1932

Abstract

The intestinal microbiota is a complex community that plays an important role in human health from the initial steps of its establishment. Its microbial composition has been suggested to result from selective pressures imposed by the host and is modulated by competition among its members. is one of the most abundant species of the genus in the gut microbiota of healthy breast-fed infants and adults. The recent advancements of ‘omics techniques have facilitated the genetic and functional studies of different gut microbiota members. They have revealed the complex genetic pathways used to metabolize different compounds that likely contribute to the competitiveness and persistence of in the colon. The discovery of a genomic island in ssp that encodes specific enzymes for the metabolism of human milk oligosaccharides suggests a specific ecological adaptation. Moreover, is widely used as probiotic, and beneficial effects in infant health have been reported in several studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-041715-033151
2016-02-28
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/food/7/1/annurev-food-041715-033151.html?itemId=/content/journals/10.1146/annurev-food-041715-033151&mimeType=html&fmt=ahah

Literature Cited

  1. AlFaleh K, Anabrees J. 2014. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evid. Based Child Health 9:3584–671 [Google Scholar]
  2. Al-Hosni M, Duenas M, Hawk M, Stewart LA, Borghese RA. et al. 2012. Probiotics-supplemented feeding in extremely low-birth-weight infants. J. Perinatol. 32:4253–59 [Google Scholar]
  3. An H, Douillard FP, Wang G, Zhai Z, Yang J. et al. 2014. Integrated transcriptomic and proteomic analysis of the bile stress response in a centenarian-originated probiotic Bifidobacterium longum BBMN68. Mol. Cell. Proteom. 13:102558–72 [Google Scholar]
  4. Arboleya S, Binetti A, Salazar N, Fernández N, Solís G. et al. 2012. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol. Ecol. 79:763–72 [Google Scholar]
  5. Arboleya S, Ruas-Madiedo P, Margolles A, Solís G, Salminen S. et al. 2011. Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int. J. Food Microbiol. 149:28–36 [Google Scholar]
  6. Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T. et al. 2011. Physiology of the consumption of human milk oligosaccharides by infant-gut associated bifidobacteria. J. Biol. Chem. 286:4034583–92 [Google Scholar]
  7. Athalye-Jape G, Deshpande G, Rao S, Patole S. 2014. Benefits of probiotics on enteral nutrition in preterm neonates: a systematic review. Am. J. Clin. Nutr. 100:61508–19 [Google Scholar]
  8. Audy J, Labrie S, Roy D, LaPointe G. 2010. Sugar source modulates biosynthesis in Bifidobacterium longum subsp. longum CRC 002. Microbiology 156:653–64 [Google Scholar]
  9. Barclay AR, Stenson B, Simpson JH, Weaver LT, Wilson DC. 2007. Probiotics for necrotizing enterocolitis: a systematic review. J. Pediatr. Gastroenterol. Nutr. 45:569–76 [Google Scholar]
  10. Barrett E, Deshpandey AK, Ryan CA, Dempsey EM, Murphy B. et al. 2015. The neonatal gut harbours distinct bifidobacterial strains. Arch. Dis. Child Fetal Neonatal. In press
  11. Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. Cell 157:121–41 [Google Scholar]
  12. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J. et al. 2011. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23:1132–39 [Google Scholar]
  13. Bertelli C, Pillonel T, Torregrossa A, Prod'hom G, Fischer CJ. et al. 2015. Bifidobacterium longum bacteremia in preterm infants receiving probiotics. Clin. Infect. Dis. 60:6924–27 [Google Scholar]
  14. Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. 2010. Mode of delivery affects the bacterial community in the newborn gut. Early Hum. Dev. 86:113–15 [Google Scholar]
  15. Biavati B, Mattarelli P. 2006. The family Bifidobacteriaceae. The Prokaryotes 3 M Dworkin, S Falkow, E Rosenberg, KH Schleifer, E Stackebrandt 322–82 New York: Springer, 3rd ed.. [Google Scholar]
