1932

Abstract

The innate specificity of bacteriophages toward their hosts makes them excellent candidates for the development of detection assays. They can be used in many ways to detect pathogens, and each has its own advantages and disadvantages. Whole bacteriophages can carry reporter genes to alter the phenotype of the target. Bacteriophages can act as staining agents or the progeny of the infection process can be detected, which further increases the sensitivity of the detection assay. Compared with whole-phage particles, use of phage components as probes offers other advantages: for example, smaller probe size to enhance binding activity, phage structures that can be engineered for better affinity, as well as specificity, binding properties, and robustness. When no natural binding with the target exists, phages can be used as vehicles to identify new protein-ligand interactions necessary for diagnostics. This review comprehensively summarizes many uses of phages as detection tools and points the way toward how phage-based technologies may be improved.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-041715-033235
2017-02-28
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/food/8/1/annurev-food-041715-033235.html?itemId=/content/journals/10.1146/annurev-food-041715-033235&mimeType=html&fmt=ahah

Literature Cited

  1. Abdel-Hamid I, Atanasov P, Ghindidlis AL, Wilkins E. 1998. Development of flow-through immunoassay system. Sens. Actuators B 49:202–10 [Google Scholar]
  2. Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E. 1999. Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7. Biosens. Bioelectron. 14:309–16 [Google Scholar]
  3. Alasiri NA. 2015. Isolation and characterization of bacteriophages against non O157 Shiga toxin-producing Escherichia coli and their application as biosensor for foodborne pathogen detection MS Thesis, Dep. Food Sci., Univ. Guelph, Ontario [Google Scholar]
  4. Almeida PE, Almeida RCC, Barbalho TCF, Melo CG, Almeida AO. et al. 2003. Development of protocols for the bacteriophage amplification assay for rapid, quantitative and sensitive detection of viable Listeria cells. Abstr. Gen. Meet. Am. Soc. Microbiol. 103:P052 [Google Scholar]
  5. Anany H, Chen W, Pelton R, Griffiths MW. 2011. Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl. Environ. Microbiol. 77:6379–87 [Google Scholar]
  6. Anderson ES, Williams REO. 1956. Bacteriophage typing of enteric pathogens and staphylococci and its use in epidemiology: a review. J. Clin. Pathol. 9:94–127 [Google Scholar]
  7. Andres D, Hanke C, Baxa U, Seul A, Barbirz S, Seckler R. 2010. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J. Biol. Chem. 285:36768–75 [Google Scholar]
  8. Arai K, Tsutsumi H, Mihara H. 2013. A monosaccharide-modified peptide phage library for screening of ligands to carbohydrate-binding proteins. Bioorg. Med. Chem. Lett 234940–43 [Google Scholar]
  9. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS. et al. 2013. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30:108–60 [Google Scholar]
  10. Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S. 2011. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst 136:486–92 [Google Scholar]
  11. Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL. 2007. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus—a surface plasmon resonance spectroscopic study. Biosens. Bioelectron. 22:948–55 [Google Scholar]
  12. Barelle C, Gill DS, Charlton K. 2009. Shark novel antigen receptors—the next generation of biologic therapeutics?. Adv. Exp. Med. Biol 65549–62 [Google Scholar]
  13. Bennett AR, Davids FGC, Vlahodimou S, Banks JG, Betts RP. 1997. The use of bacteriophage-based systems for the separation and concentration of Salmonella. J. Appl. Microbiol. 83:259–65 [Google Scholar]
  14. Bernardi A, Jimenez-Barbero J, Casnati A, De Castro C, Darbre T. et al. 2013. Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev. 42:4709–27 [Google Scholar]
  15. Bidlingmaier S, Liu B. 2006. Construction and application of a yeast surface-displayed human cDNA library to identify post-translational modification-dependent protein-protein interactions. Mol. Cell Proteom. 5:533–40 [Google Scholar]
