1932

Abstract

Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low–Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

Associated Article

There are media items related to this article:
Bacterial Hydrodynamics: Supplemental Video 2

Associated Article

There are media items related to this article:
Bacterial Hydrodynamics: Supplemental Video 1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122414-034606
2016-01-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/fluid/48/1/annurev-fluid-122414-034606.html?itemId=/content/journals/10.1146/annurev-fluid-122414-034606&mimeType=html&fmt=ahah

Literature Cited

  1. Allen RD, Baumann P. 1971. Structure and arrangement of flagella in species of the genus Beneckea and Photobacterium fischeri. J. Bacteriol. 107:295–302 [Google Scholar]
  2. Bansil R, Celli JP, Hardcastle JM, Turner BS. 2013. The influence of mucus microstructure and rheology in Helicobacter pylori infection. Front. Immunol. 4:310 [Google Scholar]
  3. Batchelor GK. 1970. The stress system in a suspension of force-free particles. J. Fluid Mech. 41:545–70 [Google Scholar]
  4. Berg HC. 1993. Random Walks in Biology Princeton, NJ: Princeton Univ. Press
  5. Berg HC. 2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72:19–54 [Google Scholar]
  6. Berg HC. 2004. E. coli in Motion New York: Springer-Verlag [Google Scholar]
  7. Berg HC, Anderson RA. 1973. Bacteria swim by rotating their flagellar filaments. Nature 245:380–82 [Google Scholar]
  8. Berg HC, Turner L. 1979. Movement of microorganisms in viscous environments. Nature 278:349–51 [Google Scholar]
  9. Berg HC, Turner L. 1990. Chemotaxis of bacteria in glass capillary arrays: Escherichia coli, motility, microchannel plate, and light scattering. Biophys. J. 58:919–30 [Google Scholar]
  10. Berke AP, Turner L, Berg HC, Lauga E. 2008. Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101:038102 [Google Scholar]
  11. Berry RM, Berg HC. 1997. Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. PNAS 94:14433–37 [Google Scholar]
  12. Blair DF. 1995. How bacteria sense and swim. Annu. Rev. Microbiol. 49:489–520 [Google Scholar]
  13. Blake JR. 1971. A note on the image system for a stokeslet in a no-slip boundary. Proc. Camb. Philos. Soc. 70:303–10 [Google Scholar]
  14. Bray D. 2000. Cell Movements New York: Garland
  15. Brennen C, Winet H. 1977. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9:339–98 [Google Scholar]
  16. Brown MT, Steel BC, Silvestrin C, Wilkinson DA, Delalez NJ. et al. 2012. Flagellar hook flexibility is essential for bundle formation in swimming Escherichia coli cells. J. Bacteriol. 194:3495–501 [Google Scholar]
  17. Calladine CR. 1978. Change of waveform in bacterial flagella: the role of mechanics at the molecular level. J. Mol. Biol. 118:457–79 [Google Scholar]
  18. Chattopadhyay S, Moldovan R, Yeung C, Wu XL. 2006. Swimming efficiency of bacterium Escherichia coli. PNAS 103:13712–17 [Google Scholar]
  19. Chattopadhyay S, Wu X. 2009. The effect of long-range hydrodynamic interaction on the swimming of a single bacterium. Biophys. J. 96:2023–28 [Google Scholar]
  20. Chen X, Berg HC. 2000. Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys. J. 78:1036–41 [Google Scholar]
  21. Chwang AT, Wu TY. 1971. Helical movement of microorganisms. Proc. R. Soc. B 178:327–46 [Google Scholar]