  16. Bin-Nun A, Bromiker R, Wilschanski M, Kaplan M, Rudensky B. et al. 2005. Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J. Pediatr. 147:2192–96 [Google Scholar]
  17. Borre YE, O'Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. 2014. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol. Med. 20:509–18 [Google Scholar]
  18. Bottacini F, Medini D, Pavesi A, Turroni F, Foroni E. et al. 2010. Comparative genomics of the genus Bifidobacterium. Microbiology 156:324–54 [Google Scholar]
  19. Bottacini F, Milani C, Turroni F, Sánchez B, Foroni E. et al. 2012. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLOS ONE 7:9e44229 [Google Scholar]
  20. Cabana MD, McKean M, Wong AR, Chao C, Caughey AB. 2007. Examining the hygiene hypothesis: the trial of infant probiotic supplementation. Paediatr. Perinat. Epidemiol. 21:323–28 [Google Scholar]
  21. Canani RB, DiCostanzo M, Leone L, Bedogni G, Brambilla P. et al. 2011. Epigenetic mechanisms elicited by nutrition in early life. Nutr. Res. Rev. 24:198–205 [Google Scholar]
  22. Candela M, Perna F, Carnevali P, Vitali B, Ciati R. et al. 2008. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int. J. Food Microbiol. 125:286–92 [Google Scholar]
  23. Caplan MS, Catchpole RM, Kaup S, Russell T, Lickerman M. et al. 1999. Bifidobacterial supplementation reduces the incidence of necrotizing enterocolitis in a neonatal rat model. Gastroenterology 117:3577–83 [Google Scholar]
  24. Castagliuolo I, Galeazzi F, Ferrari S, Elli M, Brun P. et al. 2005. Beneficial effect of auto-aggregating Lactobacillus crispatus on experimentally induced colitis in mice. FEMS Immunol. Med. Microbiol. 43:197–204 [Google Scholar]
  25. Cazzola M, Tompkins TA, Matera MG. 2010. Immunomodulatory impact of a synbiotic in TH1 and TH2 models of infection. Ther. Adv. Respir. Dis. 4:259–70 [Google Scholar]
  26. Chow CM, Leung AKC, Hon K. 2010. Acute gastroenteritis: from guidelines to real life. Clin. Exp. Gastroenterol. 3:97–112 [Google Scholar]
  27. Collado MC, Gueimonde M, Hernández M, Sanz Y, Salminen S. 2005. Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J. Food Prot. 68:122672–78 [Google Scholar]
  28. Conroy ME, Shi HN, Walker WA. 2009. The long-term health effects of neonatal microbial flora. Curr. Opin. Allergy Clin. Immunol. 9:197–201 [Google Scholar]
  29. Cryan JF, O'Mahony SM. 2011. The microbiome-gut-brain axis: from bowel to behaviour. Neurogastroenterol. Motil. 23:187–92 [Google Scholar]
  30. Desbonnet L, Garret L, Clarke G, Bienenstock J, Dinan TG. 2008. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 43:21640–74 [Google Scholar]
  31. Deshpande G, Rao S, Patole S, Bulsara M. 2010. Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics 125:5921–30 [Google Scholar]
  32. Dinleyici EC, Dalgic N, Guven S, Ozen M, Kara A. et al. 2013. The effect of a multispecies synbiotic mixture on the duration of diarrhea and length of hospital stay in children with acute diarrhea in Turkey: single blinded randomized study. Eur. J. Pediatr. 172:4459–64 [Google Scholar]
  33. Enomoto T, Sowa M, Nishimori K, Shimazu S, Yoshida A. et al. 2014. Effects of bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota. Allergol. Int. 63:575–85 [Google Scholar]
  34. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J. et al. 2012. Bifidobacterial surface-expolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. PNAS 109:2108–13 [Google Scholar]
  35. Food Agric. Organ./World Health Organ. (FAO/WHO) 2001. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria Rome: FAO ftp://ftp.fao.org/docrep/fao/009/a0512e/a0512e00.pdf
  36. Favier CF, Vaughan EE, de Vos WM, Akkermans AD. 2002. Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68:1219–26 [Google Scholar]
