1932

Abstract

Recent insights into the relationship between the human gut and its resident microbiota have revolutionized our appreciation of this symbiosis and its impact on health and disease development. Accumulating evidence on probiotic and prebiotic interventions has demonstrated promising effects on promoting gastrointestinal health by modulating the microbiota toward the enrichment of beneficial microorganisms. However, the precise mechanisms of how prebiotic nondigestible oligosaccharides are metabolized by these beneficial microbes in vivo remain largely unknown. Genome sequencing of probiotic lactobacilli and bifidobacteria has revealed versatile carbohydrate metabolic gene repertoires dedicated to the catabolism of various oligosaccharides. In this review, we highlight recent findings on the genetic mechanisms involved in the utilization of prebiotic fructooligosaccharides, β-galactooligosaccharides, human milk oligosaccharides, and other prebiotic candidates by these probiotic microbes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-022814-015706
2015-04-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/food/6/1/annurev-food-022814-015706.html?itemId=/content/journals/10.1146/annurev-food-022814-015706&mimeType=html&fmt=ahah

Literature Cited

  1. Abou Hachem M, Møller MS, Andersen JM, Fredslund F, Majumder A. et al. 2013. A snapshot into the metabolism of isomalto-oligosaccharides in probiotic bacteria. J. Appl. Glycosci. 60:95–100 [Google Scholar]
  2. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL. et al. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. PNAS 102:3906–12 [Google Scholar]
  3. Amaretti A, Bernardi T, Leonardi A, Raimondi S, Zanoni S, Rossi M. 2013. Fermentation of xylo-oligosaccharides by Bifidobacterium adolescentis DSMZ 18350: kinetics, metabolism, and β-xylosidase activities. Appl. Microbiol. Biotechnol. 97:3109–17 [Google Scholar]
  4. Andersen JM, Barrangou R, Abou Hachem M, Lahtinen S, Goh YJ. et al. 2011. Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus. PNAS 108:17785–90 [Google Scholar]
  5. Andersen JM, Barrangou R, Abou Hachem M, Lahtinen SJ, Goh YJ. et al. 2012. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM. PLOS ONE 7:e44409 [Google Scholar]
  6. Andersen JM, Barrangou R, Abou Hachem M, Lahtinen SJ, Goh YJ. et al. 2013. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genomics 14:312 [Google Scholar]
  7. Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T. et al. 2011. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J. Biol. Chem. 286:34583–92 [Google Scholar]
  8. Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E. et al. 2009. Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 19:1010–17 [Google Scholar]
  9. Azcarate-Peril MA, Altermann E, Goh YJ, Tallon R, Sanozky-Dawes RB. et al. 2008. Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl. Environ. Microbiol. 74:4610–25 [Google Scholar]
  10. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. 2005. Host-bacterial mutualism in the human intestine. Science 307:1915–20 [Google Scholar]
  11. Backhed F, Manchester JK, Semenkovich CF, Gordon JI. 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. PNAS 104:979–84 [Google Scholar]
  12. Barboza M, Sela DA, Pirim C, Locascio RG, Freeman SL. et al. 2009. Glycoprofiling bifidobacterial consumption of galacto-oligosaccharides by mass spectrometry reveals strain-specific, preferential consumption of glycans. Appl. Environ. Microbiol. 75:7319–25 [Google Scholar]
  13. Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR. 2003. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. PNAS 100:8957–62 [Google Scholar]
  14. Barrangou R, Azcarate-Peril MA, Duong T, Conners SB, Kelly RM, Klaenhammer TR. 2006. Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. PNAS 103:3816–21 [Google Scholar]
  15. Blatchford P, Ansell J, de Godoy MRC, Fahey G, Garcia-Mazcorro JF. et al. 2013. Prebiotic mechanisms, functions and applications. Int. J. Probiotics Prebiotics 8:109–32 [Google Scholar]
