1932

Abstract

The implementation of advanced low-emission aircraft engine technologies and the reduction of noise from airframe, fan, and jet exhaust have made noise contributions from an engine core increasingly important. Therefore, meeting future ambitious noise-reduction goals requires the consideration of engine-core noise. This article reviews progress on the fundamental understanding, experimental analysis, and modeling of engine-core noise; addresses limitations of current techniques; and identifies opportunities for future research. After identifying core-noise contributions from the combustor, turbomachinery, nozzles, and jet exhaust, they are examined in detail. Contributions from direct combustion noise, originating from unsteady combustion, and indirect combustion noise, resulting from the interaction of flow-field perturbations with mean-flow variations in turbine stages and nozzles, are analyzed. A new indirect noise-source contribution arising from mixture inhomogeneities is identified by extending the theory. Although typically omitted in core-noise analysis, the impact of mean-flow variations and nozzle-upstream perturbations on the jet-noise modulation is examined, providing potential avenues for future core-noise mitigation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122414-034542
2017-01-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/fluid/49/1/annurev-fluid-122414-034542.html?itemId=/content/journals/10.1146/annurev-fluid-122414-034542&mimeType=html&fmt=ahah

Literature Cited

  1. Atvars J, Schubert LK, Grande E, Ribner HS. 1966. Refraction of sound by jet flow or jet temperature Tech. Rep. NASA CR-494, NASA, Washington, DC
  2. Bailly C, Bogey C, Candel S. 2010. Modelling of sound generation by turbulent reacting flows. Int. J. Aeroacoust. 9:461–90 [Google Scholar]
  3. Bake F, Kings N, Fischer A, Röhle I. 2009a. Experimental investigation of the entropy noise mechanism in aero-engines. Int. J. Aeroacoust. 8:125–42 [Google Scholar]
  4. Bake F, Kings N, Röhle I. 2008. Fundamental mechanism of entropy noise in aero-engines: experimental investigations. J. Eng. Gas Turbines Power 130:011202 [Google Scholar]
  5. Bake F, Richter C, Mühlbauer C, Kings N, Röhle I. et al. 2009b. The entropy wave generator (EWG): a reference case on entropy noise. J. Sound Vib. 326:574–98 [Google Scholar]
  6. Bechert D, Pfizenmaier E. 1975. On the amplification of broad band jet noise by a pure tone excitation. J. Sound Vib. 43:581–87 [Google Scholar]
  7. Bechert D, Pfizenmaier E. 1977. Amplification of jet noise by higher-mode acoustic excitation. AIAA J. 15:1268–71 [Google Scholar]
  8. Blanes S, Casas F, Oteo JA, Ros J. 2009. The Magnus expansion and some of its applications. Phys. Rep. 470:151–238 [Google Scholar]
  9. Bloy AW. 1979. The pressure waves produced by the convection of temperature disturbances in high subsonic nozzle flows. J. Fluid Mech. 94:465–75 [Google Scholar]
  10. Bogey C, Marsden O. 2013. Identification of the effects of the nozzle-exit boundary-layer thickness and its corresponding Reynolds number in initially highly disturbed subsonic jets. Phys. Fluids 25:055106 [Google Scholar]
  11. Bogey C, Marsden O, Bailly C. 2012. Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105. J. Fluid Mech. 701:352–85 [Google Scholar]
  12. Bohn MS. 1976. Noise production by the interaction of acoustic waves and entropy waves with high-speed nozzle flows PhD Thesis, Calif. Inst. Technol., Pasadena
  13. Bragg SL. 1963. Combustion noise. J. Inst. Fuel 36:12–16 [Google Scholar]
  14. Brandt L, Sipp D, Pralits JO, Marquet O. 2011. Effect of base-flow variations in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech. 687:503–28 [Google Scholar]