  37. Fernández-Carrocera LA, Solis-Herrera A, Cabanillas-Ayón M, Gallardo-Sarmiento RB, García-Pérez CS. et al. 2013. Double-blind, randomised clinical assay to evaluate the efficacy of probiotics in preterm newborns weighing less than 1500 g in the prevention of necrotising enterocolitis. Arch. Dis. Child Fetal Neonatal Ed. 98:1F5–9 [Google Scholar]
  38. Fiocchi A, Pawankar R, Cuello-Garcia C, Ahn K, Al-Hammadi S. et al. 2015. World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): probiotics. World Allergy Organ. J. 8:4 [Google Scholar]
  39. Foroni E, Serafini F, Amidani D, Turroni F, He F. et al. 2011. Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium. Microb. Cell Fact. 10:1S16 [Google Scholar]
  40. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y. et al. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:7331543–47 [Google Scholar]
  41. Garrido D, Barile D, Mills DA. 2012. A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv. Nutr. 3:415–21 [Google Scholar]
  42. Garrido D, Kim JH, German JB, Raybould HE, Mills DA. 2011. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLOS ONE 6:3e17315 [Google Scholar]
  43. Gerritsen J, Smidt H, Rijkers GT, de Vos WM. 2011. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 6:209–40 [Google Scholar]
  44. Gettins PG. 2002. Serpin structure, mechanism and function. Chem. Rev. 102:4751–804 [Google Scholar]
  45. Gleinser M, Grimm V, Zhurina D, Yuan J, Riedel CU. 2012. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum–specific lipoprotein BopA. Microb. Cell Fact. 11:80 [Google Scholar]
  46. González-Rodríguez I, Gaspar P, Sánchez B, Gueimonde M, Margolles A, Neves AR. 2013a. Catabolism of glucose and lactose in Bifidobacterium animalis subsp. lactis, studied by 13C nuclear magnetic resonance. Appl. Environ. Microbiol. 79:247628–38 [Google Scholar]
  47. González-Rodríguez I, Ruíz L, Gueimonde M, Margolles A, Sánchez B. 2013b. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiol. Lett. 340:1–10 [Google Scholar]
  48. Gopal PK, Gill HS. 2000. Oligosaccharides and glycoconjugates in bovine milk and colostrum. Br. J. Nutr. 84:1S69–74 [Google Scholar]
  49. Grandy G, Medina M, Soria R, Terán CG, Araya M. 2010. Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infect. Dis. 10:253 [Google Scholar]
  50. Guandalini S. 2011. Probiotics for prevention and treatment of diarrhea. J. Clin. Gastroenterol. 45:S149–53 [Google Scholar]
  51. Guarner F, Malagelada JR. 2003. Gut flora in health and disease. Lancet 361:512–19 [Google Scholar]
  52. Gueimonde M, Garrigues C, van Sinderen D, de los Reyes-Gavilan CG, Margolles A. 2009. Bile-inducible efflux transporter from Bifidobacterium longum NCC2705, conferring bile resistance. Appl. Environ. Microbiol. 75:3153–60 [Google Scholar]
  53. Guthmann F, Kluthe C, Bührer C. 2010. Probiotics for prevention of necrotising enterocolitis: an updated meta-analysis. Klin. Pädiatrie 222:284–90 [Google Scholar]
  54. Härtel C, Pagel J, Rupp J, Bendiks M, Guthmann F. et al. 2014. Prophylactic use of Lactobacillus acidophilus/Bifidobacterium infantis probiotics and outcome in very low birth weight infants. J. Pediatr. 165:2285289.e1 [Google Scholar]
  55. Hill JE, Fernand WM, Zello GA, Tyler RT, Dahl WJ, Van Kessel AG. 2010. Improvement of the representation of bifidobacteria in fecal microbiota metagenomics libraries by application of the cpn60 universal primer cocktail. Appl. Environ. Microbiol. 76:4550–52 [Google Scholar]
  56. Hoyos AB. 1999. Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit. Int. J. Infect. Dis. 3:4197–202 [Google Scholar]
  57. Iguchi A, Umekawa N, Maegawa T, Tsuruta H, Odamaki T. et al. 2011. Polymorphism and distribution of putative cell-surface adhesin-encoding ORFs among human fecal isolates of Bifidobacterium longum subsp. longum. Antonie Van Leeuwenhoek 99:3457–71 [Google Scholar]
