J. Colloid Interface Sci. 156:350–58 [Google Scholar]
  44. Dolata BE, Zia RN. 2017. Non-equilibrium depletion interactions in colloidal dispersions: dual-probe, nonlinear microrheology. J. Fluid Mech. In press
  45. Durlofsky L, Brady JF, Bossis G. 1987. Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech. 180:21–49 [Google Scholar]
  46. Einstein A. 1906. On the theory of the Brownian movement. Ann. Phys. 19:371–81 [Google Scholar]
  47. Foss DR. 1999. Rheological behavior of colloidal suspensions: the effects of hydrodynamic interactions PhD Thesis, Calif. Inst. Technol.
  48. Foss DR, Brady JF. 2000. Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation. J. Fluid Mech. 407:167–200 [Google Scholar]
  49. Freundlich H, Seifriz W. 1923. Über die Elastizität von Solen und Gelen. Z. Phys. Chem. 104:233–61 [Google Scholar]
  50. Furst EM. 2005. Applications of laser tweezers in complex fluid rheology. Curr. Opin. Colloid Interface Sci. 10:79–86 [Google Scholar]
  51. Gadala-Maria F, Acrivos A. 1980. Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24:799–814 [Google Scholar]
  52. Gao C, Kulkarni SD, Morris JF, Gilchrist JF. 2010. Direct investigation of anisotropic suspension structure in pressure-driven flow. Phys. Rev. E 81:041403 [Google Scholar]
  53. Gardel ML, Valentine MT, Weitz DA. 2005. Microrheology. Microscale Diagnostic Techniques KS Breuer 1–49 Berlin: Springer [Google Scholar]
  54. Gisler T, Weitz DA. 1998. Tracer microrheology in complex fluids. Curr. Opin. Colloid Interface Sci. 3:586–92 [Google Scholar]
  55. Gisler T, Weitz DA. 1999. Scaling of the microrheology of semidilute F-actin solutions. Phys. Rev. Lett. 82:1606–10 [Google Scholar]
  56. Gittes F, Schnurr B, Olmsted PD, MacKintosh FC, Schmidt CF. 1997. Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys. Rev. Lett. 79:3286–89 [Google Scholar]
  57. Guilford WH, Lantz RC, Gore RW. 1995. Locomotive forces produced by single leukocytes in vivo and in vitro. Am. J. Physiol. Cell Physiol. 268:C1308–12 [Google Scholar]
  58. Habdas P, Schaar D, Levitt AC, Weeks ER. 2004. Forced motion of a probe particle near the colloidal glass transition. Europhys. Lett. 67:477–83 [Google Scholar]
  59. Ham JM, Homsy GM. 1988. Hindered settling and hydrodynamic dispersion in quiescent sedimenting suspensions. Int. J. Multiph. Flow 14:533–46 [Google Scholar]
  60. Haw M. 2006. Middle World: The Restless Heart of Matter and Life New York: Palgrave Macmillan
  61. Hoh NJ, Zia RN. 2015. Hydrodynamic diffusion in active microrheology of non-colloidal suspensions: the role of interparticle forces. J. Fluid Mech. 785:189–218 [Google Scholar]
  62. Hoh NJ, Zia RN. 2016a. Force-induced diffusion in suspensions of hydrodynamically interacting colloids. J. Fluid Mech. 795:739–83 [Google Scholar]
  63. Hoh NJ, Zia RN. 2016b. The impact of probe size on measurements of diffusion in active microrheology. Lab Chip 16:3114–29 [Google Scholar]
  64. Jeffrey DJ. 1992. The calculation of the low Reynolds number resistance functions for two unequal spheres. Phys. Fluids 4:16–29 [Google Scholar]
  65. Jeffrey DJ, Onishi Y. 1984. Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139:261–90 [Google Scholar]
  66. Kaffashi B, O'Brien VT, Mackay ME, Underwood SM. 1997. Elastic-like and viscous-like components of the shear viscosity for nearly hard sphere, Brownian suspensions. J. Colloid Interface Sci. 187:22–28 [Google Scholar]
  67. Khair AS, Brady JF. 2005. “Microviscoelasticity” of colloidal dispersions. J. Rheol. 49:1449–81 [Google Scholar]
  68. Khair AS, Brady JF. 2006. Single particle motion in colloidal dispersions: a simple model for active and nonlinear microrheology. J. Fluid Mech. 557:73–117 [Google Scholar]
  69. Khair AS, Brady JF. 2008. Microrheology of colloidal dispersions: Shape matters. J. Rheol. 52:165–96 [Google Scholar]
  70. Kim S, Karrila SJ. 1991. Microhydrodynamics: Principles and Selected Applications Boston: Butterworth-Heinemann