  15. Bridges JE, Hussain AKMF. 1984. Roles of initial condition and vortex pairing in jet noise. J. Sound Vib. 117:289–311 [Google Scholar]
  16. Bui TP, Ihme M, Schröder W, Pitsch H. 2009. Analysis of different sound source formulations to simulate combustion generated noise using a hybrid LES/APE-RF method. Int. J. Aeroacoust. 8:95–124 [Google Scholar]
  17. Burnley VS, Culick FEC. 2000. Influence of random excitations on acoustic instabilities in combustion chambers. AIAA J. 38:1403–10 [Google Scholar]
  18. Bushell KW. 1971. A survey of low velocity and coaxial jet noise with application to prediction. J. Sound Vib. 17:271–82 [Google Scholar]
  19. Candel S. 1972. Analytical studies of some acoustic problems of jet engines PhD Thesis, Calif. Inst. Technol., Pasadena
  20. Candel S. 2002. Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29:1–28 [Google Scholar]
  21. Candel S, Durox D, Ducruix S, Birbaud AL, Noiray N, Schuller T. 2009. Flame dynamics and combustion noise: progress and challenges. Int. J. Aeroacoust. 8:1–56 [Google Scholar]
  22. Chang CT, Lee CM, Herbon JT, Kramer SK. 2013. NASA environmentally responsible aviation project develops next-generation low-emissions combustor technologies (Phase I). J. Aeronaut. Aerosp. Eng. 2:116 [Google Scholar]
  23. Chiu HH, Summerfield M. 1974. Theory of combustion noise. Acta Astronaut. 1:967–84 [Google Scholar]
  24. Chu BT, Kovásznay LSG. 1958. Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3:494–514 [Google Scholar]
  25. Colin O, Ducros F, Veynante D, Poinsot T. 2000. A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12:1843–63 [Google Scholar]
  26. Crighton DG. 1981. Acoustics as a branch of fluid mechanics. J. Fluid Mech. 106:261–98 [Google Scholar]
  27. Crighton DG. 1992. Computational aeroacoustics for low Mach number flows. Computational Aeroacoustics JC Hardin, MY Hussaini 50–68 New York: Springer [Google Scholar]
  28. Crighton DG, Dowling AP. Williams JE, Heckl M, Leppington FG. , Ffowcs 1992. Modern Methods in Analytical Acoustics: Lecture Notes London: Springer
  29. Crow SC, Champagne FH. 1971. Orderly structure in jet turbulence. J. Fluid Mech. 48:547–91 [Google Scholar]
  30. Culick FEC. 2006. Unsteady Motions in Combustion Chambers for Propulsion Systems Brussels: NATO
  31. Cumpsty NA, Marble FE. 1977a. Core noise from gas turbine exhausts. J. Sound Vib. 54:297–309 [Google Scholar]
  32. Cumpsty NA, Marble FE. 1977b. The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise. Proc. R. Soc. Lond. A 357:323–44 [Google Scholar]
  33. Doak PE. 1972. Analysis of internally generated sound in continuous materials: 2. A critical review of the conceptual adequacy and physical scope of existing theories of aerodynamic noise, with special reference to supersonic jet noise. J. Sound Vib. 25:263–335 [Google Scholar]
  34. Dowling AP. 1995. The calculation of thermoacoustic oscillations. J. Sound Vib. 180:557–81 [Google Scholar]
  35. Dowling AP, Mahmoudi Y. 2015. Combustion noise. Proc. Combust. Inst. 35:65–100 [Google Scholar]
  36. Dowling AP, Stow SR. 2003. Acoustic analysis of gas turbine combustors. J. Prop. Power 19:751–64 [Google Scholar]
  37. Doyle VL, Moore MT. 1980. Core noise investigation of the CF6-50 turbofan engine Tech. Rep. NASA CR-159749, NASA, Washington, DC
  38. Duran I, Moreau S. 2013. Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. J. Fluid Mech. 723:190–231 [Google Scholar]
  39. Duran I, Morgans AS. 2015. On the reflection and transmission of circumferential waves through nozzles. J. Fluid Mech. 773:137–53 [Google Scholar]
  40. Eckstein J, Freitag E, Hirsch C, Sattelmayer T. 2006. Experimental study on the role of entropy waves in low-frequency oscillations in a RQL combustor. J. Eng. Gas Turbines Power 128:264–70 [Google Scholar]
