1932

Abstract

The ubiquity of endospores in soils facilitates their easy transfer routes to other environments, including cleanrooms and low-biomass sites required by many industries such as food production and processing. A bacterial endospore is a metabolically dormant form of life that is much more resistant to heat, desiccation, lack of nutrients, exposure to UV and gamma radiation, organic chemicals, and oxidizing agents than is a vegetative cell. For example, the heat tolerance of endospores depends on multiple factors such as sporulation temperature, core dehydration, and the presence of minerals and small, acid-soluble proteins (SASPs) in the core. This review describes our current understanding of the persistence mechanisms related to sporeformers' biochemical properties and discusses in detail spores' heat, radiation, and reactive chemical resistance. In addition, it discusses the impact of contamination with spores on many areas of human activity, spore adhesive properties, and biofilm contribution to resistance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-030713-092332
2015-04-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/food/6/1/annurev-food-030713-092332.html?itemId=/content/journals/10.1146/annurev-food-030713-092332&mimeType=html&fmt=ahah

Literature Cited

  1. Abhyankar W, Beek AT, Dekker H, Kort R, Brul S, de Koster CG. 2011. Gel-free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction. Proteomics 11:4541–50 [Google Scholar]
  2. Andersson A, Rönner U. 1998. Adhesion and removal of dormant, heat activated, and germinated spores of three strains of Bacillus cereus. Biofouling 93:51–67 [Google Scholar]
  3. Andersson A, Rönner U, Granum PE. 1995. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens?. Int. J. Food Microbiol. 28:145–55 [Google Scholar]
  4. Ash C, Priest FG, Collins MD. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–60 [Google Scholar]
  5. Atrih A, Foster SJ. 2001. Analysis of the role of bacterial endospore cortex structure in resistance properties and demonstration of its conservation amongst species. J. Appl. Microbiol. 91:364–72 [Google Scholar]
  6. Bae YY, Lee HJ, Kim SA, Rhee MS. 2009. Inactivation of Alicyclobacillus acidoterrestris spores in apple juice by supercritical carbon dioxide. Int. J. Food Microbiol. 136:95–100 [Google Scholar]
  7. Bagge E, Persson M, Johansson K-E. 2010. Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants. J. Appl. Microbiol. 109:1549–65 [Google Scholar]
  8. Bagyan I, Casillas-Martinez L, Setlow P. 1998. The katX gene, which codes for the catalase in spores of Bacillus subtlis, is a forespore-specific gene controlled by ςF, and KatX is essential for hydrogen peroxide resistance of the germinating spore. J. Bacteriol. 180:2057–62 [Google Scholar]
  9. Ballestra P, Cuq J-L. 1998. Influence of pressurized carbon dioxide on the thermal inactivation of bacterial and fungal spores. LWT-Food Sci. Technol. 31:84–88 [Google Scholar]
  10. Beaman TC, Gerhardt P. 1986. Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization and thermal adaptation. Appl. Environ. Microbiol. 52:1242–46 [Google Scholar]
  11. Beaman TC, Greenamyre JT, Corner TR, Pankratz HS, Gerhardt P. 1982. Bacterial spore heat resistance correlated with water content, wet density, and protoplast/sporoplast volume ratio. J. Bacteriol. 150:870–77 [Google Scholar]
  12. Bender GR, Marquis RE. 1985. Spore heat resistance and specific mineralization. Appl. Environ. Microbiol. 50:1414–21 [Google Scholar]
  13. Bond WW, Favero MS. 1977. Bacillus xerothermodurans sp. nov., a species forming endospores extremely resistant to dry heat. Int. J. Syst. Bacteriol. 27:157–60 [Google Scholar]
  14. Bond WW, Favero MS, Korber MR. 1973. Bacillus sp. ATCC 27380: a spore with extreme resistance to dry heat. Appl. Microbiol. 26:614–16 [Google Scholar]
