1932

Abstract

Induced mutations have been used to generate novel variation for breeding purposes since the early 1900s. However, the combination of this old technology with the new capabilities of high-throughput sequencing has resulted in powerful reverse genetic approaches in polyploid crops. Sequencing genomes or exomes of large mutant populations can generate extensive databases of mutations for most genes. These mutant collections, together with genome editing, are being used in polyploid species to combine mutations in all copies of a gene (homoeologs), and to expose phenotypic variation that was previously hidden by functional redundancy among homoeologs. This redundancy is more extensive in recently formed polyploids such as wheat, which can now benefit from the deployment of useful recessive mutations previously identified in its diploid relatives. Sequenced mutant populations and genome editing have changed the paradigm of what is possible in functional genetic analysis of wheat.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120116-024533
2017-11-27
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/genet/51/1/annurev-genet-120116-024533.html?itemId=/content/journals/10.1146/annurev-genet-120116-024533&mimeType=html&fmt=ahah

Literature Cited

  1. Acevedo-Garcia J, Spencer D, Thieron H, Reinstädler A, Hammond-Kosack K. 1.  et al. 2017. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol. J. 15:367–78 [Google Scholar]
  2. Adams KL, Wendel JF. 2.  2005. Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol. 8:135–41 [Google Scholar]
  3. Allen AM, Barker GLA, Wilkinson P, Burridge A, Winfield M. 3.  et al. 2013. Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol. J. 11:279–95 [Google Scholar]
  4. Avni R, Zhao R, Pearce S, Jun Y, Uauy C. 4.  et al. 2014. Functional characterization of GPC-1 genes in hexaploid wheat. Planta 239:313–24 [Google Scholar]
  5. Beales J, Turner A, Griffiths S, Snape JW, Laurie DA. 5.  2007. A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115:721–33 [Google Scholar]
  6. Bennett MD, Smith JB. 6.  1976. Nuclear DNA amounts in angiosperms. Philos. Trans. R. Soc. B 274:227–74 [Google Scholar]
  7. Blanc G, Wolfe KH. 7.  2004. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–78 [Google Scholar]
  8. Borrill P, Adamski N, Uauy C. 8.  2015. Genomics as the key to unlocking the polyploid potential of wheat. New Phytol 208:1008–22 [Google Scholar]
  9. Briggs J, Chen S, Zhang W, Nelson S, Dubcovsky J, Rouse MN. 9.  2015. Mapping of SrTm4, a recessive stem rust resistance gene from diploid wheat effective to Ug99. Phytopathology 105:1347–54 [Google Scholar]
  10. Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M. 10.  et al. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705 [Google Scholar]
  11. Chantreau M, Grec S, Gutierrez L, Dalmais M, Pineau C. 11.  et al. 2013. PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics. BMC Plant Biol 13:159 [Google Scholar]
  12. Chen A, Li C, Hu W, Lau MY, Lin H. 12.  et al. 2014. PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod. PNAS 111:10037–44 [Google Scholar]
  13. Dibernardi JM, Lin H, Chuck G, Faris JD, Dubcovsky J. 13.  2017. microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development 144:1966–75 [Google Scholar]
  14. Dobrovolskaya O, Pont C, Sibout R, Martinek P, Badaeva E. 14.  et al. 2015. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol 167:189–99 [Google Scholar]
  15. Dubcovsky J, Dvorak J. 15.  2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862 [Google Scholar]
  16. 16. Dubcovsky Lab. 2017. Wheat TILLING Database, Univ. Calif., Davis, CA updated Jan. 17, 2017. http://dubcovskylab.ucdavis.edu/wheat-tilling
  17. Dudnikov AJ. 17.  2003. Allozymes and growth habit of Aegilops tauschii: genetic control and linkage patterns. Euphytica 129:89–97 [Google Scholar]
  18. 18. Earlham Inst. 2017. Grassroots Genomics Proj Norwich, UK: http://www.earlham.ac.uk/grassroots-genomics