  22. Chwang AT, Wu TY. 1975. Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67:787–815 [Google Scholar]
  23. Chwang AT, Wu TY, Winet H. 1972. Locomotion of Spirilla. Biophys. J 12:1549–61 [Google Scholar]
  24. Cisneros LH, Cortez R, Dombrowski C, Goldstein RE, Kessler JO. 2007. Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp. Fluids 43:737–53 [Google Scholar]
  25. Coombs D, Huber G, Kessler JO, Goldstein RE. 2002. Periodic chirality transformations propagating on bacterial flagella. Phys. Rev. Lett. 89:118102 [Google Scholar]
  26. Copeland MF, Weibel DB. 2009. Bacterial swarming: a model system for studying dynamic self-assembly. Soft Matter 5:1174–87 [Google Scholar]
  27. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappinscott HM. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49:711–45 [Google Scholar]
  28. Cox RG. 1970. The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44:791–810 [Google Scholar]
  29. Darnton NC, Berg HC. 2007. Force-extension measurements on bacterial flagella: triggering polymorphic transformations. Biophys. J. 92:2230–36 [Google Scholar]
  30. Darnton NC, Turner L, Rojevsky S, Berg HC. 2007. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189:1756–64 [Google Scholar]
  31. Darnton NC, Turner L, Rojevsky S, Berg HC. 2010. Dynamics of bacterial swarming. Biophys. J. 98:2082–90 [Google Scholar]
  32. Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Iebba V. et al. 2010. Bacterial ratchet motors. PNAS 107:9541–45 [Google Scholar]
  33. Di Leonardo R, Dell'Arciprete D, Angelani L, Iebba V. 2011. Swimming with an image. Phys. Rev. Lett. 106:038101 [Google Scholar]
  34. DiLuzio WR, Turner L, Mayer M, Garstecki P, Weibel DB. et al. 2005. Escherichia coli swim on the right-hand side. Nature 435:1271–74 [Google Scholar]
  35. Doi M, Edwards SF. 1988. The Theory of Polymer Dynamics New York: Oxford Univ. Press
  36. Drescher K, Dunkel J, Cisneros LH, Ganguly S, Goldstein RE. 2011. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. PNAS 108:10940–45 [Google Scholar]
  37. Dunstan J, Miño G, Clément E, Soto R. 2012. A two-sphere model for bacteria swimming near solid surfaces. Phys. Fluids 24:011901 [Google Scholar]
  38. Ehlers K, Oster G. 2012. On the mysterious propulsion of Synechococcus. PLOS ONE 7:e36081 [Google Scholar]
  39. Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA. 1997. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13:457–512 [Google Scholar]
  40. Fauci LJ, Dillon R. 2006. Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38:371–94 [Google Scholar]
  41. Flores H, Lobaton E, Mendez-Diez S, Tlupova S, Cortez R. 2005. A study of bacterial flagellar bundling. Bull. Math. Biol. 67:137–68 [Google Scholar]
  42. Frymier PD, Ford RM, Berg HC, Cummings PT. 1995. Three-dimensional tracking of motile bacteria near a solid planar surface. PNAS 92:6195–99 [Google Scholar]
  43. Fu HC, Powers TR, Wolgemuth HC. 2007. Theory of swimming filaments in viscoelastic media. Phys. Rev. Lett. 99:258101 [Google Scholar]
  44. Fujii M, Shibata S, Aizawa SI. 2008. Polar, peritrichous, and lateral flagella belong to three distinguishable flagellar families. J. Mol. Biol. 379:273–83 [Google Scholar]
  45. Gachelin J, Miño G, Berthet H, Lindner A, Rousselet A, Clément E. 2013. Non-Newtonian viscosity of Escherichia coli suspensions. Phys. Rev. Lett. 110:268103 [Google Scholar]