  71. Kim S, Mifflin RT. 1985. The resistance and mobility functions of two equal spheres in low-Reynolds-number flow. Phys. Fluids 28:2033–45 [Google Scholar]
  72. Koch D, Shaqfeh E. 1991. Screening in sedimenting suspensions. J. Fluid Mech. 224:275–303 [Google Scholar]
  73. Kops-Werkhoven MM, Fijnaut HM. 1982. Dynamic behavior of silica dispersions studied near the optical matching point. J. Chem. Phys. 77:2242–53 [Google Scholar]
  74. Kramers H. 1927. La diffusion de la lumiére par les atomes. Atti Congr. Int. Fis. 2:545–57 [Google Scholar]
  75. Kronig R, de L. 1926. On the theory of the dispersion of x-rays. J. Opt. Soc. Am. 12:547–56 [Google Scholar]
  76. Ladd AJC. 1990. Hydrodynamic transport coefficients of random dispersions of hard spheres. J. Chem. Phys. 93:3484–94 [Google Scholar]
  77. Lai SK, Wang YY, Wirtz D, Hanes J. 2009. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61:86–100 [Google Scholar]
  78. Larson RG. 1999. The Structure and Rheology of Complex Fluids New York: Oxford Univ. Press
  79. Lau AWC, Hoffman BD, Davies A, Crocker JC, Lubensky TC. 2003. Microrheology, stress fluctuations, and active behavior of living cells. Phys. Rev. Lett. 91:198101 [Google Scholar]
  80. Leighton D, Acrivos A. 1987. Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. J. Fluid Mech. 177:109–31 [Google Scholar]
  81. Lekkerkerker HNW, Dhont JKG. 1984. On the calculation of the self-diffusion coefficient of interacting Brownian particles. J. Chem. Phys. 80:5790–92 [Google Scholar]
  82. Levine AJ, Lubensky TC. 2000. One- and two-particle microrheology. Phys. Rev. Lett. 85:1774–78 [Google Scholar]
  83. Lionberger RA, Russel WB. 1994. High frequency modulus of hard sphere colloids. J. Rheol. 38:1885–908 [Google Scholar]
  84. Luby-Phelps K. 2000. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 192:189–221 [Google Scholar]
  85. Mackay ME, Kaffashi B. 1995. Stress jumps of charged colloidal suspensions, measurement of the elastic-like and viscous-like stress components. J. Colloid Interface Sci. 174:117–23 [Google Scholar]
  86. MacKintosh FC, Schmidt CF. 1999. Microrheology. Curr. Opin. Colloid Interface Sci. 4:300–7 [Google Scholar]
  87. Maranzano BJ, Wagner NJ. 2002. Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J. Chem. Phys. 117:10291–302 [Google Scholar]
  88. Mason TG. 2000. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheol. Acta 39:371–78 [Google Scholar]
  89. Mason TG, Ganesan K, Van Zanten JH Wirtz D, Kuo SC. 1997. Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79:3282–85 [Google Scholar]
  90. Mason TG, Weitz DA. 1995. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74:1250–53 [Google Scholar]
  91. McQuarrie DA. 1976. Statistical Mechanics New York: Harper & Row
  92. Mewis J, Wagner NJ. 2012. Colloidal Suspension Rheology Cambridge, UK: Cambridge Univ. Press
  93. Meyer A, Marshall A, Bush BG, Furst EM. 2006. Laser tweezer microrheology of a colloidal suspension. J. Rheol. 50:77–92 [Google Scholar]
  94. Morris JF, Brady JF. 1996. Self-diffusion in sheared suspensions. J. Fluid Mech. 312:223–52 [Google Scholar]
  95. Nazockdast E, Morris JF. 2012. Microstructural theory and the rheology of concentrated colloidal suspensions. J. Fluid Mech. 713:420–52 [Google Scholar]
  96. Nicolai H, Herzhaft B, Hinch EJ, Oger L, Guazzelli E. 1995. Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres. Phys. Fluids 12:12–23 [Google Scholar]
  97. Ottewill RH, Williams NSJ. 1987. Study of particle motion in concentrated dispersions by tracer diffusion. Nature 325:232–34 [Google Scholar]
  98. Perrin JB. 1909. Mouvement brownien et réalité moléculaire [Brownian movement and molecular reality]. Ann. Chim. Phys. VIII 18:5–114 [Google Scholar]
  99. Phillips R, Brady J, Bossis G. 1988. Hydrodynamic transport properties of hard-sphere dispersions. I. Suspensions of freely mobile particles. Phys. Fluids 31:3462–72 [Google Scholar]