  19. Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN. 19.  2014. The past, present and future of breeding rust resistant wheat. Front. Plant Sci. 5:641 [Google Scholar]
  20. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. 20.  2003. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. PNAS 100:15253–58 [Google Scholar]
  21. Fröier K, Gustafsson Å, Tedin O. 21.  1942. The relation of mitotic disturbances to X-ray dosage and polyploidy. Hereditas 28:165–70 [Google Scholar]
  22. Fu D, Szűcs P, Yan L, Helguera M, Skinner JS. 22.  et al. 2005. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Genet. Genom. 273:54–65 [Google Scholar]
  23. Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L. 23.  et al. 2009. A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–60 [Google Scholar]
  24. Gao L, Cox DBT, Yan WX, Manteiga J, Schneider M. 24.  et al. 2017. Engineered Cpf1 enzymes with altered PAM specificities. Nat. Biotechnol. 35:789–92 [Google Scholar]
  25. Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV. 25.  et al. 2017. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–62 [Google Scholar]
  26. Gustafsson Å. 26.  1947. Mutations in agricultural plants. Hereditas 33:1–100 [Google Scholar]
  27. Guttieri M, Bowen D, Dorsch JA, Raboy V, Souza E. 27.  2004. Identification and characterization of a low phytic acid wheat. Crop Sci 44:418–24 [Google Scholar]
  28. Guyot R, Keller B. 28.  2004. Ancestral genome duplication in rice. Genome 47:610–14 [Google Scholar]
  29. Hazard B, Zhang X, Colasuonno P, Uauy C, Beckles DM, Dubcovsky J. 29.  2012. Induced mutations in the Starch Branching Enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat. Crop Sci 52:1754–66 [Google Scholar]
  30. Hemming MN, Fieg S, Peacock WJ, Dennis ES, Trevaskis B. 30.  2009. Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol. Genet. Genom. 282:107–17 [Google Scholar]
  31. Henikoff S, Henikoff JG. 31.  1992. Amino acid substitution matrices from protein blocks. PNAS 89:10915–19 [Google Scholar]
  32. Henry IM, Nagalakshmi U, Lieberman MC, Ngo KJ, Krasileva KV. 32.  et al. 2014. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26:1382–97 [Google Scholar]
  33. Hickey LT, Germán SE, Pereyra SA, Diaz JE, Ziems LA. 33.  et al. 2017. Speed breeding for multiple disease resistance in barley. Euphytica 213:64 [Google Scholar]
  34. Hickey LT, Wilkinson PM, Knight CR, Godwin ID, Kravchuk OY. 34.  et al. 2012. Rapid phenotyping for adult-plant resistance to stripe rust in wheat. Plant Breed 131:54–61 [Google Scholar]
  35. Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G. 35.  et al. 2014. Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26:121–35 [Google Scholar]
  36. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN. 36.  et al. 2007. Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39:1522–27 [Google Scholar]
  37. Hopf TA, Ingraham JB, Poelwijk FJ, Scharfe CPI, Springer M. 37.  et al. 2017. Mutation effects predicted from sequence co-variation. Nat. Biotechnol. 35:128–35 [Google Scholar]
  38. 38. IWGSC (Int. Wheat Genome Seq. Consort.). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788 [Google Scholar]
  39. Jiao Y, Burke JJ, Chopra R, Burow G, Chen J. 39.  et al. 2016. A sorghum mutant resource as an efficient platform for gene discovery in grasses. Plant Cell 28:1551–62 [Google Scholar]
  40. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L. 40.  et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100 [Google Scholar]
  41. King R, Bird N, Ramirez-Gonzalez R, Coghill JA, Patil A. 41.  et al. 2015. Mutation scanning in wheat by exon capture and next-generation sequencing. PLOS ONE 10:e0137549 [Google Scholar]
  42. Kippes N, Chen A, Zhang X, Lukaszewski AJ, Dubcovsky J. 42.  2016. Development and characterization of a spring hexaploid wheat line with no functional VRN2 genes. Theor. Appl. Genet. 129:1417–28 [Google Scholar]