  46. Gaffney EA, Gadelha H, Smith DJ, Blake JR, Kirkman-Brown JC. 2011. Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech. 43:501–28 [Google Scholar]
  47. Galajda P, Keymer JE, Chaikin P, Austin RH. 2007. A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189:8704–7 [Google Scholar]
  48. Ghosh A, Fischer P. 2009. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9:2243–45 [Google Scholar]
  49. Giacché D, Ishikawa T, Yamaguchi T. 2010. Hydrodynamic entrapment of bacteria swimming near a solid surface. Phys. Rev. E 82:056309 [Google Scholar]
  50. Goldstein RE. 2015. Green algae as model organisms for biological fluid dynamics. Annu. Rev. Fluid Mech. 47:343–75 [Google Scholar]
  51. Goldstein SF, Buttle KF, Charon NW. 1996. Structural analysis of the Leptospiraceae and Borrelia burgdorferi by high-voltage electron microscopy. J. Bacteriol. 178:6539–45 [Google Scholar]
  52. Gray J, Hancock GJ. 1955. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32:802–14 [Google Scholar]
  53. Greenberg EP, Canale-Parola E. 1977. Motility of flagellated bacteria in viscous environments. J. Bacteriol. 132:356–58 [Google Scholar]
  54. Guasto JS, Rusconi R, Stocker R. 2012. Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44:373–400 [Google Scholar]
  55. Haines BM, Sokolov A, Aranson IS, Berlyand L, Karpeev DA. 2009. Three-dimensional model for the effective viscosity of bacterial suspensions. Phys. Rev. E 80:041922 [Google Scholar]
  56. Hancock GJ. 1953. The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. A 217:96–121 [Google Scholar]
  57. Harshey RM. 2003. Bacterial motility on a surface: many ways to a common goal. Annu. Rev. Microbiol. 57:249–73 [Google Scholar]
  58. Hasegawa K, Yamashita I, Namba K. 1998. Quasi- and nonequivalence in the structure of bacterial flagellar filament. Biophys. J. 74:569–75 [Google Scholar]
  59. Hernandez-Ortiz JP, Stoltz CG, Graham MD. 2005. Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95:204501 [Google Scholar]
  60. Higdon JJL. 1979. Hydrodynamics of flagellar propulsion: helical waves. J. Fluid Mech. 94:331–51 [Google Scholar]
  61. Hill J, Kalkanci O, McMurry JL, Koser H. 2007. Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys. Rev. Lett. 98:068101 [Google Scholar]
  62. Hotani H. 1980. Micro-video study of moving bacterial flagellar filaments. II. Polymorphic transition in alcohol. Biosystems 12:325–30 [Google Scholar]
  63. Hotani H. 1982. Micro-video study of moving bacterial flagellar filaments. III. Cyclic transformation induced by mechanical force. J. Mol. Biol. 156:791–806 [Google Scholar]
  64. Hyon Y, Marcos, Powers TR, Stocker R, Fu HC. 2012. The wiggling trajectories of bacteria. J. Fluid Mech. 705:58–76 [Google Scholar]
  65. Imhoff JF, Trüper HG. 1977. Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch. Microbiol. 114:115–21 [Google Scholar]
  66. Ishikawa T, Sekiya G, Imai Y, Yamaguchi T. 2007. Hydrodynamic interaction between two swimming bacteria. Biophys. J. 93:2217–25 [Google Scholar]
  67. Janssen PJA, Graham MD. 2011. Coexistence of tight and loose bundled states in a model of bacterial flagellar dynamics. Phys. Rev. E 84:011910 [Google Scholar]
  68. Jarrell KF, McBride MJ. 2008. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6:466–76 [Google Scholar]
  69. Johnson RE. 1980. An improved slender body theory for Stokes flow. J. Fluid Mech. 99:411–31 [Google Scholar]