  16. Bidlingmaier S, Liu B. 2015. Identification of posttranslational modification-dependent protein interactions using yeast surface displayed human proteome libraries. Yeast Surface Display: Methods, Protocols, and Applications B Liu 193–202 New York: Springer [Google Scholar]
  17. Bielmann R, Habann M, Eugster MR, Lurz R, Calendar R. et al. 2015. Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids. Virology 477:110–18 [Google Scholar]
  18. Blasco R, Murphy MJ, Sanders MF, Squirrell DJ. 1998. Specific assays for bacteria using phage mediated release of adenylate kinase. J. Appl. Microbiol. 84:661–66 [Google Scholar]
  19. Block T, Miller R, Korngold R, Jungkind DA. 1989. Phage-linked immunoabsorbent system for the detection of pathologically relevant pathogens. Biotechniques 7:756–61 [Google Scholar]
  20. Branson TR, Turnbull WB. 2013. Bacterial toxin inhibitors based on multivalent scaffolds. Chem. Soc. Rev. 42:4613–22 [Google Scholar]
  21. Brovko LY, Anany H, Griffiths MW. 2012. Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment. Advances in Food and Nutrition Research H Jeyakumar 241–88 New York: Academic [Google Scholar]
  22. Brown KC. 2010. Peptidic tumor targeting agents: the road from phage display peptide selections to clinical applications. Curr. Pharm. Des. 16:1040–54 [Google Scholar]
  23. Brzozowska E, Śmietana M, Koba M, Górska S, Pawlik K. et al. 2015. Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings. Biosens. Bioelectron. 67:93–99 [Google Scholar]
  24. Burnham S, Hu J, Anany H, Brovko L, Deiss F. et al. 2014. Towards rapid on-site phage-mediated detection of generic Escherichia coli in water using luminescent and visual readout. Anal. Bioanal. Chem. 406:5685–93 [Google Scholar]
  25. Cademartiri R, Anany H, Gross I, Bhayani R, Griffiths M, Brook MA. 2010. Immobilization of bacteriophages on modified silica particles. Biomaterials 31:1904–10 [Google Scholar]
  26. Campbell GA, Medina MB, Mutharasan R. 2007. Detection of Staphylococcus enterotoxin B at picogram levels using piezoelectric-excited millimeter-sized cantilever sensors. Sens. Actuators B 126:354–60 [Google Scholar]
  27. Casjens SR. 2005. Comparative genomics and evolution of the tailed-bacteriophages. Curr. Opin. Microbiol. 8:451–58 [Google Scholar]
  28. Casjens SR, Molineux IJ. 2012. Short noncontractile tail machines: adsorption and DNA delivery by podoviruses. Viral Mol. Mach. 726:143–79 [Google Scholar]
  29. Chai Y, Li S, Horikawa S, Park M-K, Vodyanoy V, Chin BA. 2012. Rapid and sensitive detection of Salmonella Typhimurium on eggshells by using wireless biosensors. J. Food Prot. 75:631–36 [Google Scholar]
  30. Chan CE, Zhao BZ, Cazenave-Gassiot A, Pang SW, Bendt AK. et al. 2013. Novel phage display-derived mycolic acid-specific antibodies with potential for tuberculosis diagnosis. J. Lipid Res. 54:2924–32 [Google Scholar]
  31. Chang TC, Ding HC, Chen S. 2002. A conductance method for the identification of Escherichia coli O157:H7 using bacteriophage AR1. J. Food Prot. 65:12–17 [Google Scholar]
  32. Chen J, Alcaine SD, Jiang Z, Rotello VM, Nugen SR. 2015. Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe. Anal. Chem. 87:8977–84 [Google Scholar]
  33. Chen J, Clarke R, Griffiths M. 1996. Use of luminescent strains of Salmonella enteritidis to monitor contamination and survival in eggs. J. Food Prot. 59:915–21 [Google Scholar]
  34. Chen J, Griffiths MW. 1996. Salmonella detection in eggs using Lux+ bacteriophages. J. Food Prot. 59:908–14 [Google Scholar]
  35. Chen TS, Palacios H, Keating AE. 2013. Structure-based redesign of the binding specificity of anti-apoptotic Bcl-xL. J. Mol. Biol. 425:171–85 [Google Scholar]
  36. Chibli H, Ghali H, Park S, Peter YA, Nadeau JL. 2014. Immobilized phage proteins for specific detection of staphylococci. Analyst 139:179–86 [Google Scholar]
  37. Christiansen A, Kringelum JV, Hansen CS, Bogh KL, Sullivan E. et al. 2015. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum. Sci. Rep. 5:12913 [Google Scholar]
  38. Cole M, Spulber I, Gardner JW. 2015. Surface acoustic wave electronic tongue for robust analysis of sensory components. Sens. Actuators B 207:1147–53 [Google Scholar]