  43. Kippes N, Debernardi JM, Vasquez-Gross HA, Akpinar BA, Budak H. 43.  et al. 2015. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. PNAS 112:E5401–10 [Google Scholar]
  44. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT. 44.  et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–85 [Google Scholar]
  45. Knott DR. 45.  1980. Mutation of a gene for yellow pigment linked to Lr19 in wheat. Can. J. Genet. Cytol. 22:651–54 [Google Scholar]
  46. Konopatskaia I, Vavilova V, Kondratenko EY, Blinov A, Goncharov NP. 46.  2016. VRN1 genes variability in tetraploid wheat species with a spring growth habit. BMC Plant Biol 16:244 [Google Scholar]
  47. Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F. 47.  et al. 2017. Uncovering hidden variation in polyploid wheat. PNAS 114:E913–21 [Google Scholar]
  48. Kumar P, Henikoff S, Ng PC. 48.  2009. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4:1073–81 [Google Scholar]
  49. Li C, Lin H, Dubcovsky J. 49.  2015. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley. Plant J 84:70–82 [Google Scholar]
  50. Li G, Jain R, Chern M, Pham NT, Martin JA. 50.  et al. 2017. The sequences of 1,504 mutants in the model rice variety Kitaake facilitate rapid functional genomic studies. Plant Cell 29:1218–31 [Google Scholar]
  51. Li Y-H, Zhou G, Ma J, Jiang W, Jin L-G. 51.  et al. 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32:1045–52 [Google Scholar]
  52. Liang Z, Chen K, Li T, Zhang Y, Wang Y. 52.  et al. 2017. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8:14261 [Google Scholar]
  53. Lynch M, Conery JS. 53.  2000. The evolutionary fate and consequences of duplicate genes. Science 290:1151–55 [Google Scholar]
  54. MacKey J. 54.  1968. Mutagenesis in vulgare wheat. Hereditas 59:505–17 [Google Scholar]
  55. Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M. 55.  et al. 2014. Ancient hybridizations among the ancestral genomes of bread wheat. Science 345:1250092 [Google Scholar]
  56. McCallum CM, Comai L, Greene EA, Henikoff S. 56.  2000. Targeted screening for induced mutations. Nat. Biotechnol. 18:455–57 [Google Scholar]
  57. McIntosh R, Dubcovsky J, Rogers W, Morris C, Xia X. 57.  2017. Catalogue of gene symbols for wheat Komugi Wheat Genet. Resour. Database, Comm. Natl. BioResour. Proj., Kyoto, Japan, updated Jan. 11 . http://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp
  58. Molina M, del C, Naranjo CA. 58.  1987. Cytogenetic studies in the genus Zea. Theor. Appl. Genet. 73:542–50 [Google Scholar]
  59. Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H. 59.  et al. 2017. The pangenome of hexaploid bread wheat. Plant J 90:1007–13 [Google Scholar]
  60. Muterko A, Kalendar R, Salina E. 60.  2016. Allelic variation at the VERNALIZATION-A1, VRN-B1, VRN-B3, and PHOTOPERIOD-A1 genes in cultivars of Triticum durum Desf. Planta 244:1253–63 [Google Scholar]
  61. Nilsson-Ehle H. 61.  1909. Kreuzungsuntersuchungen an Hafer und Weizen. Lunds Univ. Årsskr. N.F. 5:1–122 [Google Scholar]
  62. Page DR, Grossniklaus U. 62.  2002. The art and design of genetic screens: Arabidopsis thaliana. Nat. Rev. Genet. 3:124–36 [Google Scholar]
  63. Paterson AH, Bowers JE, Chapman BA. 63.  2004. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. PNAS 101:9903–8 [Google Scholar]
  64. Pearce S, Shaw LM, Lin H, Cotter JD, Li C, Dubcovsky J. 64.  2017. Night-break experiments shed light on the Photoperiod1-mediated flowering. Plant Physiol 174:1139–50 [Google Scholar]
  65. Poursarebani N, Seidensticker T, Koppolu R, Trautewig C, Gawroński P. 65.  et al. 2015. The genetic basis of composite spike form in barley and ‘Miracle-Wheat.’. Genetics 201:155–65 [Google Scholar]
  66. Puchta H. 66.  2017. Applying CRISPR/Cas for genome engineering in plants: The best is yet to come. Curr. Opin. Plant Biol. 36:1–8 [Google Scholar]
  67. Rakszegi M, Kisgyörgy BN, Tearall K, Shewry PR, Láng L. 67.  et al. 2010. Diversity of agronomic and morphological traits in a mutant population of bread wheat studied in the Healthgrain program. Euphytica 174:409–21 [Google Scholar]