  70. Johnson RE, Brokaw CJ. 1979. Flagellar hydrodynamics: a comparison between resistive-force theory and slender-body theory. Biophys. J. 25:113–27 [Google Scholar]
  71. Kaiser GE, Doetsch RN. 1975. Enhanced translational motion of Leptospira in viscous environments. Nature 255:656–57 [Google Scholar]
  72. Kanehl P, Ishikawa T. 2014. Fluid mechanics of swimming bacteria with multiple flagella. Phys. Rev. E 89:042704 [Google Scholar]
  73. Kasyap TV, Koch DL, Wu M. 2014. Hydrodynamic tracer diffusion in suspensions of swimming bacteria. Phys. Fluids 26:081901 [Google Scholar]
  74. Kaya T, Koser H. 2009. Characterization of hydrodynamic surface interactions of Escherichia coli cell bodies in shear flow. Phys. Rev. Lett. 103:138103 [Google Scholar]
  75. Kaya T, Koser H. 2012. Direct upstream motility in Escherichia coli. Biophys. J. 102:1514–23 [Google Scholar]
  76. Kearns DB. 2010. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8:634–44 [Google Scholar]
  77. Keller JB. 1974. Effect of viscosity on swimming velocity of bacteria. PNAS 71:3253–54 [Google Scholar]
  78. Keller JB, Rubinow SI. 1976. Swimming of flagellated microorganisms. Biophys. J. 16:151–70 [Google Scholar]
  79. Kim MJ, Bird JC, Parys AJV, Breuer KS, Powers TR. 2003. A macroscopic scale model of bacterial flagellar bundling. PNAS 100:15481–85 [Google Scholar]
  80. Kim MJ, Breuer KS. 2004. Enhanced diffusion due to motile bacteria. Phys. Fluids 16:L78–81 [Google Scholar]
  81. Kim MJ, Powers TR. 2004. Hydrodynamic interactions between rotating helices. Phys. Rev. E 69:061910 [Google Scholar]
  82. Kim MJ, Powers TR. 2005. Deformation of a helical filament by flow and electric or magnetic fields. Phys. Rev. E 71:021914 [Google Scholar]
  83. Kim S, Karrila JS. 1991. Microhydrodynamics: Principles and Selected Applications Boston: Butterworth-Heinemann
  84. Koch DL, Subramanian G. 2011. Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43:637–59 [Google Scholar]
  85. Lauga E. 2007. Propulsion in a viscoelastic fluid. Phys. Fluids 19:083104 [Google Scholar]
  86. Lauga E. 2014. Locomotion in complex fluids: integral theorems. Phys. Fluids 26:081902 [Google Scholar]
  87. Lauga E, DiLuzio WR, Whitesides GM, Stone HA. 2006. Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90:400–12 [Google Scholar]
  88. Lauga E, Powers TR. 2009. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72:096601 [Google Scholar]
  89. Leifson E. 1960. Atlas of Bacterial Flagellation New York: Academic
  90. Lemelle L, Palierne JF, Chatre E, Vaillant C, Place C. 2013. Curvature reversal of the circular motion of swimming bacteria probes for slip at solid/liquid interfaces. Soft Matter 9:9759–62 [Google Scholar]
  91. Leshansky AM. 2009. Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments. Phys. Rev. E 80:051911 [Google Scholar]
  92. Li G, Tam LK, Tang JX. 2008. Amplified effect of Brownian motion in bacterial near-surface swimming. PNAS 105:18355–59 [Google Scholar]
  93. Liao Q, Subramanian G, DeLisa MP, Koch DL, Wu MM. 2007. Pair velocity correlations among swimming Escherichia coli bacteria are determined by force-quadrupole hydrodynamic interactions. Phys. Fluids 19:061701 [Google Scholar]
  94. Lighthill J. 1975. Mathematical Biofluiddynamics Philadelphia: SIAM
  95. Lighthill J. 1976. Flagellar hydrodynamics: the John von Neumann lecture, 1975. SIAM Rev. 18:161–230 [Google Scholar]