  15. Bond WW, Favero MS, Petersen NJ, Marshall JH. 1970. Dry-heat inactivation kinetics of naturally occurring spore populations. Appl. Microbiol. 20:573–78 [Google Scholar]
  16. Bosak T, Losick LM, Pearson A. 2008. A polycyclic terpenoid that alleviates oxidative stress. Proc. Natl. Acad. Sci. 105:6725–29 [Google Scholar]
  17. Bower CK, Daeschel MA. 1999. Resistance responses of microorganisms in food environments. Int. J. Food Microbiol. 50:33–44 [Google Scholar]
  18. Branda SS, Chu F, Kearns DB, Losick R, Kolter R. 2006. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 59:1229–38 [Google Scholar]
  19. Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. 2001. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. 98:11621–26 [Google Scholar]
  20. Branda SS, Vik A, Friedman L, Kolter R. 2005. Biofilm: the matrix revisited. Trends Microbiol. 13:20–26 [Google Scholar]
  21. Bridier A, del Pilar Sanchez-Vizuete M, Le Coq D, Aymerich S, Meylheuc T. et al. 2012. Biofilms of Bacillus subtilis hospital isolate protect Staphylococcus aureus from biocide action. PLoS ONE 7:1–10 [Google Scholar]
  22. Bridier A, Le Coq D, Dubois-Brissonnet F, Thomas V, Aymerich S, Briandet R. 2011. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging. PLoS ONE 6:1–10 [Google Scholar]
  23. Cabrera-Martinez R-M, Setlow B, Setlow P. 2002. Studies on the mechanisms of the sporicidal action of ortho-phthalaldehyde. J. Appl. Microbiol. 92:675–80 [Google Scholar]
  24. Cano RJ, Borucki MK. 1995. Revival and identification of bacterial spores in 25–40 million-year-old Dominican amber. Science 19:1060–64 [Google Scholar]
  25. Checinska A. 2013. Supercritical fluid CO2-H2O2 sterilization method and elucidation of Bacilli endospores'tolerance to hydrogen peroxide and heat PhD Thesis, Univ. Ida., Mosc., Ida. [Google Scholar]
  26. Checinska A, Burbank M, Paszczynski AJ. 2012. Protection of Bacillus pumilus spores by catalases. Appl. Environ. Microbiol. 78:6413–22 [Google Scholar]
  27. Checinska A, Fruth IA, Green TL, Crawford RL, Paszczynski AJ. 2011. Sterilization of biological pathogens using supercritical fluid carbon dioxide containing water and hydrogen peroxide. J. Microbiol. Methods 87:70–75 [Google Scholar]
  28. Coleman WH, Chen D, Li Y-Q, Cowan AE, Setlow P. 2007. How moist heat kills spores of Bacillus subtilis. J. Bacteriol. 189:8458–66 [Google Scholar]
  29. Coleman WH, Zhang P, Li Y-Q, Setlow P. 2010. Mechanism of killing of spores of Bacillus cereus and Bacillus megaterium by wet heat. Lett. Appl. Microbiol. 50:507–14 [Google Scholar]
  30. Cortezzo DE, Koziol-Dube K, Setlow B, Setlow P. 2004. Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes spores to subsequent treatments. J. Appl. Microbiol. 97:838–52 [Google Scholar]
  31. Cortezzo DE, Setlow P. 2005. Analysis of factors that influence the sensitivity of spores of Bacillus subtilis to DNA damaging chemicals. J. Appl. Microbiol. 98:606–17 [Google Scholar]
  32. Cybulski RJ Jr, Sanz P, Alem F, Stibitz S, Bull RL, O'Brien ADO. 2009. Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress. Infect. Immunity 77:274–85 [Google Scholar]
  33. Dauphin LA, Newton BR, Rasmussen MV, Meyer RF, Bowen MD. 2008. Gamma irradiation can be used to inactivate Bacillus anthracis spores without compromising the sensitivity of diagnostic assays. Appl. Environ. Microbiol. 74:4427–33 [Google Scholar]
  34. Driks A. 1999. Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63:1–20 [Google Scholar]
  35. Driks A. 2009. The Bacillus anthracis spore. Mol. Aspects Med. 30:368–73 [Google Scholar]
  36. Enomoto A, Nakamura K, Hakoda M, Amaya N. 1997. Lethal effect of high-pressure carbon dioxide on a bacterial spore. J. Ferment. Bioeng. 83:305–7 [Google Scholar]
  37. Errington J. 2003. Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1:117–26 [Google Scholar]