  41. Ewert R, Schröder W. 2003. Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 188:365–98 [Google Scholar]
  42. Ffowcs Williams JE, Hawkings DL. 1969. Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. Lond. A 264:321–42 [Google Scholar]
  43. Flemming F, Sadiki A, Janicka J. 2007. Investigation of combustion noise using a LES/CAA hybrid approach. Proc. Combust. Inst. 31:3189–96 [Google Scholar]
  44. Fontaine RA, Elliott GS, Austin JM, Freund JB. 2015. Very near-nozzle shear-layer turbulence and jet noise. J. Fluid Mech. 770:27–51 [Google Scholar]
  45. Garnaud X, Lesshafft L, Schmid PJ, Huerre P. 2013. The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716:189–202 [Google Scholar]
  46. Giauque A, Huet M, Clero F. 2012. Analytical analysis of indirect combustion noise in subcritical nozzles. J. Eng. Gas Turbines Power 134:111202 [Google Scholar]
  47. Gicquel O, Darabiha N, Thevenin D. 2000. Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28:1901–8 [Google Scholar]
  48. Goh CS, Morgans AS. 2011. Phase prediction of the response of choked nozzles to entropy and acoustic disturbances. J. Sound Vib. 330:5184–98 [Google Scholar]
  49. Goldstein ME. 1976. Aeroacoustics New York: McGraw-Hill
  50. Goldstein ME. 2003. A generalized acoustic analogy. J. Fluid Mech. 488:315–33 [Google Scholar]
  51. Gordon G. 2015. Acoustic database for turbofan engine core-noise sources, volume I—final report Tech. Rep. NASA/CR-2015-218879/VOL1, NASA Glenn Res. Cent., Cleveland, OH
  52. Hardin JC, Pope DS. 1994. An acoustic/viscous splitting technique for computational aeroacoustics. Theor. Comput. Fluid Dyn. 6:323–40 [Google Scholar]
  53. Harper-Bourne M. 2010. Jet noise measurements: past and present. Int. J. Aeroacoust. 9:559–88 [Google Scholar]
  54. Hassan HA. 1974. Scaling of combustion-generated noise. J. Fluid Mech. 66:445–53 [Google Scholar]
  55. Haworth DC. 2010. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36:168–259 [Google Scholar]
  56. Ho CM, Huerre P. 1984. Perturbed free shear layers. Annu. Rev. Fluid Mech. 16:365–424 [Google Scholar]
  57. Hoch RG, Duponchel JP, Cocking BJ, Bryce WD. 1973. Studies of the influence of density on jet noise. J. Sound Vib. 28:649–68 [Google Scholar]
  58. Howe MS. 2010. Indirect combustion noise. J. Fluid Mech. 659:267–88 [Google Scholar]
  59. Hubbard HH, Lassiter LW. 1953. Experimental studies of jet noise. J. Acoust. Soc. Am. 25:381–84 [Google Scholar]
  60. Huet M, Giauque A. 2013. A nonlinear model for indirect combustion noise through a compact nozzle. J. Fluid Mech. 733:268–301 [Google Scholar]
  61. Hultgren LS. 2011. Core noise: implications of emerging N+3 designs and acoustic technology needs Tech. Rep. E-17796, Acoust. Tech. Working Group, NASA Glenn Res. Cent., Cleveland, OH
  62. Hultgren LS. 2012. A comparison of combustion-noise models Presented at AIAA/CEAS Aeroacoust. Conf., 18th, Colorado Springs, CO, AIAA Pap. 2012-2087
  63. Hultgren LS, Miles JH. 2009. Noise-source separation using internal and far-field sensors for a full-scale turbofan engine Presented at AIAA/CEAS Aeroacoust. Conf., 15th, Miami, FL, AIAA Pap. 2009-3220
  64. Hurle IR, Price RB, Sugden TM, Thomas A. 1968. Sound emission from open turbulent premixed flames. Proc. R. Soc. Lond. A 303:409–27 [Google Scholar]
  65. Hussain AKMF, Hasan MAZ. 1985. Turbulence suppression in free turbulent shear flows under controlled excitation. Part 2. Jet-noise reduction. J. Fluid Mech. 150:159–68 [Google Scholar]
  66. Hussain AKMF, Zedan MF. 1978. Effects of the initial condition on the axisymmetric free shear layer: effects of the initial momentum thickness. Phys. Fluids 21:1100–12 [Google Scholar]
  67. ICAO (Int. Civil Aviat. Organ.) 2013. Global air transport outlook to 2030 and trends to 2040 ICAO Circ. 333, Int. Civi Aviat. Organ., Quebec