  68. Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S. 68.  et al. 2015. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol. J. 13:613–24 [Google Scholar]
  69. Ramirez-Gonzalez RH, Uauy C, Caccamo M. 69.  2015. PolyMarker: a fast polyploid primer design pipeline. Bioinformatics 31:2038–39 [Google Scholar]
  70. 70. RevGenUK. 2017. RevGenUK. TILLING Serv., John Innes Cent., Norwich, UK, updated Jan. 20, 2017. http://revgenuk.jic.ac.uk
  71. Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W. 71.  2002. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3:429–41 [Google Scholar]
  72. Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S. 72.  et al. 2016. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221 [Google Scholar]
  73. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F. 73.  et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–15 [Google Scholar]
  74. Schneeberger K. 74.  2014. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat. Rev. Genet. 15:662–76 [Google Scholar]
  75. Schönhofen A, Hazard B, Zhang X, Dubcovsky J. 75.  2016. Registration of common wheat germplasm with mutations in SBEII genes conferring increased grain amylose and resistant starch content. J. Plant Regist. 10:200–5 [Google Scholar]
  76. Schreiber AW, Hayden MJ, Forrest KL, Kong SL, Langridge P, Baumann U. 76.  2012. Transcriptome-scale homoeolog-specific transcript assemblies of bread wheat. BMC Genom 13:492 [Google Scholar]
  77. Semagn K, Babu R, Hearne S, Olsen M. 77.  2014. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol. Breed. 33:1–14 [Google Scholar]
  78. Shama Rao HK, Sears ER. 78.  1964. Chemical mutagenesis in Triticum aestivum. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1:387–99 [Google Scholar]
  79. Shan Q, Wang Y, Li J, Gao C. 79.  2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9:2395–410 [Google Scholar]
  80. Shaw LM, Turner AS, Herry L, Griffiths S, Laurie DA. 80.  2013. Mutant alleles of Photoperiod-1 in wheat (Triticum aestivum L.) that confer a late flowering phenotype in long days. PLOS ONE 8:e79459 [Google Scholar]
  81. Simmonds J, Scott P, Brinton J, Mestre TC, Bush M. 81.  et al. 2016. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor. Appl. Genet. 129:1099–112 [Google Scholar]
  82. Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai Y-S. 82.  et al. 2006. Molecular characterization of the major wheat domestication gene Q. Genet 172:547–55 [Google Scholar]
  83. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D. 83.  2005. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat. Biotechnol. 23:75–81 [Google Scholar]
  84. Slade AJ, McGuire C, Loeffler D, Mullenberg J, Skinner W. 84.  et al. 2012. Development of high amylose wheat through TILLING. BMC Plant Biol 12:69 [Google Scholar]
  85. Stadler LJ. 85.  1928. Mutations in barley induced by X-rays and radium. Science 68:186–87 [Google Scholar]
  86. Stadler LJ. 86.  1929. Chromosome number and the mutation rate in Avena and Triticum. PNAS 15:876–81 [Google Scholar]
  87. Stadler LJ. 87.  1930. Some genetic effects of X-rays in plants. J. Hered. 21:3–19 [Google Scholar]
  88. Stephenson P, Baker D, Girin T, Perez A, Amoah S. 88.  et al. 2010. A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol 10:62 [Google Scholar]
  89. Steuernagel B, Periyannan SK, Hernandez-Pinzon I, Witek K, Rouse MN. 89.  et al. 2016. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34:652–55 [Google Scholar]
  90. Sun C, Hu Z, Zheng T, Lu K, Zhao Y. 90.  et al. 2017. RPAN: rice pan-genome browser for ∼3000 rice genomes. Nucleic Acids Res 45:597–605 [Google Scholar]
  91. Swaminathan M, Chopra V, Bhaskaran S. 91.  1962. Chromosome aberrations and the frequency and spectrum of mutations induced by ethylmethane sulphonate in barley and wheat. Indian J. Genet. Plant Breed. 22:192–207 [Google Scholar]
  92. Swigoňová Z, Lai J, Ma J, Ramakrishna W, Llaca V. 92.  et al. 2004. Close split of sorghum and maize genome progenitors. Genome Res 14:1916–23 [Google Scholar]