  16. Bode L. 2006. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J. Nutr. 136:2127–30 [Google Scholar]
  17. Boehm G, Stahl B. 2007. Oligosaccharides from milk. J. Nutr. 137:847S–49S [Google Scholar]
  18. Burne RA, Penders JE. 1994. Differential localization of the Streptococcus mutans GS-5 fructan hydrolase enzyme, FruA. FEMS Microbiol. Lett. 121:243–49 [Google Scholar]
  19. Bustos Fernandez LM, Lasa JS, Man F. 2014. Intestinal microbiota: its role in digestive diseases. J. Clin. Gastroenterol. 48:657–66 [Google Scholar]
  20. Cantarel BL, Lombard V, Henrissat B. 2012. Complex carbohydrate utilization by the healthy human microbiome. PLOS ONE 7:e28742 [Google Scholar]
  21. Cecchini DA, Laville E, Laguerre S, Robe P, Leclerc M. et al. 2013. Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria. PLOS ONE 8:e72766 [Google Scholar]
  22. Childs CE, Röytiö H, Alhoniemi E, Fekete AA, Forssten SD. et al. 2014. Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: a double-blind, placebo-controlled, randomised, factorial cross-over study. Br. J. Nutr. 111:1945–56 [Google Scholar]
  23. Davis LM, Martinez I, Walter J, Goin C, Hutkins RW. 2011. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLOS ONE 6:e25200 [Google Scholar]
  24. Dolejska M, Villa L, Minoia M, Guardabassi L, Carattoli A. 2014. Complete sequences of IncHI1 plasmids carrying blaCTX-M-1 and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution. J. Antimicrob. Chemother. 69:2388–93 [Google Scholar]
  25. Ehrmann MA, Korakli M, Vogel RF. 2003. Identification of the gene for β-fructofuranosidase of Bifidobacterium lactis DSM10140T and characterization of the enzyme expressed in Escherichia coli. Curr. Microbiol. 46:391–97 [Google Scholar]
  26. Ejby M, Fredslund F, Vujicic-Zagar A, Svensson B, Slotboom DJ, Abou Hachem M. 2013. Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04. Mol. Microbiol. 90:1100–12 [Google Scholar]
  27. Francl AL, Hoeflinger JL, Miller MJ. 2012. Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization. Microbiology 158:944–52 [Google Scholar]
  28. Garrido D, Ruiz-Moyano S, Jimenez-Espinoza R, Eom HJ, Block DE, Mills DA. 2013. Utilization of galacto-oligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol. 33:262–70 [Google Scholar]
  29. Gibson GR, Beatty ER, Wang X, Cummings JH. 1995. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975–82 [Google Scholar]
  30. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125:1401–12 [Google Scholar]
  31. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A. et al. 2010. Dietary prebiotics: current status and new definition. Food Sci. Technol. Bull. Funct. Foods 7:1–19 [Google Scholar]
  32. Gilad O, Jacobsen S, Stuer-Lauridsen B, Pedersen MB, Garrigues C, Svensson B. 2010. Combined transcriptome and proteome analysis of Bifidobacterium animalis subsp. lactis BB-12 grown on xylo-oligosaccharides and a model of their utilization. Appl. Environ. Microbiol. 76:7285–91 [Google Scholar]
  33. Goffin D, Delzenne N, Blecker C, Hanon E, Deroanne C, Paquot M. 2011. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit. Rev. Food Sci. Nutr. 51:394–409 [Google Scholar]
  34. Goh YJ, Lee JH, Hutkins RW. 2007. Functional analysis of the fructooligosaccharide utilization operon in Lactobacillus paracasei 1195. Appl. Environ. Microbiol. 73:5716–24 [Google Scholar]
  35. Goh YJ, Zhang C, Benson AK, Schlegel V, Lee JH, Hutkins RW. 2006. Identification of a putative operon involved in fructooligosaccharide utilization by Lactobacillus paracasei. Appl. Environ. Microbiol. 72:7518–30 [Google Scholar]
  36. Goldsmith JR, Sartor RB. 2014. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J. Gastroenterol. 49:785–98 [Google Scholar]
  37. Gonzalez R, Klaassens ES, Malinen E, de Vos WM, Vaughan EE. 2008. Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide. Appl. Environ. Microbiol. 74:4686–94 [Google Scholar]
  38. Gosling A, Stevens GW, Barber AR, Kentish SE, Gras SL. 2010. Recent advances refining galactooligosaccharide production from lactose. Food Chem. 121:307–18 [Google Scholar]