  39. Cox CR, Jensen KR, Mondesire RR, Voorhees KJ. 2015. Rapid detection of Bacillus anthracis by γ phage amplification and lateral flow immunochromatography. J. Microbiol. Methods 118:51–56 [Google Scholar]
  40. Cudic M, Condie BA, Weiner DJ, Lysenko ES, Xiang ZQ. et al. 2002. Development of novel antibacterial peptides that kill resistant isolates. Peptides 23:2071–83 [Google Scholar]
  41. da Siqueira RS, Dodd CE, Rees CE. 2003. Phage amplification assay as rapid method for Salmonella detection. Braz. J. Microbiol. 34:118–20 [Google Scholar]
  42. da Siqueira RS, Dodd CER, Rees CED. 2006. Evaluation of the natural virucidal activity of teas for use in the phage amplification assay. Int. J. Food Microbiol. 111:259–62 [Google Scholar]
  43. Daugherty PS. 2007. Protein engineering with bacterial display. Curr. Opin. Struct. Biol. 17:474–80 [Google Scholar]
  44. Delwart EL. 2007. Viral metagenomics. Rev. Med. Virol 17115–31 [Google Scholar]
  45. Derda R, Gitaka J, Klapperich CM, Mace CR, Kumar AA. et al. 2015. Enabling the development and deployment of next generation point-of-care diagnostics. PLOS Negl. Trop. Dis. 9:e0003676 [Google Scholar]
  46. Derda R, Tang SK, Li SC, Ng S, Matochko W, Jafari MR. 2011. Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 16:1776–803 [Google Scholar]
  47. Doran TM, Gao Y, Mendes K, Dean S, Simanski S, Kodadek T. 2014. Utility of redundant combinatorial libraries in distinguishing high and low quality screening hits. ACS Comb. Sci. 16:259–70 [Google Scholar]
  48. Dutta S, Gulla S, Chen TS, Fire E, Grant RA, Keating AE. 2010. Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL. J. Mol. Biol. 398:747–62 [Google Scholar]
  49. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA. et al. 2006. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. PNAS 103:4841–45 [Google Scholar]
  50. Favrin SJ, Jassim SA, Griffiths MW. 2001. Development and optimization of a novel immunomagnetic separation-bacteriophage assay for detection of Salmonella enterica serovar Enteritidis in broth. Appl. Environ. Microbiol. 67:217–24 [Google Scholar]
  51. Favrin SJ, Jassim SA, Griffiths MW. 2003. Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella enteritidis and Escherichia coli O157:H7 in food. Int. J. Food Microbiol. 85:63–71 [Google Scholar]
  52. Feliciano ND, da Silva Ribeiro V, de Almeida Santos F, Fujimura PT, Gonzaga HT. et al. 2014. Bacteriophage-fused peptides for serodiagnosis of human strongyloidiasis. PLOS Negl. Trop. Dis. 8:e2792 [Google Scholar]
  53. Fernandes E, Martins VC, Nóbrega C, Carvalho CM, Cardoso FA. et al. 2014. A bacteriophage detection tool for viability assessment of Salmonella cells. Biosens. Bioelectron. 52:239–46 [Google Scholar]
  54. Fischer LM, Wright VA, Guthy C, Yang N, McDermott MT. et al. 2008. Specific detection of proteins using nanomechanical resonators. Sens. Actuators B 134:613–17 [Google Scholar]
  55. Fu E, Yager P, Floriano PN, Christodoulides N, McDevitt J. 2011. Perspective on diagnostics for global health. IEEE Pulse 2:40–50 [Google Scholar]
  56. Fukuda MN. 2012. Peptide-displaying phage technology in glycobiology. Glycobiology 22:318–25 [Google Scholar]
  57. Funatsu T, Taniyama T, Tajima T, Tadakuma H, Namiki H. 2002. Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. Microbiol. Immunol. 46:365–69 [Google Scholar]
  58. Gau JJ, Lan EH, Dunn B, Ho CM, Woo JC. 2001. A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosens. Bioelectron. 16:745–55 [Google Scholar]
  59. Gervais L, Gel M, Allain B, Tolba M, Brovko L. et al. 2007. Immobilization of biotinylated bacteriophages on biosensor surfaces. Sens. Actuators B 125:615–21 [Google Scholar]
  60. Getz JA, Schoep TD, Daugherty PS. 2012. Peptide discovery using bacterial display and flow cytometry. Methods in Enzymology KD Wittrup, LV Gregory 75–97 New York: Academic [Google Scholar]
  61. Goldman ER, Anderson GP, Conway J, Sherwood LJ, Fech M. et al. 2008. Thermostable llama single domain antibodies for detection of botulinum A neurotoxin complex. Anal. Chem. 80:8583–91 [Google Scholar]