  58. Ishizeki S, Sugita M, Takata M, Yaeshima T. 2013. Effect of administration of bifidobacteria on intestinal microbiota in low-birth-weight infants and transition of administered bifidobacteria: a comparison between one-species and three-species administration. Anaerobe 23:38–44 [Google Scholar]
  59. Ivanov D, Emonet C, Foata F, Affolter M, Delley M. et al. 2006. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase like serine proteases. J. Biol. Chem. 281:2517246–52 [Google Scholar]
  60. Ivanov II, Littman DR. 2011. Modulation of immune homeostasis by commensal bacteria. Curr. Opin. Microbiol. 14:106–14 [Google Scholar]
  61. Jacobs SE, Tobin JM, Opie GF, Donath S, Tabrizi SN. et al. 2013. Probiotic effects on late-onset sepsis in very preterm infants: a randomized controlled trial. Pediatrics 132:61055–62 [Google Scholar]
  62. Janvier A, Malo J, Barrington KJ. 2014. Cohort study of probiotics in a North American neonatal intensive care unit. J. Pediatr. 164:5980–85 [Google Scholar]
  63. Jin J, Zhang B, Guo H, Cui J, Jiang L. et al. 2012. Mechanism analysis of acid tolerance response of Bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing. PLOS ONE 7:12e50777 [Google Scholar]
  64. Joint Genome Inst 2015. Genomes Online Database (GOLD). Berkeley: JGI https://gold.jgi-psf.org/ [Google Scholar]
  65. Kalliomäki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. 2001. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 107:129–34 [Google Scholar]
  66. Kalliomäki M, Salminen S, Poussa T, Isolauri E. 2007. Probiotics during the first 7 years of life: a cumulative risk reduction of eczema in a randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 119:1019–21 [Google Scholar]
  67. Kianifar H, Ahanchian H, Grover Z, Jafari S, Noorbakhsh Z. et al. 2014. Synbiotic in the management of infantile colic: a randomised controlled trial. J. Paediatr. Child Health 50:801–5 [Google Scholar]
  68. Kim JH, An HJ, Garrido D, German JB, Lebrilla CB, Mills DA. 2013. Proteomic analysis of Bifidobacterium longum subsp. infantis reveals the metabolic insight on consumption of prebiotics and host glycans. PLOS ONE 8:e57535 [Google Scholar]
  69. Kim SO, Ah YM, Yu YM, Choi KH, Shin WG, Lee JY. 2014. Effects of probiotics for the treatment of atopic dermatitis: a metaanalysis of randomized controlled trials. Ann. Allergy Asthma Immunol. 113:2217–26 [Google Scholar]
  70. Kitaoka M, Tian J, Nishimoto M. 2005. Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum. Appl. Environ. Microbiol. 71:3158–62 [Google Scholar]
  71. Lee H, Garrido D, Mills DA, Barile D. 2014. Hydrolysis of milk gangliosides by infant-gut associated bifidobacteria determined by microfluidic chips and high-resolution mass spectrometry. Electrophoresis 35:1742–50 [Google Scholar]
  72. Lee DK, Park JE, Kim MJ, Seo JG, Lee JH, Ha NJ. 2015. Probiotic bacteria, B. longum and L. acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients. Clin. Res. Hepatol. Gastroenterol. 39:2237–44 [Google Scholar]
  73. Liévin-Le MV, Servin AL. 2014. Anti-infective activities of Lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin. Microbiol. Rev. 27:2167–99 [Google Scholar]
  74. Lin HC, Su BH, Chen AC, Lin TW, Tsai CH. et al. 2005. Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics 115:11–4 [Google Scholar]
  75. LoCascio RG, Desai P, Sela DA, Weimer B, Mills DA. 2010. Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. Appl. Environ. Microbiol. 76:7373–81 [Google Scholar]
  76. LoCascio RG, Niñonuevo MR, Kronewitter SR, Freeman SL, German JB. et al. 2009. A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb. Biotechnol. 2:333–42 [Google Scholar]
  77. López P, Monteserín DC, Gueimonde M, de los Reyes-Gavilán CG, Margolles A. et al. 2012. Exopolysaccharide producing Bifidobacterium strains elicit different in vitro responses upon interaction with human cells. Food Res. Int. 46:99–107 [Google Scholar]