  39. Grenham S, Clarke G, Cryan JF, Dinan TG. 2011. Brain-gut-microbe communication in health and disease. Front. Physiol. 2:94 [Google Scholar]
  40. Hartemink R, Quataert MC, van Laere KM, Nout MJ, Rombouts FM. 1995. Degradation and fermentation of fructo-oligosaccharides by oral streptococci. J. Appl. Bacteriol. 79:551–57 [Google Scholar]
  41. Hidaka H, Hirayama M, Sumi N. 1988. A fructooligosaccharide-producing enzyme from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 52:1181–87 [Google Scholar]
  42. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ. et al. 2014. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11:506–14 [Google Scholar]
  43. Hinz SW, Pastink MI, van den Broek LA, Vincken JP, Voragen AG. 2005. Bifidobacterium longum endogalactanase liberates galactotriose from type I galactans. Appl. Environ. Microbiol. 71:5501–10 [Google Scholar]
  44. Imamura L, Hisamitsu K, Kobashi K. 1994. Purification and characterization of β-fructofuranosidase from Bifidobacterium infantis. Biol. Pharm. Bull. 17:596–602 [Google Scholar]
  45. Janer C, Rohr LM, Pelaez C, Laloi M, Cleusix V. et al. 2004. Hydrolysis of oligofructoses by the recombinant β-fructofuranosidase from Bifidobacterium lactis. Syst. Appl. Microbiol. 27:279–85 [Google Scholar]
  46. Johansson ME, Larsson JM, Hansson GC. 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. PNAS 108:Suppl. 14659–65 [Google Scholar]
  47. Katayama T, Sakuma A, Kimura T, Makimura Y, Hiratake J. et al. 2004. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-α-l-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J. Bacteriol. 186:4885–93 [Google Scholar]
  48. Kitaoka M, Tian J, Nishimoto M. 2005. Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum. Appl. Environ. Microbiol. 71:3158–62 [Google Scholar]
  49. Klaassens ES, Ben-Amor K, Vriesema A, Vaughan EE, de Vos W. 2011. The fecal bifidobacterial transcriptome of adults: a microarray approach. Gut Microbes 2:217–26 [Google Scholar]
  50. Kullin B, Abratt VR, Reid SJ. 2006. A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization. Appl. Microbiol. Biotechnol. 72:975–81 [Google Scholar]
  51. Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. 2010. Substrate specificity of three recombinant α-l-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochem. Biophys. Res. Commun. 402:644–50 [Google Scholar]
  52. Le Bouguénec C, Schouler C. 2011. Sugar metabolism, an additional virulence factor in enterobacteria. Int. J. Med. Microbiol. 301:1–6 [Google Scholar]
  53. Lee JH, O'Sullivan DJ. 2010. Genomic insights into bifidobacteria. Microbiol. Mol. Biol. Rev. 74:378–416 [Google Scholar]
  54. Likotrafiti E, Tuohy KM, Gibson GR, Rastall RA. 2014. An in vitro study of the effect of probiotics, prebiotics and synbiotics on the elderly faecal microbiota. Anaerobe 27:50–55 [Google Scholar]
  55. Linke CM, Woodiga SA, Meyers DJ, Buckwalter CM, Salhi HE, King SJ. 2013. The ABC transporter encoded at the pneumococcal fructooligosaccharide utilization locus determines the ability to utilize long- and short-chain fructooligosaccharides. J. Bacteriol. 195:1031–41 [Google Scholar]
  56. LoCascio RG, Desai P, Sela DA, Weimer B, Mills DA. 2010. Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. Appl. Environ. Microbiol. 76:7373–81 [Google Scholar]
  57. Mäkeläinen H, Hasselwander O, Rautonen N, Ouwehand AC. 2009. Panose, a new prebiotic candidate. Lett. Appl. Microbiol. 49:666–72 [Google Scholar]
  58. Mäkeläinen H, Saarinen M, Stowell J, Rautonen N, Ouwehand AC. 2010. Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Benef. Microbes 1:139–48 [Google Scholar]
  59. Makras L, Van Acker G, De Vuyst L. 2005. Lactobacillus paracasei subsp. paracasei 8700:2 degrades inulin-type fructans exhibiting different degrees of polymerization. Appl. Environ. Microbiol. 71:6531–37 [Google Scholar]
  60. Marcobal A, Barboza M, Froehlich JW, Block DE, German JB. et al. 2010. Consumption of human milk oligosaccharides by gut-related microbes. J. Agric. Food Chem. 58:5334–40 [Google Scholar]