  62. Golshahi L, Lynch KH, Dennis JJ, Finlay WH. 2011. In vitro lung delivery of bacteriophages KS4-M and Theta KZ using dry powder inhalers for treatment of Burkholderia cepacia complex and Pseudomonas aeruginosa infections in cystic fibrosis. J. Appl. Microbiol. 110:106–17 [Google Scholar]
  63. Gonzalez-Macia L, Morrin A, Smyth MR, Killard AJ. 2010. Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst 135:845–67 [Google Scholar]
  64. Goodchild SA, Dooley H, Schoepp RJ, Flajnik M, Lonsdale SG. 2011. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries. Mol. Immunol. 48:2027–37 [Google Scholar]
  65. Goodridge L, Chen J, Griffiths M. 1999a. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157:H7. Appl. Environ. Microbiol. 65:1397–404 [Google Scholar]
  66. Goodridge L, Chen J, Griffiths M. 1999b. The use of a fluorescent bacteriophage assay for detection of Escherichia coli O157:H7 in inoculated ground beef and raw milk. Int. J. Food Microbiol. 47:43–50 [Google Scholar]
  67. Goodridge L, Griffiths M. 2002. Reporter bacteriophage assays as a means to detect foodborne pathogenic bacteria. Food Res. Int. 35:863–70 [Google Scholar]
  68. Griep RA, Prins M, van Twisk C, Keller HJHG, Kerschbaumer RJ. et al. 2000. Application of phage display in selecting Tomato spotted wilt virus–specific single-chain antibodies (scFvs) for sensitive diagnosis in ELISA. Phytopathology 90:183–90 [Google Scholar]
  69. Griffiths MW. 1996. The role of ATP bioluminescence in the food industry: new light on old problems. Food Technol 50:62–72 [Google Scholar]
  70. Griffiths MW. 2010. Phage-based methods for the detection of bacterial pathogens. Bacteriophages in the Control of Food- and Waterborne Pathogens PM Sabour, MW Griffiths 31–59 Washington, DC: ASM Press [Google Scholar]
  71. Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, Church WB, Dastmalchi S. 2013. Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov. Today 18:1144–57 [Google Scholar]
  72. He B, Chai G, Duan Y, Yan Z, Qiu L. et al. 2015. BDB: Biopanning Data Bank. Nucleic Acids Res 44:D1127–32 [Google Scholar]
  73. Heinis C, Rutherford T, Freund S, Winter G. 2009. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 5:502–7 [Google Scholar]
  74. Hennes KP, Suttle CA, Chan AM. 1995. Fluorescently labeled virus probes show that natural virus populations can control the structure of marine microbial communities. Appl. Environ. Microbiol. 61:3623–27 [Google Scholar]
  75. Hoang HA, Dien LT. 2015. Rapid and simple colorimetric detection of Escherichia coli O157:H7 in apple juice using a novel recombinant bacteriophage-based method. Biocontrol Sci 20:99–103 [Google Scholar]
  76. Horikawa S, Bedi D, Li S, Shen W, Huang S. et al. 2011. Effects of surface functionalization on the surface phage coverage and the subsequent performance of phage-immobilized magnetoelastic biosensors. Biosens. Bioelectron. 26:2361–67 [Google Scholar]
  77. Huang J, Ru B, Zhu P, Nie F, Yang J. et al. 2012. MimoDB 2.0: a mimotope database and beyond. Nucleic Acids Res 40:D271–77 [Google Scholar]
  78. Huang S, Yang H, Lakshmanan R, Li S, Chen I. et al. 2009. The performance of a multi-sensor detection system based on phage-coated magnetoelastic biosensors. Proc. SPIE 7312, Adv. Environ. Chem. Biol. Sensing Technol. VI T Vo-Dinh, RA Lieberman, G Gauglitz Bellingham, WA: SPIE [Google Scholar]
  79. Ilic B, Czaplewski D, Zalalutdinov M, Craighead HG, Neuzil P. et al. 2001. Single cell detection with micromechanical oscillators. J. Vac. Sci. Technol. B 19:2825–28 [Google Scholar]
  80. Ilic B, Yang Y, Craighead HG. 2004. Virus detection using nanoelectromechanical devices. Appl. Phys. Lett. 85:2604–6 [Google Scholar]
  81. Ivarsson Y, Arnold R, McLaughlin M, Nim S, Joshi R. et al. 2014. Large-scale interaction profiling of PDZ domains through proteomic peptide–phage display using human and viral phage peptidomes. PNAS 111:2542–47 [Google Scholar]
  82. Jabrane T, Dubé M, Mangin PJ. 2009. Bacteriophage immobilization on paper surface: effect of cationic pre-coat layer Presented at Can. PAPTAC 95th Annu. Meet., Montreal