  78. Lu P, Sodhi CP, Jia H, Shaffiey S, Good M. et al. 2014. Animal models of gastrointestinal and liver diseases. Animal models of necrotizing enterocolitis: pathophysiology, translational relevance, and challenges. Am. J. Physiol. Gastrointest. Liver Physiol. 306:G917–28 [Google Scholar]
  79. MacPherson C, Audy J, Mathieu O, Tompkins TA. 2014. Multistrain probiotic modulation of intestinal epithelial cells' immune response to a double-stranded RNA ligand, poly (I·C). Appl. Environ. Microbiol. 80:51692–700 [Google Scholar]
  80. Makino H, Kushiro A, Ishikawa E, Muylaert D, Kubota H. et al. 2011. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl. Environ. Microbiol. 77:6788–93 [Google Scholar]
  81. Marcobal A, Barboza M, Froehlich JW, Block DE, German B. et al. 2010. Consumption of human milk oligosaccharides by gut-related microbes. J. Agric. Food Chem. 58:95334–40 [Google Scholar]
  82. Marteau P. 2011. Evidence of probiotic strain specificity makes extrapolation of results impossible from a strain to another, even from the same species. Ann. Gastroenterol. 2:1–3 [Google Scholar]
  83. Matamoros S, Gras-Leguen C, Le-Vacon F, Potel G, de La Cochetiere MF. 2013. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol. 21:4167–73 [Google Scholar]
  84. Mattarelli P, Bonaparte C, Pot B, Biavati B. 2008. Proposal to reclassify the three biotypes of Bifidobacterium longum as three subspecies: Bifidobacterium longum subsp. longum subsp. nov., Bifidobacterium longum subsp. infantis comb. nov. and Bifidobacterium longum subsp. suis comb. nov. Int. J. Syst. Evol. Microbiol. 58:767–72 [Google Scholar]
  85. Matteuzzi D, Crociani F, Zani G, Trovatelli LD. 1971. Bifidobacterium suis n. sp.: a new species of the genus Bifidobacterium isolated from pig feces. Z. Allg. Mikrobiol. 11:387–95 [Google Scholar]
  86. Mayo B, Delgado S, Rodríguez JM, Gueimonde M. 2008. Old and new facts of probiotics: where we are and where we are going. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 3:055 [Google Scholar]
  87. Mihatsch WA, Braegger CP, Decsi T, Kolacek S, Lanzinger H. et al. 2012. Critical systematic review of the level of evidence for routine use of probiotics for reduction of mortality and prevention of necrotizing enterocolitis and sepsis in preterm infants. Clin. Nutr. 31:6–15 [Google Scholar]
  88. Moreno-Muñoz JA, Chenoll E, Casinos B, Bataller E, Ramon D. et al. 2011. Novel probiotic Bifidobacterium longum subsp. infantis CECT 7210 strain active against rotavirus infections. Appl. Environ. Microbiol. 77:248775–83 [Google Scholar]
  89. Natl. Cent. Biotechnol. Inf. (NCBI) 2015. Genome. Bethesda, MD: US Natl. Libr. Med http://www.ncbi.nlm.nih.gov
  90. O'Connell-Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F. et al. 2011. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. PNAS 108:11217–22 [Google Scholar]
  91. Ofek Shlomai N, Deshpande G, Rao S, Patole S. 2014. Probiotics for preterm neonates: What will it take to change clinical practice?. Neonatology 105:64–70 [Google Scholar]
  92. Olszak T, An D, Zeissig S, Vera MP, Richter J. et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336:489–93 [Google Scholar]
  93. Özdemir O. 2010. Various effects of different probiotic strains in allergic disorders: an update from laboratory and clinical data. Clin. Exp. Immunol. 160:3295–304 [Google Scholar]
  94. Patterson E, Cryan JF, Fitzgerald GF, Ross RP, Dinan TG, Stanton C. 2014. Gut microbiota, the pharmabiotics they produce and host health. Proc. Nutr. Soc. 73:4477–89 [Google Scholar]
  95. Penders J, Thijs C, Vink C, Stelma FF, Snijders B. et al. 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–21 [Google Scholar]
  96. Pérez PF, Minnaard Y, Disalvo EA, De Antoni GL. 1998. Surface properties of bifidobacterial strains of human origin. Appl. Environ. Microbiol. 64:21–26 [Google Scholar]