  61. Møller MS, Fredslund F, Majumder A, Nakai H, Poulsen JCN. et al. 2012. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. J. Bacteriol. 194:4249–59 [Google Scholar]
  62. Møller MS, Goh YJ, Viborg AH, Andersen JM, Klaenhammer TR. et al. 2014. Recent insight in α-glucan metabolism in probiotic bacteria. Biologia 69:713–21 [Google Scholar]
  63. Moro G, Minoli I, Mosca M, Fanaro S, Jelinek J. et al. 2002. Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J. Pediatr. Gastroenterol. Nutr. 34:291–95 [Google Scholar]
  64. Muramatsu K, Onodera S, Kikuchi M, Shiomi N. 1992. The production of β-fructofuranosidase from Bifidobacterium spp. Biosci. Biotech. Biochem. 56:1451–54 [Google Scholar]
  65. Niness KR. 1999. Inulin and oligofructose: what are they?. J. Nutr. 129:1402S–6S [Google Scholar]
  66. Nishimoto M, Kitaoka M. 2007. Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl. Environ. Microbiol. 73:6444–49 [Google Scholar]
  67. O'Connell Motherway M, Fitzgerald GF, Neirynck S, Ryan S, Steidler L, van Sinderen D. 2008. Characterization of ApuB, an extracellular type II amylopullulanase from Bifidobacterium breve UCC2003. Appl. Environ. Microbiol. 74:6271–79 [Google Scholar]
  68. O'Connell Motherway M, Fitzgerald GF, van Sinderen D. 2010. Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003. Microb. Biotechnol. 4:403–16 [Google Scholar]
  69. O'Connell Motherway M, Kinsella M, Fitzgerald GF, van Sinderen D. 2013. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb. Biotechnol. 6:67–79 [Google Scholar]
  70. O'Donnell MM, Forde BM, Neville B, Ross PR, O'Toole PW. 2011. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microb. Cell Fact. 10:Suppl. 1S12 [Google Scholar]
  71. Oku T, Tokunaga T, Hosoya N. 1984. Nondigestibility of a new sweetener, “Neosugar,” in the rat. J. Nutr. 114:1574–81 [Google Scholar]
  72. Omori T, Ueno K, Muramatsu K, Kikuchi M, Onodera S, Shiomi N. 2010. Characterization of recombinant β-fructofuranosidase from Bifidobacterium adolescentis G1. Chem. Cent. J. 4:9 [Google Scholar]
  73. Paludan-Müller C, Gram L, Rattray FP. 2002. Purification and characterisation of an extracellular fructan β-fructosidase from a Lactobacillus pentosus strain isolated from fermented fish. Syst. Appl. Microbiol. 25:13–20 [Google Scholar]
  74. Parche S, Amon J, Jankovic I, Rezzonico E, Beleut M. et al. 2007. Sugar transport systems of Bifidobacterium longum NCC2705. J. Mol. Microbiol. Biotechnol. 12:9–19 [Google Scholar]
  75. Petschow B, Dore J, Hibberd P, Dinan T, Reid G. et al. 2013. Probiotics, prebiotics, and the host microbiome: the science of translation. Ann. N.Y. Acad. Sci. 1306:1–17 [Google Scholar]
  76. Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR. 2007. Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J. Bacteriol. 189:4624–34 [Google Scholar]
  77. Porcheron G, Chanteloup NK, Trotereau A, Bree A, Schouler C. 2012. Effect of fructooligosaccharide metabolism on chicken colonization by an extra-intestinal pathogenic Escherichia coli strain. PLOS ONE 7:e35475 [Google Scholar]
  78. Porcheron G, Kut E, Canepa S, Maurel MC, Schouler C. 2011. Regulation of fructooligosaccharide metabolism in an extra-intestinal pathogenic Escherichia coli strain. Mol. Microbiol. 81:717–33 [Google Scholar]
  79. Rabiu BA, Jay AJ, Gibson GR, Rastall RA. 2001. Synthesis and fermentation properties of novel galacto-oligosaccharides by β-galactosidases from Bifidobacterium species. Appl. Environ. Microbiol. 67:2526–30 [Google Scholar]
  80. Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A. et al. 2005. Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl. Environ. Microbiol. 71:6150–58 [Google Scholar]
  81. Ryan SM, Fitzgerald GF, van Sinderen D. 2005. Transcriptional regulation and characterization of a novel β-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003. Appl. Environ. Microbiol. 71:3475–82 [Google Scholar]