  83. Jabrane T, Jeaidi J, Dubé M, Mangin PJ. 2008. Gravure printing of enzymes and phages. Adv. Print Media Technol. 35:279–88 [Google Scholar]
  84. Javed MA, Poshtiban S, Arutyunov D, Evoy S, Szymanski CM. 2013. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni. Campylobacter coli. PLOS ONE 8:e69770 [Google Scholar]
  85. Joung HA, Lee NR, Lee SK, Ahn J, Shin YB. et al. 2008. High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Anal. Chim. Acta 630:168–73 [Google Scholar]
  86. Kalhor-Monfared S, Jafari MR, Patterson JT, Kitov PI, Dwyer JJ. et al. 2016. Rapid biocompatible macrocyclization of peptides with decafluoro-diphenylsulfone. Chem. Sci. 7:3785–90 [Google Scholar]
  87. Kannan P, Yong HY, Reiman L, Cleaver C, Patel P, Bhagwat AA. 2010. Bacteriophage-based rapid and sensitive detection of Escherichia coli O157:H7 isolates from ground beef. Foodborne Pathog. Dis. 7:1551–58 [Google Scholar]
  88. Khatir NM, Abdul-Malek Z, Banihashemian SM. 2014. Temperature and magnetic field driven modifications in the I-V features of gold-DNA-gold structure. Sensors 14:19229–41 [Google Scholar]
  89. Khatir NM, Banihashemian SM, Periasamy V, Ritikos R, Abd Majid WH, Rahman SA. 2012. Electrical characterization of gold-DNA-gold structures in presence of an external magnetic field by means of I-V curve analysis. Sensors 12:3578–86 [Google Scholar]
  90. Kitov PI, Sadowska JM, Mulvey G, Armstrong GD, Ling H. et al. 2000. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403:669–72 [Google Scholar]
  91. Kodikara CP, Crew HH, Stewart GSAB. 1991. Near on-line detection of enteric bacteria using lux recombinant bacteriophage. FEMS Microbiol. Lett. 83:261–65 [Google Scholar]
  92. Kouzmitcheva GA, Petrenko VA, Smith GP. 2001. Identifying diagnostic peptides for Lyme disease through epitope discovery. Clin. Diagn. Lab. Immunol. 8:150–60 [Google Scholar]
  93. Kropinski AM, Arutyunov D, Foss M, Cunningham A, Ding W. et al. 2011. Genome and proteome of Campylobacter jejuni bacteriophage NCTC 12673. Appl. Environ. Microbiol. 77:8265–71 [Google Scholar]
  94. Kumar AA, Hennek JW, Smith BS, Kumar S, Beattie P. et al. 2015. From the bench to the field in low-cost diagnostics: two case studies. Angew. Chem. 54:5836–53 [Google Scholar]
  95. Lakshmanan RS, Guntupalli R, Hu J, Petrenko VA, Barbaree JM, Chin BA. 2007. Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor. Sens. Actuators B 126:544–50 [Google Scholar]
  96. Larman HB, Laserson U, Querol L, Verhaeghen K, Solimini NL. et al. 2013. PhIP-Seq characterization of autoantibodies from patients with multiple sclerosis, type 1 diabetes and rheumatoid arthritis. J. Autoimmun. 43:1–9 [Google Scholar]
  97. Laube T, Cortés P, Llagostera M, Alegret S, Pividori MI. 2014. Phagomagnetic immunoassay for the rapid detection of Salmonella. Appl. Microbiol. Biotechnol. 98:1795–805 [Google Scholar]
  98. Lee SH, Onuki M, Satoh H, Mino T. 2006. Isolation, characterization of bacteriophages specific to Microlunatus phosphovorus and their application for rapid host detection. Lett. Appl. Microbiol. 42:259–64 [Google Scholar]
  99. Liao WC, Ho JAA. 2009. Attomole DNA electrochemical sensor for the detection of Escherichia coli O157. Anal. Chem. 81:2470–76 [Google Scholar]
  100. Liu CC, Mack AV, Brustad EM, Mills JH, Groff D. et al. 2009. Evolution of proteins with genetically encoded “chemical warheads.”. J. Am. Chem. Soc. 131:9616–17 [Google Scholar]
  101. Loessner MJ, Rees CED, Stewart G, Scherer S. 1996. Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. Appl. Environ. Microbiol. 62:1133–40 [Google Scholar]
  102. Lu TK, Bowers J, Koeris MS. 2013. Advancing bacteriophage-based microbial diagnostics with synthetic biology. Trends Biotechnol 31:325–27 [Google Scholar]
  103. Lu X, Weiss P, Block T. 2004. A phage with high affinity for hepatitis B surface antigen for the detection of HBsAg. J. Virol. Methods 119:51–54 [Google Scholar]
  104. Mammen M, Choi S-K, Whitesides GM. 1998. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. 37:2754–94 [Google Scholar]
  105. Marti R, Zurfluh K, Hagens S, Pianezzi J, Klumpp J, Loessner MJ. 2013. Long tail fibres of the novel broad-host-range T-even bacteriophage S16 specifically recognize Salmonella OmpC. Mol. Microbiol. 87:818–34 [Google Scholar]