  68. ICAO (Int. Civil Aviat. Organ.) 2014. NoiseDB database. Noise Certification Database, accessed in December 2015, Int. Civil Aviat. Organ., Quebec. http://noisedb.stac.aviation-civile.gouv.fr
  69. Ihme M, Cha CM, Pitsch H. 2005. Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach. Proc. Combust. Inst. 30:793–800 [Google Scholar]
  70. Ihme M, Kaltenbacher M, Pitsch H. 2006. Numerical simulation of flow- and combustion-induced sound using a hybrid LES/CAA approach. Proc. 2006 Summer Prog.497–510 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  71. Ihme M, Pitsch H. 2012. On the generation of direct combustion noise in turbulent non-premixed flames. Int. J. Aeroacoust. 11:25–78 [Google Scholar]
  72. Ihme M, Pitsch H, Bodony D. 2009. Radiation of noise in turbulent non-premixed flames. Proc. Combust. Inst. 32:1545–53 [Google Scholar]
  73. Job G, Herrmann F. 2006. Chemical potential—a quantity in search of recognition. Eur. J. Phys. 27:353–71 [Google Scholar]
  74. Jordan P, Colonius T. 2013. Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45:173–95 [Google Scholar]
  75. Jubelin B. 1980. New experimental studies on jet noise amplification Presented at AIAA Aeroacoust. Conf., 6th, Hartford, CT, AIAA Pap. 1980-0961
  76. Karchmer A, Reshotko M. 1976. Core noise source diagnostics on a turbofan engine using correlation and coherence techniques Tech. Rep. NASA-TM-X-73535, NASA, Washington, DC
  77. Kerstein AR. 1988. A linear-eddy model of turbulent scalar transport and mixing. Combust. Sci. Technol. 60:391–421 [Google Scholar]
  78. Kibens V. 1980. Discrete noise spectrum generated by an acoustically excited jet. AIAA J. 18:434–41 [Google Scholar]
  79. Kilham JK, Kirmani N. 1979. The effect of turbulence on premixed flame noise. Proc. Combust. Inst. 17:327–36 [Google Scholar]
  80. Kim J, Bodony DJ, Freund JB. 2014. Adjoint-based control of loud events in a turbulent jet. J. Fluid Mech. 741:28–59 [Google Scholar]
  81. Kings N, Bake F. 2010. Indirect combustion noise: noise generation by accelerated vorticity in a nozzle flow. Int. J. Spray Combust. Dyn. 2:253–66 [Google Scholar]
  82. Klein SA, Kok JBW. 1999. Sound generation by turbulent non-premixed flames. Combust. Sci. Technol. 149:267–95 [Google Scholar]
  83. Klimenko AY, Bilger RW. 1999. Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25:595–687 [Google Scholar]
  84. Knobloch L, Werner T, Bake F. 2015. Entropy noise generation and reduction in a heated nozzle flow Presented at AIAA/CEAS Aeroacoust. Conf., 21st, Dallas, TX, AIAA Pap. 2015-2818
  85. Kotake S. 1975. On combustion noise related to chemical reactions. J. Sound Vib. 42:399–410 [Google Scholar]
  86. Kotake S, Takamoto K. 1987. Combustion noise: effects of the shape and size of burner nozzle. J. Sound Vib. 112:345–54 [Google Scholar]
  87. Kumar RN. 1976. Further experimental results on the structure and acoustics of turbulent jet flames Presented at AIAA Aeroacoust. Conf., 2nd, Hampton, VA, AIAA Pap. 1975-523
  88. Laufer J, Yen TC. 1983. Noise generation by a low-Mach-number jet. J. Fluid Mech. 134:1–31 [Google Scholar]
  89. Leyko M, Moreau S, Nicoud F, Poinsot T. 2010. Waves transmission and generation in turbine stages in a combustion-noise framework Presented at AIAA/CEAS Aeroacoust. Conf., 16th, Stockholm, AIAA Pap. 2010-4032
  90. Leyko M, Moreau S, Nicoud F, Poinsot T. 2011. Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock. J. Sound Vib. 330:3944–58 [Google Scholar]
  91. Leyko M, Nicoud F, Poinsot T. 2009. Comparison of direct and indirect combustion noise mechanisms in a model combustor. AIAA J. 47:2709–16 [Google Scholar]
  92. Lieuwen TC. 2012. Unsteady Combustor Physics Cambridge, UK: Cambridge Univ. Press