  100. Phung TM, Brady JF, Bossis G. 1996. Stokesian dynamics simulation of Brownian suspensions. J. Fluid Mech. 313:181–207 [Google Scholar]
  101. Poon WCK, Weeks R, Royall CP. 2012. On measuring colloidal volume fractions. Soft Matter 8:21–30 [Google Scholar]
  102. Pusey PN, van Megen W. 1983. Measurement of the short-time self-mobility of particles in concentrated suspension: evidence for many-particle hydrodynamic interactions. J. Phys. 44:285–91 [Google Scholar]
  103. Russel WB. 1981. Brownian motion of small particles suspended in liquids. Annu. Rev. Fluid Mech. 13:425–55 [Google Scholar]
  104. Russel WB. 1984. The Huggins coefficient as a means for characterizing suspended particles. J. Chem. Soc. Faraday Trans. 2 80:31–41 [Google Scholar]
  105. Russel WB, Saville DA, Schowalter WR. 1989. Colloidal Dispersions Cambridge, UK: Cambridge Univ. Press
  106. Schultz KM, Bayles AV, Baldwin AD, Kiick KL, Furst EM. 2011. Rapid, high resolution screening of biomaterial hydrogelators by μ2 rheology. Biomacromolecules 12:4178–82 [Google Scholar]
  107. Schultz KM, Furst EM. 2011. High-throughput rheology in a microfluidic device. Lab Chip 11:3802–9 [Google Scholar]
  108. Shikata T, Pearson DS. 1994. Viscoelastic behavior of concentrated spherical suspensions. J. Rheol. 38:601–16 [Google Scholar]
  109. Sierou A, Brady JF. 2001. Accelerated Stokesian dynamics simulations. J. Fluid Mech. 448:115–46 [Google Scholar]
  110. Sierou A, Brady J. 2002. Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46:1031–56 [Google Scholar]
  111. Sierou A, Brady JF. 2004. Shear-induced self-diffusion in non-colloidal suspensions. J. Fluid Mech. 506:285–314 [Google Scholar]
  112. Squires TM. 2008. Nonlinear microrheology: bulk stresses versus direct interactions. Langmuir 24:1147–59 [Google Scholar]
  113. Squires TM, Brady JF. 2005. A simple paradigm for active and nonlinear microrheology. Phys. Fluids 17:073101 [Google Scholar]
  114. Squires TM, Mason TG. 2010. Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42:413–38 [Google Scholar]
  115. Sriram I, DePuit RJ, Squires TM, Furst EM. 2009. Small amplitude active oscillatory microrheology of a colloidal suspension. J. Rheol. 53:357–81 [Google Scholar]
  116. Sriram I, Meyer A, Furst EM. 2010. Active microrheology of a colloidal suspension in the direct collision limit. Phys. Fluids 22:062003 [Google Scholar]
  117. Su Y, Swan JW, Zia RN. 2017. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: stresslet and straining motion couplings. J. Chem. Phys. 146:124903 [Google Scholar]
  118. Swan JW, Zia RN. 2013. Active microrheology: fixed-velocity versus fixed-force. Phys. Fluids 25:083303 [Google Scholar]
  119. Swan JW, Zia RN, Brady JF. 2014. Large amplitude oscillatory microrheology. J. Rheol. 58:1–41 [Google Scholar]
  120. Thomas CU, Muthukumar M. 1991. Three body hydrodynamic effects on viscosity of suspensions of spheres. J. Chem. Phys. 94:5180–89 [Google Scholar]
  121. Tuteja A, Mackay ME, Narayanan S, Asokan S, Wong MS. 2007. Breakdown of the continuum Stokes–Einstein relation for nanoparticle diffusion. Nano Lett 7:1276–81 [Google Scholar]
  122. Valentine MT, Kaplan PD, Thota D, Crocker JC, Gisler T. et al. 2001. Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Phys. Rev. E 64:061506 [Google Scholar]
  123. van der Werff JC, de Kruif CG, Blom C, Mellema J. 1989. Linear viscoelastic behavior of dense hard-sphere dispersions. Phys. Rev. A 39:795–807 [Google Scholar]
  124. van Megen W, Ottewill R, Owens S, Pusey PN. 1985. Measurement of the wave-vector dependent diffusion coefficient in concentrated particle dispersions. J. Chem. Phys. 82:508–15 [Google Scholar]
  125. van Megen W, Underwood SM. 1989. Tracer diffusion in concentrated colloidal dispersions. III. Mean squared displacements and self-diffusion coefficients. J. Chem. Phys. 91:552–59 [Google Scholar]