  38. Fox K, Eder BD. 1969. Comparison of survivor curves of Bacillus subtilis spores subjected to wet and dry heat. J. Food Sci. 34:518–21 [Google Scholar]
  39. Fraser D. 1951. Bursting bacteria by release of gas pressure. Nature 167:33–34 [Google Scholar]
  40. Ghosh S, Ramirez-Peralta A, Gaidamakova E, Zhang P, Li Y-Q. et al. 2011. Effect of Mn levels on resistance of Bacillus megaterium spores to heat, radiation and hydrogen peroxide. J. Appl. Microbiol. 111:663–70 [Google Scholar]
  41. Gioia J, Yerrapragada S, Qin X, Jiang H, Igboeli OC. et al. 2007. Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032. PLoS ONE 2:e.928 [Google Scholar]
  42. Giorno R, Bozue J, Cote C, Wenzel T, Moody K-S. et al. 2007. Morphogenesis of the Bacillus anthracis spore. J. Bacteriol. 189:691–705 [Google Scholar]
  43. Grossman AD. 1995. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu. Rev. Genet. 29:477–508 [Google Scholar]
  44. Henriques AO, Melsen LR, Moran CP. 1998. Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis. J. Bacteriol. 180:2285–91 [Google Scholar]
  45. Henriques AO, Moran CP Jr. 2000. Structure and assembly of the bacterial endospore coat. Methods 20:95–110 [Google Scholar]
  46. Henriques AO, Moran CP Jr. 2007. Structure, assembly and function of spore surface layers. Annu. Rev. Microbiol. 61:555–88 [Google Scholar]
  47. Heyndrickx M. 2011. The importance of endospore-forming bacteria originating from soil for contamination of industrial food processing. Appl. Environ. Soil Sci. 2011:1–11 [Google Scholar]
  48. Horneck G, Bucker H, Reitz G. 1997. Long-term survival of bacterial spores in space. Adv. Space Res. 14:41–45 [Google Scholar]
  49. Hullo M-F, Moszer I, Danchin A, Martin-Verstraete I. 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183:5426–30 [Google Scholar]
  50. Ishida A, Futamura N, Matsusaka T. 1987. Detection of peroxidase activity and its localization in the forespore envelopes of Bacillus cereus. J. Gen. Appl. Microbiol. 33:27–32 [Google Scholar]
  51. Ishikawa H, Shimoda M, Tamaya K, Yonekura A, Kawano T, Osajima Y. 1997. Inactivation of Bacillus spores by the supercritical carbon dioxide micro-bubble method. Biosci. Biotechnol. Biochem. 61:1022–23 [Google Scholar]
  52. Ivy RA, Ranieri ML, Martin NH, den Bakker HC, Xavier BM. et al. 2012. Identification and characterization of psychrotolerant sporeformers associated with fluid milk production and processing. Appl. Environ. Microbiol. 78:1853–64 [Google Scholar]
  53. Kamihira M, Taniguchi M, Kobayashi T. 1987. Sterilization of microorganisms with supercritical carbon dioxide. Agric. Biol. Chem. 51:407–12 [Google Scholar]
  54. Kazarian SG. 2000. Polymer processing with supercritical fluids. Polym. Sci. Ser. C 42:78–101 [Google Scholar]
  55. Kempf MJ, Chen F, Kern R, Venkateswaran K. 2005. Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology 5:391–405 [Google Scholar]
  56. Kobayashi K, Iwano M. 2012. BslA (YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol. Microbiol. 85:51–66 [Google Scholar]
  57. Kobayashi K, Kumazawa Y, Miwa K, Yamanaka S. 1996. ε-(γ-Glutamyl)lysine cross-links of spore coat proteins and transglutaminase activity in Bacillus subtilis. FEMS Microbiol. Lett. 144:157–60 [Google Scholar]
  58. Koshikawa T, Yamazaki M, Yoshimi M, Ogawa S, Yamada A. et al. 1989. Surface hydrophobicity of spores of Bacillus spp. J. Gen. Microbiol. 135:2717–22 [Google Scholar]
  59. Kuwana R, Kasahara Y, Fujibayashi M, Takamatsu H, Ogasawara N, Watabe K. 2002. Proteomics characterization of novel spore proteins of Bacillus subtlilis. Microbiology 148:3971–82 [Google Scholar]
  60. Lai E-M, Phadke ND, Kachman MT, Giorno R, Vazquez S. et al. 2003. Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. J. Bacteriol. 185:1443–54 [Google Scholar]
  61. Lemon KP, Earl AM, Vlamakis HC, Aguilar C, Kolter R. 2008. Biofilm development with an emphasis on Bacillus subtilis. Curr. Top. Microbiol. Immunol. 322:1–16 [Google Scholar]