  93. Lighthill MJ. 1952. On sound generated aerodynamically. I: General theory. Proc. R. Soc. Lond. A 211:564–87 [Google Scholar]
  94. Lilley GM. 1974. On the noise from jets Rep. AGARD-CP-131, Advis. Group Aerosp. Res. Dev., Washington, DC
  95. Livebardon T, Moreau S, Gicquel L, Poinsot T, Bouty E. 2016. Combining LES of combustion chamber and an actuator disk theory to predict combustion noise in a helicopter engine. Combust. Flame 165:272–87 [Google Scholar]
  96. Magri L, See YC, Tammisola O, Ihme M, Juniper MP. 2017. Multiple-scale thermo-acoustic stability analysis of a coaxial jet combustor. Proc. Combust. Inst. 36:In press [Google Scholar]
  97. Mahan JR, Karchmer A. 1995. Combustion and core noise. Aeroacoustics of Flight Vehicles, Theory and Practice 1 Noise Sources HH Hubbard 483–517 Melville, NY: Acoust. Soc. Am. [Google Scholar]
  98. Mani R. 1981. Low-frequency sound propagation in a quasi-one-dimensional flow. J. Fluid Mech. 104:81–92 [Google Scholar]
  99. Marble FE, Candel SM. 1977. Acoustic disturbance from gas non-uniformities convected through a nozzle. J. Sound Vib. 55:225–43 [Google Scholar]
  100. Meier W, Barlow RS, Chen YL, Chen JY. 2000. Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence-chemistry interaction. Combust. Flame 123:326–43 [Google Scholar]
  101. Miles JH. 2009. Time delay analysis of turbofan engine direct and indirect combustion noise sources. J. Propuls. Power 25:218–27 [Google Scholar]
  102. Miles JH. 2010. Separating direct and indirect turbofan engine combustion noise using the correlation function. J. Propuls. Power 26:1144–52 [Google Scholar]
  103. Mishra A, Bodony DJ. 2013. Evaluation of actuator disk theory for predicting indirect combustion noise. J. Sound Vib. 332:821–38 [Google Scholar]
  104. Moase WH, Brear MJ, Manzie C. 2007. The forced response of choked nozzles and supersonic diffusers. J. Fluid Mech. 585:281–304 [Google Scholar]
  105. Mollo-Christensen E, Kolpin MA, Martuccelli JR. 1964. Experiments on jet flows and jet noise far-field spectra and directivity patterns. J. Fluid Mech. 18:285–301 [Google Scholar]
  106. Mongeau L, Huff D, Tester B. 2013. Aircraft noise technology review and medium and long term noise reduction goals. Proc. Meet. Acoust. 19:040041 [Google Scholar]
  107. Moore CJ. 1977. The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80:321–67 [Google Scholar]
  108. Morfey CL. 1973. Amplification of aerodynamic noise by convective flow inhomogeneities. J. Sound Vib. 31:391–97 [Google Scholar]
  109. Morfey CL. 2003. The role of viscosity in aerodynamic sound generation. Int. J. Aeroacoust. 2:225–40 [Google Scholar]
  110. Morgans AS, Goh CS, Dahan JA. 2013. The dissipation and shear dispersion of entropy waves in combustor thermoacoustics. J. Fluid Mech. 733:R2 [Google Scholar]
  111. Mühlbauer B, Noll B, Aigner M. 2009. Numerical investigation of the fundamental mechanism for entropy noise generation in aero-engines. Acta Acust. United Acust. 95:470–78 [Google Scholar]
  112. Muthukrishnan M, Strahle WC, Neale DH. 1978. Separation of hydrodynamic, entropy, and combustion noise in a gas turbine combustor. AIAA J. 16:320–27 [Google Scholar]
  113. Nichols JW, Lele SK. 2011. Non-normal global modes of high-speed jets. Int. J. Spray Combust. Dyn. 3:285–302 [Google Scholar]
  114. Obermeier F. 1985. Aerodynamic sound generation caused by viscous processes. J. Sound Vib. 99:111–20 [Google Scholar]
  115. O'Brien J, Kim J, Ihme M. 2016. Investigation of the mechanisms of jet-engine core noise using large-eddy simulation Presented at AIAA Aerosp. Sci. Meet., 54th, San Diego, CA, AIAA Pap. 2016-0761
  116. Palies P, Durox D, Schuller T, Candel S. 2011. Acoustic-convective mode conversion in an aerofoil cascade. J. Fluid Mech. 672:545–69 [Google Scholar]