  106. Martinez AW, Phillips ST, Whitesides GM, Carrilho E. 2010. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82:3–10 [Google Scholar]
  107. Matochko WL, Cory Li S, Tang SKY, Derda R. 2013. Prospective identification of parasitic sequences in phage display screens. Nucleic Acids Res 42:1784–98 [Google Scholar]
  108. Matsubara T. 2012. Potential of peptides as inhibitors and mimotopes: selection of carbohydrate-mimetic peptides from phage display libraries. J. Nucleic Acids 2012:15 [Google Scholar]
  109. McElhiney J, Drever M, Lawton LA, Porter AJ. 2002. Rapid isolation of a single-chain antibody against the cyanobacterial toxin microcystin-LR by phage display and its use in the immunoaffinity concentration of microcystins from water. Appl. Environ. Microbiol. 68:5288–95 [Google Scholar]
  110. Minikh O, Tolba M, Brovko LY, Griffiths MW. 2010. Bacteriophage-based biosorbents coupled with bioluminescent ATP assay for rapid concentration and detection of Escherichia coli. J. Microbiol. Methods 82:177–83 [Google Scholar]
  111. Mourez M, Kane RS, Mogridge J, Metallo S, Deschatelets P. et al. 2001. Designing a polyvalent inhibitor of anthrax toxin. Nat. Biotechnol. 19:958–61 [Google Scholar]
  112. Neufeld T, Schwartz-Mittelmann A, Biran D, Ron EZ, Rishpon J. 2003. Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria. Anal. Chem. 75:580–85 [Google Scholar]
  113. Ng S, Derda R. 2016. Phage-displayed macrocyclic glycopeptide libraries. Org. Biomol. Chem. 14:5539–45 [Google Scholar]
  114. Ng S, Jafari MR, Derda R. 2012a. Bacteriophages and viruses as a support for organic synthesis and combinatorial chemistry. ACS Chem. Biol. 7:123–38 [Google Scholar]
  115. Ng S, Jafari MR, Matochko WL, Derda R. 2012b. Quantitative synthesis of genetically encoded glycopeptide libraries displayed on M13 phage. ACS Chem. Biol. 7:1482–87 [Google Scholar]
  116. Ng S, Tjhung K, Paschal B, Noren C, Derda R. 2015. Chemical posttranslational modification of phage-displayed peptides. Peptide Libraries R Derda 155–72 New York: Springer [Google Scholar]
  117. Ngubane NAC, Gresh L, Ioerger TR, Sacchettini JC, Zhang YJ. et al. 2013. High-throughput sequencing enhanced phage display identifies peptides that bind mycobacteria. PLOS ONE 8:e77844 [Google Scholar]
  118. Oh BK, Lee W, Chun BS, Bae YM, Lee WH, Choi JW. 2005. The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosens. Bioelectron. 20:1847–50 [Google Scholar]
  119. Oliveira IC, Almeida RCC, Hofer E, Almeida PF. 2012. Bacteriophage amplification assay for detection of Listeria spp. using virucidal laser treatment. Braz. J. Microbiol. 43:1128–36 [Google Scholar]
  120. Park M-K, Oh J-H, Chin BA. 2011. The effect of incubation temperature on the binding of Salmonella typhimurium to phage-based magnetoelastic biosensors. Sens. Actuators B 160:1427–33 [Google Scholar]
  121. Park M-K, Wikle HC III, Yating C, Horikawa S, Wen S, Chin BA. 2012. The effect of incubation time for Salmonella typhimurium binding to phage-based magnetoelastic biosensors. Food Control 26:539–45 [Google Scholar]
  122. Petrenko VA, Smith GP, Gong X, Quinn T. 1996. A library of organic landscapes on filamentous phage. Protein Eng 9:797–801 [Google Scholar]
  123. Poshtiban S, Javed MA, Arutyunov D, Singh A, Banting G. et al. 2013a. Phage receptor binding protein-based magnetic enrichment method as an aid for real time PCR detection of foodborne bacteria. Analyst 138:5619–26 [Google Scholar]
  124. Poshtiban S, Singh A, Fitzpatrick G, Evoy S. 2013b. Bacteriophage tail-spike protein derivitized microresonator arrays for specific detection of pathogenic bacteria. Sens. Actuators B 181:410–16 [Google Scholar]
  125. Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M. 2011. Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr. Issues Mol. Biol. 13:51–76 [Google Scholar]
  126. Reddy MM, Wilson R, Wilson J, Connell S, Gocke A. et al. 2011. Identification of candidate IgG biomarkers for Alzheimer's disease via combinatorial library screening. Cell 144:132–42 [Google Scholar]