  62. Lindke D, Goldman A. 2010. Introduction. Advances in Experimental Medicine and Biology 715 Bacterial Adhesion D Lindke, A Goldman v–vii Dordrecht: Springer [Google Scholar]
  63. Lindsay D, Brözel VS, Mostert JF, von Holy A. 2002. Differential efficacy of a chlorine dioxide-containing sanitizer against single species and binary biofilms of a dairy-associated Bacillus cereus and a Pseudomonas fluorescences isolate. J. Appl. Microbiol. 92:352–61 [Google Scholar]
  64. Marchand S, De Block J, De Jonghe V, Coorevits A, Heyndrickx M, Herman L. 2012. Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comp. Rev. Food Sci. Food Saf. 11:133–47 [Google Scholar]
  65. Marquis RE, Bender GR. 1985. Mineralization and heat resistance of bacterial spores. J. Bacteriol. 161:789–91 [Google Scholar]
  66. Melly E, Cowan AE, Setlow P. 2002a. Studies on the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. J. Appl. Microbiol. 93:316–25 [Google Scholar]
  67. Melly E, Genest PC, Gilmore ME, Little S, Popham DL. et al. 2002b. Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J. Appl. Microbiol. 92:1105–15 [Google Scholar]
  68. Melly E, Setlow P. 2001. Heat shock proteins do not influence wet heat resistance of Bacillus subtilis spores. J. Bacteriol. 183:779–84 [Google Scholar]
  69. Moeller R, Horneck G, Facius R, Stackebrandt E. 2005. Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. FEMS Microbiol. Ecol. 52:231–36 [Google Scholar]
  70. Moeller R, Setlow P, Horneck G, Berger T, Reitz G. et al. 2008. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment. J. Bacteriol. 190:1134–40 [Google Scholar]
  71. Moeller R, Wassmann M, Reitz G, Setlow P. 2011. Effect of radioprotective agents in sporulation medium on Bacillus subtilis spore resistance to hydrogen peroxide, wet heat and germicidal and environmentally relevant UV radiation. J. Appl. Microbiol. 110:1485–94 [Google Scholar]
  72. Mohapatra BR, La Duc MT. 2013. Detecting the dormant: a review of recent advances in molecular techniques for assessing the viability of bacterial endospores. Appl. Microbiol. Biotechnol. 97:7963–75 [Google Scholar]
  73. Moir A. 2006. How do spores germinate?. J. Appl. Microbiol. 101:526–30 [Google Scholar]
  74. Morikawa M, Kagihiro S, Haruki M, Takano K, Branda S. et al. 2006. Biofilm formation by Bacillus subtilis strain that produces gamma-polyglutamate. Microbiology 152:2801–7 [Google Scholar]
  75. Movahedi S, Waites W. 2000. A two-dimensional protein gel electrophoresis study of the heat stress response of Bacillus subtilis cells during sporulation. J. Bacteriol. 182:4758–63 [Google Scholar]
  76. Movahedi S, Waites W. 2002. Cold shock response in sporulating Bacillus subtilis and its effect on spore heat resistance. J. Bacteriol. 184:5275–81 [Google Scholar]
  77. Nair PD. 1995. Currently practised sterilization methods—some inadvertent consequences. J. Biomater. Appl. 10:121–35 [Google Scholar]
  78. Nalawade SP, Picchioni F, Janssen LPBM. 2006. Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog. Polym. Sci. 31:19–43 [Google Scholar]
  79. Newcombe DA, Schuerger AC, Benardini JN, Dickinson D, Tanner R, Venkateswaran K. 2005. Survival of spacecraft-associated microorganisms under simulated Martian UV irradiation. Appl. Environ. Microbiol. 71:8147–56 [Google Scholar]
  80. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:548–72 [Google Scholar]
  81. Petterson B, Lembke F, Hammer P, Stackebrandt E, Priest FG. 1996. Bacillus sporothermodurans, a new species producing highly heat-resistant endospores. Int. J. Syst. Bacteriol. 46:759–64 [Google Scholar]
  82. Piggot PJ, Hilbert DW. 2004. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7:579–86 [Google Scholar]
  83. Popham DL. 2002. Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell. Mol. Life Sci. 59:426–33 [Google Scholar]