  117. Papadogiannis D, Wang G, Moreau S, Duchaine F, Gicquel L, Nicoud F. 2015. Assessment of the indirect combustion noise generated in a transonic high-pressure turbine stage. J. Eng. Gas Turb. Power 138:041503 [Google Scholar]
  118. Peake N, Parry AB. 2012. Modern challenges facing turbomachinery aeroacoustics. Annu. Rev. Fluid Mech. 44:227–48 [Google Scholar]
  119. Peters N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10:319–39 [Google Scholar]
  120. Peters N. 2000. Turbulent Combustion Cambridge, UK: Cambridge Univ. Press
  121. Phillips OM. 1960. On the generation of sound by supersonic turbulent shear layers. J. Fluid Mech. 9:1–28 [Google Scholar]
  122. Pierce CD, Moin P. 2004. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504:73–97 [Google Scholar]
  123. Polifke W, Paschereit CO, Döbbeling K. 2001. Constructive and destructive interference of acoustic and entropy waves in a premixed combustor with a choked exit. Int. J. Acoust. Vib. 6:135–46 [Google Scholar]
  124. Pope SB. 1985. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11:119–92 [Google Scholar]
  125. Price RB, Hurle IR, Sugden TM. 1969. Optical studies of the generation of noise in turbulent flames. Proc. Combust. Inst. 12:1093–102 [Google Scholar]
  126. Pridmore-Brown DC. 1958. Sound propagation in a fluid flowing through an attenuating duct. J. Fluid Mech. 4:393–406 [Google Scholar]
  127. Rajaram R, Lieuwen T. 2003. Parametric studies of acoustic radiation from premixed flames. Combust. Sci. Technol. 175:2269–98 [Google Scholar]
  128. Rajaram R, Lieuwen T. 2009. Acoustic radiation from turbulent premixed flames. J. Fluid Mech. 637:357–85 [Google Scholar]
  129. Renfro MW, Chaturvedy A, King GB, Laurendeau NM, Kempf A. et al. 2004. Comparison of OH time-series measurements and large-eddy simulations in hydrogen jet flames. Combust. Flame 139:142–51 [Google Scholar]
  130. Reshotko M, Karchmer A. 1980. Core noise measurements from a small, general aviation turbofan engine Tech. Rep. NASA-TM-81610, NASA Lewis Res. Cent., Cleveland, OH
  131. Royalty CM, Schuster B. 2008. Noise from a turbofan engine without a fan from the engine validation of noise and emission reduction technology (EVNERT) program Presented at AIAA/CEAS Aeroacoust. Conf., 14th, Vancouver, AIAA Pap. 2008-2810
  132. Schlüter JU, Wu X, Kim S, Shankaran S, Alonso JJ, Pitsch H. 2005. A framework for coupling Reynolds-averaged with large-eddy simulations for gas turbine applications. J. Fluids Eng. 127:806–15 [Google Scholar]
  133. Schneider C, Dreizler A, Janicka J, Hassel EP. 2003. Flow field measurements of stable and locally extinguishing hydrocarbon-fueled jet flames. Combust. Flame 135:185–90 [Google Scholar]
  134. Schuster B, Gordon G, Hultgren LS. 2015. Dynamic temperature and pressure measurements in the core of a propulsion engine Presented at AIAA/CEAS Aeroacoust. Conf., 21st, Dallas, TX, AIAA Pap. 2015-2819
  135. Seo JH, Moon YJ. 2006. Linearized perturbed compressible equations for low Mach number aeroacoustics. J. Comput. Phys. 218:702–19 [Google Scholar]
  136. Shivashankara BN, Strahle WC, Handley JC. 1974. Evaluation of combustion noise scaling laws by an optical technique. AIAA J. 13:623–27 [Google Scholar]
  137. Singh KK, Frankel SH, Gore JP. 2004. Study of spectral noise emissions from standard turbulent nonpremixed flames. AIAA J. 42:931–36 [Google Scholar]
  138. Singh KK, Zhang C, Gore JP, Mongeau L, Frankel SH. 2005. An experimental study of partially premixed flame sound. Proc. Combust. Inst. 30:1707–15 [Google Scholar]
  139. Smith TJB, Kilham JK. 1963. Noise generation by open turbulent flames. J. Acoust. Soc. Am. 35:715–24 [Google Scholar]