  126. van Megen W, Underwood SM, Snook I. 1986. Tracer diffusion in concentrated colloidal dispersions. J. Chem. Phys. 85:4065–72 [Google Scholar]
  127. van Veluwen A, Lekkerker HNW. 1988. Non-Gaussian behavior of the displacement statistics of interacting colloidal particles. Phys. Rev. A 38:37583763 [Google Scholar]
  128. van Veluwen A, Lekkerkerker HNW, de Kruif CG, Vrij A. 1987. Measurement of the short-time self-diffusion coefficient in dilute and concentrated suspensions: influence of direct particle interactions. J. Chem. Phys. 87:4873 [Google Scholar]
  129. van Zanten JH, Amin S, Abdala AA. 2004. Brownian motion of colloidal spheres in aqueous PEO solutions. Macromolecules 37:3874–80 [Google Scholar]
  130. Verkman AS. 2002. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem. Sci. 27:27–33 [Google Scholar]
  131. Wagner NJ, Brady JF. 2009. Shear thickening in colloidal dispersions. Phys. Today 62:27–32 [Google Scholar]
  132. Waigh TA. 2005. Microrheology of complex fluids. Rep. Prog. Phys. 68:685–742 [Google Scholar]
  133. Watanabe H, Yao ML, Osaki K, Shitata T, Niwa H, Morishima Y. 1997. Nonlinear rheology of a concentrated spherical silica suspension: 2. Role of strain in shear-thickening. Rheol. Acta 36:524–33 [Google Scholar]
  134. Watanabe H, Yao ML, Osaki K, Shitata T, Niwa H, Morishima Y. 1998. Nonlinear rheology and flow-induced structure in a concentrated spherical silica suspension. Rheol. Acta 37:1–6 [Google Scholar]
  135. Watanabe H, Yao ML, Osaki K, Shitata T, Niwa H, Morishima Y. 1999. Nonlinear rheology of a concentrated spherical silica suspension: 3. Concentration dependence. Rheol. Acta 38:2–13 [Google Scholar]
  136. Watanabe H, Yao ML, Yamagishi A, Osaki K, Shikata T. et al. 1996. Nonlinear rheological behavior of a concentrated spherical silica suspension. Rheol. Acta 35:443–45 [Google Scholar]
  137. Wilson HJ. 2005. An analytic form for the pair distribution function and rheology of a dilute suspension of rough spheres in plane strain flow. J. Fluid Mech. 534:97–114 [Google Scholar]
  138. Wilson HJ, Davis RH. 2000. The viscosity of a dilute suspension of rough spheres. J. Fluid Mech. 421:339–61 [Google Scholar]
  139. Wilson HJ, Davis RH. 2002. Shear stress of a monolayer of rough spheres. J. Fluid Mech. 452:425–41 [Google Scholar]
  140. Wilson LG, Harrison AW, Schofield AB, Arlt J, Poon WCK. 2009. Passive and active microrheology of hard-sphere colloids. J. Phys. Chem. B 113:3806–12 [Google Scholar]
  141. Wirtz D. 2009. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38:3282–85 [Google Scholar]
  142. Zia RN. 2011. Individual particle motion in colloids: microviscosity, microdiffusivity, and normal stresses PhD Thesis, Calif. Inst. Technol.
  143. Zia RN, Brady JF. 2010. Single-particle motion in colloids: force-induced diffusion. J. Fluid Mech. 658:188–210 [Google Scholar]
  144. Zia RN, Brady JF. 2012. Microviscosity, microdiffusivity, and normal stresses in colloidal dispersions. J. Rheol. 56:1175–208 [Google Scholar]
  145. Zia RN, Brady JF. 2013. Stress development, relaxation, and memory in colloidal dispersions: transient nonlinear microrheology. J. Rheol. 57:457–92 [Google Scholar]
  146. Zia RN, Brady JF. 2014. Theoretical microrheology. Complex Fluids in Biological Systems: Experiment, Theory, and Computation S Spagnolie 113–57 New York: Springer [Google Scholar]
  147. Zia RN, Swan JW, Su Y. 2015. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: force, torque, translation, and rotation. J. Chem. Phys. 143:224901 [Google Scholar]
  148. Ziemann F, Rädler J, Sackmann E. 1994. Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. Biophys. J. 66:2210–16 [Google Scholar]
  149. Zwanzig R. 1965. Frequency-dependent transport coefficients in fluid mechanics. J. Chem. Phys. 43:714–20 [Google Scholar]
/content/journals/10.1146/annurev-fluid-122316-044514
Loading
/content/journals/10.1146/annurev-fluid-122316-044514
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error