  96. Lim S, Peskin CS. 2012. Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method. Phys. Rev. E 85:036307 [Google Scholar]
  97. Lin Z, Thiffeault JL, Childress S. 2011. Stirring by squirmers. J. Fluid Mech. 669:167–77 [Google Scholar]
  98. Liu B, Breuer KS, Powers TR. 2013. Helical swimming in Stokes flow using a novel boundary-element method. Phys. Fluids 25:061902 [Google Scholar]
  99. Liu B, Breuer KS, Powers TR. 2014a. Propulsion by a helical flagellum in a capillary tube. Phys. Fluids 26:011701 [Google Scholar]
  100. Liu B, Gulino M, Morse M, Tang JX, Powers TR, Breuer KS. 2014b. Helical motion of the cell body enhances Caulobacter crescentus motility. PNAS 111:11252–56 [Google Scholar]
  101. Liu B, Powers TR, Breuer KS. 2011. Force-free swimming of a model helical flagellum in viscoelastic fluids. PNAS 108:19516–20 [Google Scholar]
  102. Lopez D, Lauga E. 2014. Dynamics of swimming bacteria at complex interfaces. Phys. Fluids 26:071902 [Google Scholar]
  103. Lytle DA, Johnson CH, Rice EW. 2002. A systematic comparison of the electrokinetic properties of environmentally important microorganisms in water. Colloids Surf. B 24:91–101 [Google Scholar]
  104. Macnab RM. 1977. Bacterial flagella rotating in bundles: a study in helical geometry. PNAS 74:221–25 [Google Scholar]
  105. Madigan MT, Martinko JM, Stahl D, Clark DP. 2010. Brock Biology of Microorganisms San Francisco: Benjamin Cummings, 13th ed..
  106. Magariyama Y, Ichiba M, Nakata K, Baba K, Ohtani T. et al. 2005. Difference in bacterial motion between forward and backward swimming caused by the wall effect. Biophys. J. 88:3648–58 [Google Scholar]
  107. Magariyama Y, Kudo S. 2002. A mathematical explanation of an increase in bacterial swimming speed with viscosity in linear-polymer solutions. Biophys. J. 83:733–39 [Google Scholar]
  108. Magariyama Y, Sugiyama S, Kudo S. 2001. Bacterial swimming speed and rotation rate of bundled flagella. FEMS Microbiol. Lett. 199:125–29 [Google Scholar]
  109. Magariyama Y, Sugiyama S, Muramoto K, Kawagishi I, Imae Y, Kudo S. 1995. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed. Biophys. J. 69:2154–62 [Google Scholar]
  110. Männik J, Driessen R, Galajda P, Keymer JE, Dekker C. 2009. Bacterial growth and motility in sub-micron constrictions. PNAS 106:14861–66 [Google Scholar]
  111. Marcos, Fu HC, Powers TR, Stocker R. 2012. Bacterial rheotaxis. PNAS 109:4780–85 [Google Scholar]
  112. Martinez VA, Schwarz-Linek J, Reufer M, Wilson LG, Morozov AN, Poon WCK. 2014. Flagellated bacterial motility in polymer solutions. PNAS 111:17771–76 [Google Scholar]
  113. Miño GL, Dunstan J, Rousselet A, Clément E, Soto R. 2013. Induced diffusion of tracers in a bacterial suspension: theory and experiments. J. Fluid Mech. 729:423–44 [Google Scholar]
  114. Mitchell JG. 2002. The energetics and scaling of search strategies in bacteria. Am. Nat. 160:727–40 [Google Scholar]
  115. Morse M, Huang A, Li G, Maxey MR, Tang JX. 2013. Molecular adsorption steers bacterial swimming at the air/water interface. Biophys. J. 105:21–28 [Google Scholar]
  116. Namba K, Vonderviszt F. 1997. Molecular architecture of bacterial flagellum. Q. Rev. Biophys. 30:1–65 [Google Scholar]
  117. Olson SD, Lim S, Cortez R. 2013. Modeling the dynamics of an elastic rod with intrinsic curvature and twist using a regularized Stokes formulation. J. Comp. Phys. 238:169–87 [Google Scholar]