  97. Rautava S, Kainonen E, Salminen S, Isolauri E. 2012. Maternal probiotic supplementation during pregnancy and breast-feeding reduces the risk of eczema in the infant. J. Allergy Clin. Immunol. 130:61355–60 [Google Scholar]
  98. Reid G, Younes JA, van der Mei HC, Glorr GB, Knight R, Bussche HJ. 2011. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat. Rev. Microbiol. 9:27–38 [Google Scholar]
  99. Reuter G. 1963. Vergleichende untersuchunge úber die bifidus-flora im sáuglings-und erwachsenenstuhl. Zentralbl. Bakteriol. Parasitenkd. Infektkrankh. Hyg. Abt. 1 Orig. 191:486–507 [Google Scholar]
  100. Rinne MM, Gueimonde M, Kalliomäki M, Hoppu U, Salminen SJ, Isolauri E. 2005. Similar bifidogenic effects of prebiotic-supplemented partially hydrolyzed infant formula and breastfeeding on infant gut microbiota. FEMS Immunol. Med. Microbiol. 43:59–65 [Google Scholar]
  101. Ríos-Covián D, Arboleya S, Hernández-Barranco A, Alvarez-Buylla JR, Ruas-Madiedo P. et al. 2013. Interactions between Bifidobacterium and Bacteroides species in co-fermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria. Appl. Environ. Microbiol. 79:7518–24 [Google Scholar]
  102. Robinson J. 2014. Cochrane in context: probiotics for prevention of necrotizing enterocolitis in preterm infants. Evid. Based Child Health 9:3672–74 [Google Scholar]
  103. Roger LC, Costabile A, Holland DT, Hoylest L, McCartney AL. 2010. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156:3329–41 [Google Scholar]
  104. Rougé C, Piloquet H, Butel M, Berger B, Rochat F. et al. 2009. Oral supplementation with probiotics in very-low-birth-weight preterm infants: a randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 89:1828–35 [Google Scholar]
  105. Ruas-Madiedo P, Gueimonde M, Fernandez-García M, de los Reyes-Gavilan CG, Margolles A. 2008. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl. Environ. Microbiol. 74:1936–40 [Google Scholar]
  106. Ruíz L, Gueimonde M, Coute Y, Salminen S, Sánchez JC. et al. 2011a. Evaluation of the ability of Bifidobacterium longum to metabolize human intestinal mucus. FEMS Microbiol. Lett. 314:125–30 [Google Scholar]
  107. Ruíz L, Ruas-Madiedo P, Gueimonde M, de los Reyes-Gavilan CG, Margolles A, Sanchez B. 2011b. How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr. 6:307–18 [Google Scholar]
  108. Sakata S, Kitahara M, Sakamoto M, Hayashi H, Fukuyama M, Benno Y. 2002. Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum. Int. J. Syst. Evol. Microbiol. 52:1945–51 [Google Scholar]
  109. Sakata S, Tonooka T, Ishizeki S, Takada M, Sakamoto M. et al. 2005. Culture-independent analysis of fecal microbiota in infants, with special reference to Bifidobacterium species. FEMS Microbiol. Lett. 243:417–23 [Google Scholar]
  110. Salazar N, Gueimonde M, Hernandez-Barranco AM, Ruas-Madiedo P, de los Reyes-Gavilan CG. 2008. Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl. Environ. Microbiol. 74:4737–45 [Google Scholar]
  111. Salazar N, López P, Valdés L, Margolles A, Suárez A. et al. 2013. Microbial targets for the development of functional foods accordingly with nutritional and immune parameters altered in the elderly. J. Am. Coll. Nutr. 32:6399–406 [Google Scholar]
  112. Samanta M, Sarkar M, Ghosh P, Ghosh JK, Sinha MK, Chatterjee S. 2009. Prophylactic probiotics for prevention of necrotizing enterocolitis in very low birth weight newborns. J. Trop. Pediatr. 55:2128–31 [Google Scholar]
  113. Sánchez B, Champomier-Verges M, Anglade P, Baraige F, de los Reyes-Gavilan GC. et al. 2005. Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J. Bacteriol. 187:165799–808 [Google Scholar]
  114. Sánchez B, Champomier-Verges MC, Collado MC, Anglade P, Baraige F. et al. 2007. Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum. Appl. Environ. Microbiol. 73:206450–59 [Google Scholar]