  84. Popham DL, Sengupta S, Setlow P. 1995. Heat, hydrogen peroxide, and UV resistance of Bacillus subtilis spores with increased core water content and with or without major DNA-binding proteins. Appl. Environ. Microbiol. 61:3633–36 [Google Scholar]
  85. Rebeil R, Sun Y, Chooback L, Pedraza-Reyes M, Kinsland C. et al. 1998. Spore photoproduct lyase from Bacillus subtilis spores is a novel sulfur-DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases. J. Bacteriol. 180:4879–85 [Google Scholar]
  86. Riesenman PJ, Nicholson WL. 2000. Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl. Environ. Microbiol. 66:620–26 [Google Scholar]
  87. Romero D, Aguilar C, Losick R, Kolter R. 2010. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl. Acad. Sci. 107:2230–34 [Google Scholar]
  88. Rosenberg M. 2006. Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiol. Lett. 262:129–34 [Google Scholar]
  89. Ryu JH, Beuchat LR. 2005. Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer. J. Food Protection 68:2614–22 [Google Scholar]
  90. Sahlström L, Bagge E, Emmoth E, Holmqvist A, Danielsson-Tham M-L, Albihn A. 2008. A laboratory study of survival of selected microorganisms after heat treatment of biowaste used in biogas plants. Biosource Technol. 99:7859–65 [Google Scholar]
  91. Sanchez-Salas J-L, Setlow B, Zhang P, Li Y-Q, Setlow P. 2011. Maturation of released spores is necessary for acquisition of full spore heat resistance during Bacillus subtilis sporulation. Appl. Environ. Microbiol. 77:6746–54 [Google Scholar]
  92. Sang-Wook L, Sim SJ. 2006. Increased heat resistance of Geobacillus stearothermophilus spores heat-shocked during sporulation. J. Microbiol. Biotechnol. 16:633–36 [Google Scholar]
  93. Schaeffer P, Millet J, Aubert JA. 1965. Catabolic repression of bacterial sporulation. Proc. Natl. Acad. Sci. 54:704–11 [Google Scholar]
  94. Scheldeman P, Herman L, Foster S, Heyndrickx M. 2006. Bacillus sporothermodurans and other highly heat-resistant spore formers in milk. J. Appl. Microbiol. 101:542–55 [Google Scholar]
  95. Schubert WW, Beaudet RA. 2011. Determination of lethality rate constants and D-values for heat-resistant Bacillus spores ATCC 29669 exposed to dry heat from 125°C to 200°C. Astrobiology 11:1–11 [Google Scholar]
  96. Scott SA, Brooks JD, Rakonjac J, Walker KMR, Flint SH. 2007. The formation of thermophilic spores during the manufacture of the whole milk powder. Int. J. Dairy Technol. 60:109–17 [Google Scholar]
  97. Seale RB, Flint SH, McQuillan AJ, Bremer PJ. 2008. Recovery of spores from thermophilic dairy Bacilli and effects of their surface characteristics on attachment to different surfaces. Appl. Environ. Microbiol. 74:731–37 [Google Scholar]
  98. Seminara A, Angelini TE, Wilking JN, Vlamakis H, Ebrahim S. et al. 2012. Osmotic spreading of Bacilllus subtilis biofilms driven by an extracellular matrix. Proc. Natl. Acad. Sci. 109:1116–21 [Google Scholar]
  99. Setlow B, Setlow P. 1987. Thymine-containing dimers as well as photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins. Proc. Natl. Acad. Sci. 84:421–23 [Google Scholar]
  100. Setlow B, Setlow P. 1993. Binding of small-acid soluble spore proteins to DNA plays a significant role in the resistance of Bacillus subtilis spores to hydrogen peroxide. Appl. Environ. Microbiol. 59:3418–23 [Google Scholar]
  101. Setlow B, Setlow P. 1994. Heat inactivation of Bacillus subtilis spores lacking small, acid-soluble proteins is accompanied by generation of abasic sites in spore DNA. J. Bacteriol. 176:2111–13 [Google Scholar]
  102. Setlow B, Setlow P. 1996. Role of DNA repair in Bacillus subtilis spore resistance. J. Bacteriol. 178:3486–95 [Google Scholar]
  103. Setlow B, Setlow P. 1998. Heat killing of Bacillus subtilis spores in water is not due to oxidative damage. Appl. Environ. Microbiol. 64:4109–12 [Google Scholar]