  118. Ottemann KM, Miller JF. 1997. Roles for motility in bacterial-host interactions. Mol. Microbiol. 24:1109–17 [Google Scholar]
  119. Pedley TJ, Kessler JO. 1992. Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24:313–58 [Google Scholar]
  120. Phan-Thien N, Tran-Cong T, Ramia M. 1987. A boundary-element analysis of flagellar propulsion. J. Fluid Mech. 184:533–49 [Google Scholar]
  121. Purcell EM. 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11 [Google Scholar]
  122. Purcell EM. 1997. The efficiency of propulsion by a rotating flagellum. PNAS 94:11307–11 [Google Scholar]
  123. Pushkin DO, Shum H, Yeomans JM. 2013. Fluid transport by individual microswimmers. J. Fluid Mech. 726:5–25 [Google Scholar]
  124. Qian B, Jiang H, Gagnon DA, Breuer KS, Powers TR. 2009. Minimal model for synchronization induced by hydrodynamic interactions. Phys. Rev. E 80:061919 [Google Scholar]
  125. Ramia M, Tullock DL, Phan-Thien N. 1993. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 65:755–78 [Google Scholar]
  126. Reichert M, Stark H. 2005. Synchronization of rotating helices by hydrodynamic interactions. Eur. Phys. J. E 17:493–500 [Google Scholar]
  127. Reid SW, Leake MC, Chandler JH, Lo CJ, Armitage JP, Berry RM. 2006. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. PNAS 103:8066–71 [Google Scholar]
  128. Reigh SY, Winkler RG, Gompper G. 2012. Synchronization and bundling of anchored bacterial flagella. Soft Matter 8:4363–72 [Google Scholar]
  129. Rusconi R, Guasto JS, Stocker R. 2014. Bacterial transport suppressed by fluid shear. Nat. Phys. 10:212–17 [Google Scholar]
  130. Saintillan D. 2010a. Extensional rheology of active suspensions. Phys. Rev. E 81:056307 [Google Scholar]
  131. Saintillan D. 2010b. The dilute rheology of swimming suspensions: a simple kinetic model. J. Exp. Mech. 50:1275–81 [Google Scholar]
  132. Schneider W, Doetsch RN. 1974. Effect of viscosity on bacterial motility. J. Bacteriol. 117:696–701 [Google Scholar]
  133. Schnitzer MJ. 1993. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48:2553–68 [Google Scholar]
  134. Shaevitz JW, Lee JY, Fletcher DA. 2005. Spiroplasma swim by a processive change in body helicity. Cell 122:941–45 [Google Scholar]
  135. Shoesmith JG. 1960. The measurement of bacterial motility. J. Gen. Microbiol. 22:528–35 [Google Scholar]
  136. Silverman M, Simon M. 1974. Flagellar rotation and the mechanism of bacterial motility. Nature 249:73–74 [Google Scholar]
  137. Sokolov A, Apodaca MM, Grzybowski BA, Aranson IS. 2010. Swimming bacteria power microscopic gears. PNAS 107:969–74 [Google Scholar]
  138. Sokolov A, Aranson IS. 2009. Reduction of viscosity in suspension of swimming bacteria. Phys. Rev. Lett. 103:148101 [Google Scholar]
  139. Son K, Guasto JS, Stocker R. 2013. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9:494–98 [Google Scholar]
  140. Spagnolie SE. 2015. Complex Fluids in Biological Systems New York: Springer
  141. Spagnolie SE, Lauga E. 2011. Comparative hydrodynamics of bacterial polymorphism. Phys. Rev. Lett. 106:058103 [Google Scholar]
  142. Spagnolie SE, Lauga E. 2012. Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700:105–47 [Google Scholar]
  143. Spagnolie SE, Liu B, Powers TR. 2013. Locomotion of helical bodies in viscoelastic fluids: enhanced swimming at large helical amplitudes. Phys. Rev. Lett. 111:068101 [Google Scholar]