  115. Scardovi V, Trovatelli LD. 1965. The fructose-6-phosphate shunt as peculiar pattern of hexose degradation in the genus Bifidobacterium. Ann. Microbiol. 15:19–29 [Google Scholar]
  116. Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B. et al. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. PNAS 99:14422–27 [Google Scholar]
  117. Schwarzer M, Srutkova D, Schabussova I, Hudcovic T, Akgün J. et al. 2013. Neonatal colonization of germfree mice with Bifidobacterium longum prevents allergic sensitization to major birch pollen allergen Bet v 1. Vaccine 31:5405–12 [Google Scholar]
  118. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F. et al. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. PNAS 105:18964–69 [Google Scholar]
  119. Shkoporov AN, Efimov BA, Khokhlova EV, Chaplin AV, Kafarskaya LI. et al. 2013. Draft genome sequences of two pairs of human intestinal Bifidobacterium longum subsp. longum strains, 44B and 1-6B and 35B and 2-2B, consecutively isolated from two children after a 5-year time period. Genome Announc. 1:3e00234–13 [Google Scholar]
  120. Shkoporov AN, Khokhlova EV, Kulagina EV, Smeianov VV, Kafarskaia LI, Efimov BA. 2008. Application of several molecular techniques to study numerically predominant Bifidobacterium spp. and Bacteroides order strains in the feces of healthy children. Biosci. Biotechnol. Biochem. 72:3742–48 [Google Scholar]
  121. Silva AM, Barbosa FH, Duarte R, Vieira LQ, Arantes RM, Nicoli JR. 2004. Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice. J. Appl. Microbiol. 97:129–37 [Google Scholar]
  122. Simpson PJ, Ross RP, Fitzgerald GF, Stanton C. 2004. Bifidobacterium psychraerophilum sp. nov. and Aeriscardovia aeriphila gen. nov, sp. nov, isolated from a porcine caecum. Int. J. Syst. Evol. Microbiol. 54:401–6 [Google Scholar]
  123. Soh SE, Aw M, Gerez I, Chong YS, Rauffw M. et al. 2009. Probiotic supplementation in the first 6 months of life in at risk Asian infants: effects on eczema and atopic sensitization at the age of 1 year. Clin. Exp. Allergy 39:4571–78 [Google Scholar]
  124. Solís G, de Los Reyes-Gavilan CG, Fernandez N, Margolles A, Gueimonde M. 2010. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 16:307–10 [Google Scholar]
  125. Symonds EL, O'Mahony C, Lapthorne S, O'Mahony D, Sharry JM. et al. 2012. Bifidobacterium infantis 35624 protects against salmonella-induced reductions in digestive enzyme activity in mice by attenuation of the host inflammatory response. Clin. Transl. Gastroenterol. 10:3e15 [Google Scholar]
  126. Tan Q, Xu H, Chen T, Li P, Aguilar ZP. et al. 2012. Differential expression of virulence and stress fitness genes during interaction between Listeria monocytogenes and Bifidobacterium longum. Biosci. Biotechnol. Biochem. 76:4699–704 [Google Scholar]
  127. Tannock GW. 2010. Analysis of bifidobacterial populations in bowel ecology studies. Bifidobacteria: Genomics and Molecular Aspects B Mayo, D van Sinderen 1–17 Norfolk, UK: Caister Acad. [Google Scholar]
  128. Tomosada Y, Villena J, Murata K, Chiba E, Shimazu T. et al. 2013. Immunoregulatory effect of bifidobacteria strains in porcine intestinal epithelial cells through modulation of ubiquitin-editing enzyme A20 expression. PLOS ONE 8:3E59259 [Google Scholar]
  129. Turroni F, Foroni E, O'Connell-Motherway M, Bottacini F, Giubellini V. et al. 2010. Characterization of the serpin-encoding gene of Bifidobacterium breve 210B. Appl. Environ. Microbiol. 76:3206–19 [Google Scholar]
  130. Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A. et al. 2009. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl. Environ. Microbiol. 75:1534–45 [Google Scholar]
  131. Turroni F, Serafini F, Foroni E, Duranti S, O'Connell-Motherway M. et al. 2013. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. PNAS 110:11151–56 [Google Scholar]