  82. Ryan SM, Fitzgerald GF, van Sinderen D. 2006. Screening for and identification of starch-, amylopectin-, and pullulan-degrading activities in bifidobacterial strains. Appl. Environ. Microbiol. 72:5289–96 [Google Scholar]
  83. Saito K, Kondo K, Kojima I, Yokota A, Tomita F. 2000. Purification and characterization of 2,6-β-d-fructan 6-levanbiohydrolase from Streptomyces exfoliatus F3-2. Appl. Environ. Microbiol. 66:252–56 [Google Scholar]
  84. Saulnier DM, Molenaar D, de Vos WM, Gibson GR, Kolida S. 2007. Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl. Environ. Microbiol. 73:1753–65 [Google Scholar]
  85. Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B. et al. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. PNAS 99:14422–27 [Google Scholar]
  86. Schouler C, Taki A, Chouikha I, Moulin-Schouleur M, Gilot P. 2009. A genomic island of an extraintestinal pathogenic Escherichia coli strain enables the metabolism of fructooligosaccharides, which improves intestinal colonization. J. Bacteriol. 191:388–93 [Google Scholar]
  87. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F. et al. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. PNAS 105:18964–69 [Google Scholar]
  88. Sela DA, Mills DA. 2010. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18:298–307 [Google Scholar]
  89. Shin HY, Lee JH, Lee JY, Han YO, Han MJ, Kim DH. 2003. Purification and characterization of ginsenoside Ra-hydrolyzing β-d-xylosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium. Biol. Pharm. Bull. 26:1170–73 [Google Scholar]
  90. Tannock GW, Wilson CM, Loach D, Cook GM, Eason J. et al. 2012. Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach. ISME J. 6:927–38 [Google Scholar]
  91. Tilg H, Moschen AR. 2014. Microbiota and diabetes: an evolving relationship. Gut 63:1513–21 [Google Scholar]
  92. Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH. et al. 2010. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. PNAS 107:19514–19 [Google Scholar]
  93. Turroni F, Ventura M, Butto LF, Duranti S, O'Toole PW. et al. 2014. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell. Mol. Life Sci. 71:183–203 [Google Scholar]
  94. Urashima T, Asakuma S, Leo F, Fukuda K, Messer M, Oftedal OT. 2012. The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv. Nutr. 3:473S–82S [Google Scholar]
  95. Ventura M, O'Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR. et al. 2009. Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat. Rev. Microbiol. 7:61–71 [Google Scholar]
  96. Wada J, Ando T, Kiyohara M, Ashida H, Kitaoka M. et al. 2008. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl. Environ. Microbiol. 74:3996–4004 [Google Scholar]
  97. Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB. 2006. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl. Environ. Microbiol. 72:4497–99 [Google Scholar]
  98. Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB. 2007. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol. Nutr. Food Res. 51:1398–405 [Google Scholar]
  99. Xiao JZ, Takahashi S, Nishimoto M, Odamaki T, Yaeshima T. et al. 2010. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl. Environ. Microbiol. 76:54–59 [Google Scholar]
  100. Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M. et al. 2007. Evolution of symbiotic bacteria in the distal human intestine. PLOS Biol. 5:e156 [Google Scholar]
  101. Yen CH, Tseng YH, Kuo YW, Lee MC, Chen HL. 2011. Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people—a placebo-controlled, diet-controlled trial. Nutrition 27:445–50 [Google Scholar]
  102. Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M. et al. 2012. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology 22:361–68 [Google Scholar]
  103. Zeng H, Xue Y, Peng T, Shao W. 2007. Properties of xylanolytic enzyme system in bifidobacteria and their effects on the utilization of xylo-oligosaccharides. Food Chem. 101:1172–77 [Google Scholar]
/content/journals/10.1146/annurev-food-022814-015706
Loading
/content/journals/10.1146/annurev-food-022814-015706
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error