  140. Stone JR, Krejsa EA, Clark BJ. 2011. Enhanced core noise modeling for turbofan engines Tech. Rep. NASA/CR-2011-217026, NASA Glenn Res. Cent., Cleveland, OH
  141. Stout TA, Gee KL, Neilsen TB, Wall AT, James MM. 2015. Source characterization of full-scale jet noise using acoustic intensity. Noise Control Eng. J. 63:522–36 [Google Scholar]
  142. Stow SR, Dowling AP, Hynes TP. 2002. Reflection of circumferential modes in a choked nozzle. J. Fluid Mech. 467:215–39 [Google Scholar]
  143. Strahle WC. 1971. On combustion generated noise. J. Fluid Mech. 49:399–414 [Google Scholar]
  144. Strahle WC. 1973. Refraction, convection, and diffusion flame effects in combustion-generated noise. Proc. Combust. Inst. 14:527–35 [Google Scholar]
  145. Strahle WC. 1978. Combustion noise. Prog. Energy Combust. Sci. 4:157–76 [Google Scholar]
  146. Talei M, Hawkes ER, Brear MJ. 2013. A direct numerical simulation study of frequency and Lewis number effects on sound generation by two-dimensional forced laminar premixed flames. Proc. Combust. Inst. 34:1093–100 [Google Scholar]
  147. Tam CKW, Golebiowski M, Seiner JM. 1996. On the two components of turbulent mixing noise from supersonic jets Presented at AIAA Aeroacoust. Conf., State College, PA, AIAA Pap. 1996-1716
  148. Tam CKW, Parrish SA. 2015. Noise of high-performance aircraft at afterburner. J. Sound Vib. 352:103–28 [Google Scholar]
  149. Tam CKW, Viswanathan K, Ahuja KK, Panda J. 2008. The sources of jet noise: experimental evidence. J. Fluid Mech. 615:253–92 [Google Scholar]
  150. Tanna HK. 1977. An experimental study of jet noise part I: turbulent mixing noise. J. Sound Vib. 50:405–28 [Google Scholar]
  151. Thomas A, Williams GT. 1966. Flame noise: sound emissions from spark-ignited bubbles of combustible gas. Proc. R. Soc. Lond. A 294:449–66 [Google Scholar]
  152. Tsien HS. 1952. The transfer functions of rocket nozzles. J. Am. Rocket Soc. 22:139–43 [Google Scholar]
  153. Tyacke JC, Tucker PG. 2015. Future use of large eddy simulation in aero-engines. J. Turbomach. 137:081005 [Google Scholar]
  154. Tyler JM, Sofrin TG. 1962. Axial flow compressor noise studies SAE Tech. Pap. 620532, SAE Int., Warrendale, PA
  155. van Oijen JA, de Goey LPH. 2000. Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161:113–37 [Google Scholar]
  156. Veynante D, Vervisch L. 2002. Turbulent combustion modeling. Prog. Energy Combust. Sci. 28:193–266 [Google Scholar]
  157. Viswanathan K. 2004. Aeroacoustics of hot jet. J. Fluid Mech. 516:39–82 [Google Scholar]
  158. Wang M, Freund JB, Lele SK. 2006. Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38:483–512 [Google Scholar]
  159. Williams FA. 1985. Combustion Theory Reading, MA: Perseus
  160. Wu H, See YC, Wang Q, Ihme M. 2015. A Pareto-efficient combustion framework with submodel assignment for predicting complex flame configurations. Combust. Flame 162:4208–30 [Google Scholar]
  161. Zaman KBMQ. 2012. Effect of initial boundary-layer state on subsonic jet noise. AIAA J. 50:1784–95 [Google Scholar]
  162. Zhao W, Frankel SH. 2001. Numerical simulations of sound radiated from an axisymmetric premixed reacting jet. Phys. Fluids 13:2671–81 [Google Scholar]
  163. Zhu M, Dowling AP, Bray KNC. 2001. Self-excited oscillations in combustors with spray atomizers. J. Eng. Gas Turb. Power 123:779–86 [Google Scholar]
  164. Zorumski WE. 1982. Aircraft noise prediction program theoretical manual, part 2 Tech. Rep. NASA-TM-83199-PT-2, NASA, Washington, DC
  165. Zukoski EE, Auerbach JM. 1976. Experiments concerning the response of supersonic nozzles to fluctuating inlet conditions. J. Eng. Power 98:60–64 [Google Scholar]
/content/journals/10.1146/annurev-fluid-122414-034542
Loading
/content/journals/10.1146/annurev-fluid-122414-034542
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error