  127. Rentero Rebollo I, Sabisz M, Baeriswyl V, Heinis C. 2014. Identification of target-binding peptide motifs by high-throughput sequencing of phage-selected peptides. Nucleic Acids Res 42:e169 [Google Scholar]
  128. Sanders MF. 2003. Methods of identifying bacteria of specific bacterial genus, species or serotype US Patent No. 6660470
  129. Schmeicher M, Loessner MJ. 2014. Application of bacteriophages for the detection of foodborne pathogens. Bacteriophage 4:e28137 [Google Scholar]
  130. Shabani A, Marquette CA, Mandeville R, Lawrence MF. 2013. Magnetically-assisted impedimetric detection of bacteria using phage-modified carbon microarrays. Talanta 116:1047–53 [Google Scholar]
  131. Sharp NJ, Vandamm JP, Molineux IJ, Schofield DA. 2015. Rapid detection of Bacillus anthracis in complex food matrices using phage-mediated bioluminescence. J. Food Prot. 78:963–68 [Google Scholar]
  132. Singh A, Arutyunov D, McDermott MT, Szymanski CM, Evoy S. 2011. Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst 136:4780–86 [Google Scholar]
  133. Singh A, Arya SK, Glass N, Hanifi-Moghaddam P, Naidoo R. et al. 2010. Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection. Biosens. Bioelectron. 26:131–38 [Google Scholar]
  134. Singh A, Glass N, Tolba M, Brovko L, Griffiths M, Evoy S. 2009. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens. Bioelectron. 24:3645–51 [Google Scholar]
  135. Singh U, Arutyunov D, Basu U, Dos Santos Seckler H, Szymanski CM, Evoy S. 2014. Mycobacteriophage lysin-mediated capture of cells for the PCR detection of Mycobacterium avium subspecies paratuberculosis. Anal. Methods 6:5682–89 [Google Scholar]
  136. Smith GP, Petrenko VA. 1997. Phage display. Chem. Rev. 97:391–410 [Google Scholar]
  137. Sohar J. 2013. Immobilization of bacteriophages for the control and detection of food-borne pathogens MA Thesis, Dep. Food Sci., Univ. Guelph, Ontario
  138. Sorokulova IB, Olsen EV, Chen IH, Fiebor B, Barbaree JM. et al. 2005. Landscape phage probes for Salmonella typhimurium. J. Microbiol. Methods 63:55–72 [Google Scholar]
  139. Squirrell DJ, Price RL, Murphy MJ. 2002. Rapid and specific detection of bacteria using bioluminescence. Anal. Chim. Acta 457:109–14 [Google Scholar]
  140. Stewart G, Jassim SAA, Denyer SP, Newby P, Linley K, Dhir VK. 1998. The specific and sensitive detection of bacterial pathogens within 4 h using bacteriophage amplification. J. Appl. Microbiol. 84:777–83 [Google Scholar]
  141. Strachan G, Whyte JA, Molloy PM, Paton GI, Porter AJR. 2000. Development of robust, environmental, immunoassay formats for the quantification of pesticides in soil. Environ. Sci. Technol. 34:1603–08 [Google Scholar]
  142. ’t Hoen PAC, Jirka SMG, ten Broeke BR, Schultes EA, Aguilera B. et al. 2012. Phage display screening without repetitious selection rounds. Anal. Biochem. 421:622–31 [Google Scholar]
  143. Tawil N, Sacher E, Mandeville R, Meunier M. 2012. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens. Bioelectron. 37:24–29 [Google Scholar]
  144. Taylor AD, Ladd J, Yu QM, Chen SF, Homola J, Jiang SY. 2006. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens. Bioelectron. 22:752–58 [Google Scholar]
  145. Taylor AD, Yu QM, Chen SF, Homola J, Jiang SY. 2005. Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor. Sens. Actuators B 107:202–8 [Google Scholar]
  146. Thouand G, Vachon P, Liu S, Dayre M, Griffiths M. 2008. Optimization and validation of a simple method using P22::luxAB bacteriophage for rapid detection of Salmonella enterica serotypes A, B, and D in poultry samples. J. Food Prot. 71:380–85 [Google Scholar]
  147. Tjhung KF, Burnham S, Anany H, Griffiths MW, Derda R. 2014. Rapid enumeration of phage in monodisperse emulsions. Anal. Chem. 86:5642–48 [Google Scholar]
  148. Tjhung KF, Kitov PI, Ng S, Kitova EN, Deng L. et al. 2016. Silent encoding of chemical post-translational modifications in phage-displayed libraries. J. Am. Chem. Soc. 138:32–35 [Google Scholar]
  149. Tolba M, Ahmed MU, Tlili C, Eichenseher F, Loessner MJ, Zourob M. 2012. A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst 137:5749–56 [Google Scholar]