  144. Srigiriraju SV, Powers TR. 2006. Model for polymorphic transitions in bacterial flagella. Phys. Rev. E 73:011902 [Google Scholar]
  145. Stocker R, Seymour JR. 2012. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol. Mol. Biol. Rev. 76:792–812 [Google Scholar]
  146. Taylor GI. 1967. Low-Reynolds-number flows. US Natl. Comm. Fluid Mech. Films video. https://www.youtube.com/watch?v=51-6QCJTAjU
  147. Thomas D, Morgan DG, DeRosier DJ. 2001. Structures of bacterial flagellar motors from two FliF-FliG gene fusion mutants. J. Bacteriol. 183:6404–12 [Google Scholar]
  148. Turner L, Ryu WS, Berg HC. 2000. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182:2793–801 [Google Scholar]
  149. Vanloosdrecht MCM, Lyklema J, Norde W, Zehnder AJB. 1990. Influence of interfaces on microbial activity. Microbiol. Rev. 54:75–87 [Google Scholar]
  150. Vig DK, Wolgemuth CW. 2012. Swimming dynamics of the Lyme disease spirochete. Phys. Rev. Lett. 109:218104 [Google Scholar]
  151. Vigeant MAS, Ford RM. 1997. Interactions between motile Escherichia coli and glass in media with various ionic strengths, as observed with a three-dimensional tracking microscope. Appl. Environ. Microbiol. 63:3474–79 [Google Scholar]
  152. Vogel R, Stark H. 2010. Force-extension curves of bacterial flagella. Eur. Phys. J. E 33:259–71 [Google Scholar]
  153. Vogel R, Stark H. 2012. Motor-driven bacterial flagella and buckling instabilities. Eur. Phys. J. E 35:15 [Google Scholar]
  154. Vogel R, Stark H. 2013. Rotation-induced polymorphic transitions in bacterial flagella. Phys. Rev. Lett. 110:158104 [Google Scholar]
  155. Vogel S. 1996. Life in Moving Fluids Princeton, NJ: Princeton Univ. Press
  156. Wada H, Netz RR. 2007. Model for self-propulsive helical filaments: kink-pair propagation. Phys. Rev. Lett. 99:108102 [Google Scholar]
  157. Wada H, Netz RR. 2008. Discrete elastic model for stretching-induced flagellar polymorphs. Eur. Phys. Lett. 82:28001 [Google Scholar]
  158. Watari N, Larson RG. 2010. The hydrodynamics of a run-and-tumble bacterium propelled by polymorphic helical flagella. Biophys. J. 98:12–17 [Google Scholar]
  159. Weibull C. 1950. Electrophoretic and titrimetric measurements on bacterial flagella. Acta Chem. Scand. 4:260–67 [Google Scholar]
  160. Wilking JN, Angelini TE, Seminara A, Brenner MP, Weitz DA. 2011. Biofilms as complex fluids. MRS Bull. 36:385–91 [Google Scholar]
  161. Wolfe AJ, Conley MP, Berg HC. 1988. Acetyladenylate plays a role in controlling the direction of flagellar rotation. PNAS 85:6711–15 [Google Scholar]
  162. Wu XL, Libchaber A. 2000. Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84:3017–20 [Google Scholar]
  163. Xie L, Altindal T, Chattopadhyay S, Wu XL. 2011. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. PNAS 108:2246–51 [Google Scholar]
  164. Yuan J, Fahrner KA, Turner L, Berg HC. 2010. Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor. PNAS 107:12846–49 [Google Scholar]
  165. Zhang L, Peyer KE, Nelson BJ. 2010. Artificial bacterial flagella for micromanipulation. Lab Chip 10:2203–15 [Google Scholar]
  166. Zhou S, Sokolov S, Lavrentovich OD, Aranson IS. 2014. Living liquid crystals. PNAS 111:1265–70 [Google Scholar]
/content/journals/10.1146/annurev-fluid-122414-034606
Loading
/content/journals/10.1146/annurev-fluid-122414-034606
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error