  132. Underwood MA, Arriola J, Gerber CW, Kaveti A, Kalanetra KM. et al. 2014. Bifidobacterium longum subsp. infantis in experimental necrotizing enterocolitis: alterations in inflammation, innate immune response, and the microbiota. Pediatr. Res. 76:4326–33 [Google Scholar]
  133. Underwood MA, German JB, Lebrilla CB, Mills DA. 2015. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr. Res. 77:229–35 [Google Scholar]
  134. Underwood MA, Kalanetra KM, Bokulich NA, Lewis ZT, Mirmiran M. et al. 2013. A comparison of two probiotic strains of bifidobacteria in premature infants. J. Pediatr. 163:61585–91 [Google Scholar]
  135. Vandenplas Y, De Hert SG, PROBIOTICAL-study group 2011. Randomised clinical trial: the synbiotic food supplement Probiotical versus placebo for acute gastroenteritis in children. Aliment. Pharmacol. Ther. 34:862–67 [Google Scholar]
  136. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF. et al. 2007. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71:495–548 [Google Scholar]
  137. Ventura M, O'Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR. et al. 2009. Genome-scale analyses of health promoting bacteria: probiogenomics. Nat. Rev. Microbiol. 7:61–71 [Google Scholar]
  138. Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG. et al. 2014. Bacterial neuroactive compounds produced by psychobiotics. Adv. Exp. Med. Biol. 817:221–39 [Google Scholar]
  139. Wang Q, Dong J, Zhu Y. 2012. Probiotic supplement reduces risk of necrotizing enterocolitis and mortality in preterm very low–birthweight infants: an updated meta-analysis of 20 randomized, controlled trials. J. Pediatr. Surg. 47:241–48 [Google Scholar]
  140. Ward RE, Niñonuevo M, Mills DA, Lebrilla CB, German JB. 2007. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol. Nutr. Food Res. 51:1398–405 [Google Scholar]
  141. Wei X, Yan X, Chen X, Yang Z, Li H. et al. 2014. Proteomic analysis of the interaction of Bifidobacterium longum NCC2705 with the intestine cells Caco-2 and identification of plasminogen receptors. J. Proteom. 28:10889–98 [Google Scholar]
  142. World Gastroenterol. Organ. (WGO) 2011. World Gastroenterology Organisation global guidelines. Probiotics and prebiotics. Milwaukee, WI: WGO http://www.worldgastroenterology.org/guidelines/global-guidelines/probiotics-and-prebiotics/probiotics-and-prebiotics-english
  143. World Gastroenterol. Organ. (WGO) 2012. World Gastroenterology Organisation global guidelines. Acute diarrhea in adults and children: a global perspective. Milwaukee, WI: WGO http://www.worldgastroenterology.org/UserFiles/file/guidelines/acute-diarrhea-english-2012.pdf
  144. Wu MH, Pan TM, Wu YJ, Chang SJ, Chang MS, Hu CY. 2010. Exopolysaccharide activities from probiotic Bifidobacterium: immunomodulatory effects on J774A.1 macrophages and antimicrobial properties. Int. J. Food Microbiol. 144:104–10 [Google Scholar]
  145. Wu SF, Chiu HY, Chen AC, Lin HY, Lin HC, Caplan M. 2013. Efficacy of different probiotic combinations on death and necrotizing enterocolitis in a premature rat model. J. Pediatr. Gastroenterol. Nutr. 57:123–28 [Google Scholar]
  146. Yanokura E, Okib K, Makinoa H, Modestoc M, Pot B. et al. 2015. Subspeciation of Bifidobacterium longum by multilocus approaches and amplified fragment length polymorphism: description of B. longum subsp. suillum subsp. nov., isolated from the faeces of piglets. Syst. Appl. Microbiol. 38:305–14 [Google Scholar]
  147. You J, Yaqoob P. 2012. Evidence of immunomodulatory effects of a novel probiotic, Bifidobacterium longum bv. infantis CCUG 52486. FEMS Immunol. Med. Microbiol. 66:353–62 [Google Scholar]
  148. Zbinden A, Zbinden R, Berger C, Arlettaz R. 2015. Case series of Bifidobacterium longum bacteremia in three preterm infants on probiotic therapy. Neonatology 107:1569 [Google Scholar]
/content/journals/10.1146/annurev-food-041715-033151
Loading
/content/journals/10.1146/annurev-food-041715-033151
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error