  104. Setlow P. 1988. Small, acid-soluble spore proteins of Bacillus species: structure, synthesis, genetics, function, and degradation. Annu. Rev. Microbiol. 42:319–38 [Google Scholar]
  105. Setlow P. 1995. Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu. Rev. Microbiol. 49:29–54 [Google Scholar]
  106. Setlow P. 2003. Spore germination. Curr. Opin. Microbiol. 6:550–56 [Google Scholar]
  107. Setlow P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101:514–25 [Google Scholar]
  108. Shaheen R, Svensson B, Andersson MA, Christiansson A, Salkinoja-Salonen M. 2010. Persistence strategies of Bacillus cereus spores isolated from dairy silo tanks. Food Microbiol. 27:347–55 [Google Scholar]
  109. Shieh E, Paszczynski A, Wai CM, Lang Q, Crawford RL. 2009. Sterilization of Bacillus pumilus spores using supercritical fluid carbon dioxide containing various modifier solutions. J. Microbiol. Methods 76:247–52 [Google Scholar]
  110. Steichen C, Chen P, Kearney JF, Turnbough CL Jr. 2003. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J. Bacteriol. 185:1903–10 [Google Scholar]
  111. Sylvestre P, Couture-Tosi E, Mock M. 2003. Polymorphism in the collagen-like region of the Bacillus anthracis BclA protein leads to variation in exosporium filament length. J. Bacteriol. 185:1555–63 [Google Scholar]
  112. Szabo JG, Rice EW, Bishop PL. 2007. Persistence and decontamination of Bacillus atrophaeus subsp. globigii spores corroded iron in a model drinking water system. Appl. Environ. Microbiol. 73:2451–57 [Google Scholar]
  113. Giffel MC, Wagendorp A, Herrewegh A, Driehuis F. te 2002. Bacterial spores in silage and raw milk. Antonie Van Leeuwenhoek 81:625–30 [Google Scholar]
  114. Thwaite JE, Laws TR, Atkins TP, Atkins HS. 2009. Differential cell surface properties of vegetative Bacillus. Lett. Appl. Microbiol. 48:373–78 [Google Scholar]
  115. Turnbull PCB. 1996. Bacillus. Medical Microbiology S Baron, Ch. 15 Galveston, TX: Univ. Tex. Med. Branch [Google Scholar]
  116. Van Houdt R, Michiels CW. 2010. Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 109:1117–31 [Google Scholar]
  117. Venkateswaran K, Kempf M, Chen F, Satomi M, Nicholson W, Kern R. 2003. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are γ-radiation resistant. Int. J. Syst. Evol. Microbiol. 53:165–72 [Google Scholar]
  118. Venkateswaran K, Satomi M, Chung S, Kern R, Koukol R. et al. 2001. Molecular microbial diversity of a spacecraft assembly facility. Syst. Appl. Microbiol. 24:311–20 [Google Scholar]
  119. Vilain S, Pretorius JM, Theron J, Brözel VS. 2009. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl. Environ. Microbiol. 75:2861–68 [Google Scholar]
  120. Watnick P, Kolter R. 2000. Biofilm, city of microbes. J. Bacteriol. 182:2675–79 [Google Scholar]
  121. Wiencek KM, Klapes NA, Foegeding PM. 1990. Hydrophobicity of Bacillus and Clostridium spores. Appl. Environ. Microbiol. 56:2600–5 [Google Scholar]
  122. Wijman JGE, de Leeuw PPLA, Moezelaar R, Zwietering MH, Abee T. 2007. Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl. Environ. Microbiol. 73:1481–88 [Google Scholar]
  123. Witthuhn M, Lücking G, Atamer Z, Ehling-Schultz M, Hinrichs J. 2011. Thermal resistance of aerobic spore formers isolated from food products. Int. J. Dairy Technol. 64:486–93 [Google Scholar]
  124. Young SB, Setlow P. 2003. Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. J. Appl. Microbiol. 95:54–67 [Google Scholar]
  125. Young SB, Setlow P. 2004. Mechanisms of Bacillus subtilis spore resistance to and killing by aqueous ozone. J. Appl. Microbiol. 96:1133–42 [Google Scholar]
  126. Zhang J, Dalal N, Matthews MA, Waller LN, Saunders C. et al. 2007. Supercritical carbon dioxide and hydrogen peroxide cause mild changes in spore structures associated with high killing rate. J. Microbiol. Methods 70:442–51 [Google Scholar]
/content/journals/10.1146/annurev-food-030713-092332
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error