  150. Tolba M, Brovko LY, Minikh O, Griffiths MW. 2008. Engineering of bacteriophages displaying affinity tags on its head for biosensor applications. Tech. Proc. 2008 NSTI Nanotechnol. Conf. Trade Show, Boston 2 Life Sci. Med. Bio Mater.449–52 Boston: Nano Sci. Technol. Inst. [Google Scholar]
  151. Tolba M, Minikh O, Brovko LY, Evoy S, Griffiths MW. 2010. Oriented immobilization of bacteriophages for biosensor applications. Appl. Environ. Microbiol. 76:528–35 [Google Scholar]
  152. Van Nieuwenhove LC, Rogé S, Balharbi F, Dieltjens T, Laurent T. et al. 2011. Identification of peptide mimotopes of Trypanosoma brucei gambiense variant surface glycoproteins. PLOS Negl. Trop. Dis. 5:e1189 [Google Scholar]
  153. Vinay M, Franche N, Gregori G, Fantino JR, Pouillot F, Ansaldi M. 2015. Phage-based fluorescent biosensor prototypes to specifically detect enteric bacteria such as E.coli and Salmonella enterica Typhimurium. PLOS ONE 10:e0131466 [Google Scholar]
  154. Waddell TE, Poppe C. 2000. Construction of mini-Tn10luxABcam/Ptac-ATS and its use for developing a bacteriophage that transduces bioluminescence to Escherichia coli O157:H7. FEMS Microbiol. Lett. 182:285–89 [Google Scholar]
  155. Walcher G, Stessl B, Wagner M, Eichenseher F, Loessner MJ, Hein I. 2010. Evaluation of paramagnetic beads coated with recombinant Listeria phage endolysin-derived cell wall–binding domain proteins for separation of Listeria monocytogenes from raw milk in combination with culture-based and real-time polymerase chain reaction-based quantification. Foodborne Pathogens Dis. 7:1019–24 [Google Scholar]
  156. Walper SA, Anderson GP, Brozozog Lee PA, Glaven RH, Liu JL. et al. 2012. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells. PLOS ONE 7:e32801 [Google Scholar]
  157. Wan JH, Johnson ML, Guntupalli R, Petrenko VA, Chin BA. 2007. Detection of Bacillus anthracis spores in liquid using phage-based magnetoelastic micro-resonators. Sens. Actuators B 127:559–66 [Google Scholar]
  158. Wang C, Sauvageau D, Elias A. 2016. Immobilization of active bacteriophages on polyhydroxyalkanoate surfaces. ACS Appl. Mater. Interfaces 8:1128–38 [Google Scholar]
  159. Waseh S, Hanifi-Moghaddam P, Coleman R, Masotti M, Ryan S. et al. 2010. Orally administered P22 phage tailspike protein reduces Salmonella colonization in chickens: prospects of a novel therapy against bacterial infections. PLOS ONE 5:e13904 [Google Scholar]
  160. Wolber PK, Green RL. 1990. New rapid method for the detection of Salmonella in foods. Trends Food Sci. Technol. 1:80–82 [Google Scholar]
  161. Wong YY, Ng SP, Ng MH, Si SH, Yao SZ, Fung YS. 2002. Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance. Biosens. Bioelectron. 17:676–84 [Google Scholar]
  162. Wu C-H, Liu IJ, Lu R-M, Wu H-C. 2016. Advancement and applications of peptide phage display technology in biomedical science.. J. Biomed. Sci. 23:8 [Google Scholar]
  163. Wu J, Zeng XQ, Zhang HB, Ni HZ, Pei L. et al. 2014. Novel phage display-derived H5N1-specific scFvs with potential use in rapid avian flu diagnosis. J. Microbiol. Biotechnol. 24:704–13 [Google Scholar]
  164. Wu Y, Brovko L, Griffiths M. 2001. Influence of phage population on the phage‐mediated bioluminescent adenylate kinase (AK) assay for detection of bacteria. Lett. Appl. Microbiol. 33:311–15 [Google Scholar]
  165. Xu GJ, Kula T, Xu Q, Li MZ, Vernon SD. et al. 2015. Comprehensive serological profiling of human populations using a synthetic human virome. Science 348:0698 [Google Scholar]
  166. Yager P, Domingo GJ, Gerdes J. 2008. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng 10107–44 [Google Scholar]
  167. Yim PB, Clarke ML, McKinstry M, De Paoli Lacerda SH, Pease LF. et al. 2009. Quantitative characterization of quantum dot-labeled lambda phage for Escherichia coli detection. Biotechnol. Bioeng. 104:1059–67 [Google Scholar]
  168. Zhou B, Wirsching P, Janda KD. 2002. Human antibodies against spores of the genus Bacillus: a model study for detection of and protection against anthrax and the bioterrorist threat. PNAS 99:5241–46 [Google Scholar]
/content/journals/10.1146/annurev-food-041715-033235
Loading
/content/journals/10.1146/annurev-food-041715-033235
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error