  93. Tsai H, Howell T, Nitcher R, Missirian V, Watson B. 93.  et al. 2011. Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–68 [Google Scholar]
  94. Tsai H, Missirian V, Ngo KJ, Tran RK, Chan SR. 94.  et al. 2013. Production of a high-efficiency TILLING population through polyploidization. Plant Physiol 161:1604–14 [Google Scholar]
  95. Tsuda M, Kaga A, Anai T, Shimizu T, Sayama T. 95.  et al. 2015. Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genom 16:1014 [Google Scholar]
  96. Turck F, Fornara F, Coupland G. 96.  2008. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59:573–94 [Google Scholar]
  97. Turner A, Beales J, Faure S, Dunford RP, Laurie DA. 97.  2005. The Pseudo-Response Regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–34 [Google Scholar]
  98. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. 98.  2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–301 [Google Scholar]
  99. Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H. 99.  et al. 2009. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115 [Google Scholar]
  100. von Zitzewitz J, Szűcs P, Dubcovsky J, Yan L, Francia E. 100.  et al. 2005. Molecular and structural characterization of barley vernalization genes. Plant Mol. Biol. 59:449–67 [Google Scholar]
  101. Wang TL, Uauy C, Robson F, Till B. 101.  2012. TILLING in extremis. Plant Biotechnol. J. 10:761–72 [Google Scholar]
  102. Wang X, Wang H, Wang J, Sun R, Wu J. 102.  et al. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43:1035–39 [Google Scholar]
  103. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J. 103.  et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32:947–51 [Google Scholar]
  104. Wang Z, Hobson N, Galindo L, Zhu S, Shi D. 104.  et al. 2012. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–73 [Google Scholar]
  105. Watson A, Ghosh S, Williams M, Cuddy WS, Simmonds J. 105.  et al. 2017. Speed breeding: a powerful tool to accelerate crop research and breeding. bioRxiv https://doi.org/10.1101/161182 [Crossref]
  106. Wheat TILLING. 106.  2017. In silico wheat Target Induced Local Lesions In Genome (TILLING) website Univ. Calif. Davis, Rothamsted Res., Earlham Inst., and John Innes Cent http://www.wheat-tilling.com
  107. Wilhelm EP, Turner AS, Laurie DA. 107.  2009. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor. Appl. Genet. 118:285–94 [Google Scholar]
  108. Winfield MO, Wilkinson PA, Allen AM, Barker GLA, Coghill JA. 108.  et al. 2012. Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnol. J. 10:733–42 [Google Scholar]
  109. Xu R, Qin R, Li H, Li D, Li L. 109.  et al. 2017. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol. J. 15:713–17 [Google Scholar]
  110. Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J. 110.  2004. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 109:1677–86 [Google Scholar]
  111. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W. 111.  et al. 2004. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–44 [Google Scholar]
  112. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. 112.  2003. Positional cloning of the wheat vernalization gene VRN1. PNAS 100:6263–68 [Google Scholar]
  113. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS. 113.  et al. 2015. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell 163:759–71 [Google Scholar]
  114. Zhang Y, Liang Z, Zong Y, Wang Y, Liu J. 114.  et al. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7:12617 [Google Scholar]
  115. Zhao Y, Zhang C, Liu W, Gao W, Liu C. 115.  et al. 2016. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci. Rep. 6:23890 [Google Scholar]
  116. Zong Y, Wang Y, Li C, Zhang R, Chen K. 116.  et al. 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35:438–40 [Google Scholar]
/content/journals/10.1146/annurev-genet-120116-024533
Loading
/content/journals/10.1146/annurev-genet-120116-024533
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error