1932

Abstract

Centrosomes are a functionally conserved feature of eukaryotic cells that play an important role in cell division. The conserved γ-tubulin complex organizes spindle and astral microtubules, which, in turn, separate replicated chromosomes accurately into daughter cells. Like DNA, centrosomes are duplicated once each cell cycle. Although in some cell types it is possible for cell division to occur in the absence of centrosomes, these divisions typically result in defects in chromosome number and stability. In single-celled organisms such as fungi, centrosomes [known as spindle pole bodies (SPBs)] are essential for cell division. SPBs also must be inserted into the membrane because fungi undergo a closed mitosis in which the nuclear envelope (NE) remains intact. This poorly understood process involves events similar or identical to those needed for de novo nuclear pore complex assembly. Here, we review how analysis of fungal SPBs has advanced our understanding of centrosomes and NE events.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120116-024733
2017-11-27
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genet/51/1/annurev-genet-120116-024733.html?itemId=/content/journals/10.1146/annurev-genet-120116-024733&mimeType=html&fmt=ahah

Literature Cited

  1. Adams IR, Kilmartin JV. 1.  1999. Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J. Cell Biol. 145:809–23 [Google Scholar]
  2. Al-Bassam J, Chang F. 2.  2011. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. Trends Cell Biol 21:604–14 [Google Scholar]
  3. Al-Bassam J, van Breugel M, Harrison SC, Hyman A. 3.  2006. Stu2p binds tubulin and undergoes an open-to-closed conformational change. J. Cell Biol. 172:1009–22 [Google Scholar]
  4. Anders A, Lourenço PC, Sawin KE. 4.  2006. Noncore components of the fission yeast γ-tubulin complex. Mol. Biol. Cell 17:5075–93 [Google Scholar]
  5. Anders A, Sawin KE. 5.  2011. Microtubule stabilization in vivo by nucleation-incompetent γ-tubulin complex. J. Cell Sci. 124:1207–13 [Google Scholar]
  6. Anderson VE, Prudden J, Prochnik S, Giddings TH Jr., Hardwick KG. 6.  2007. Novel sfi1 alleles uncover additional functions for Sfi1p in bipolar spindle assembly and function. Mol. Biol. Cell 18:2047–56 [Google Scholar]
  7. Araki Y, Gombos L, Migueleti SP, Sivashanmugam L, Antony C, Schiebel E. 7.  2010. N-terminal regions of Mps1 kinase determine functional bifurcation. J. Cell Biol. 189:41–56 [Google Scholar]
  8. Araki Y, Lau CK, Maekawa H, Jaspersen SL, Giddings TH Jr.. 8.  et al. 2006. The Saccharomyces cerevisiae spindle pole body (SPB) component Nbp1p is required for SPB membrane insertion and interacts with the integral membrane proteins Ndc1p and Mps2p. Mol. Biol. Cell 17:1959–70 [Google Scholar]
  9. Archambault V, Zhao X, White-Cooper H, Carpenter AT, Glover DM. 9.  2007. Mutations in Drosophila Greatwall/Scant reveal its roles in mitosis and meiosis and interdependence with Polo kinase. PLOS Genet 3:e200 [Google Scholar]
  10. Avena JS, Burns S, Yu Z, Ebmeier CC, Old WM. 10.  et al. 2014. Licensing of yeast centrosome duplication requires phosphoregulation of Sfi1. PLOS Genet 10:e1004666 [Google Scholar]
  11. Baum P, Furlong C, Byers B. 11.  1986. Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. PNAS 83:5512–16 [Google Scholar]
  12. Bestul AJ, Yu Z, Unruh JR, Jaspersen SL. 12.  2017. Molecular model of fission yeast centrosome assembly determined by super-resolution imaging. J. Cell Biol. 216:2409 [Google Scholar]
  13. Bloom J, Cristea IM, Procko AL, Lubkov V, Chait BT. 13.  et al. 2011. Global analysis of Cdc14 phosphatase reveals diverse roles in mitotic processes. J. Biol. Chem. 286:5434–45 [Google Scholar]
  14. Borek WE, Groocock LM, Samejima I, Zou J, de Lima Alves F. 14.  et al. 2015. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis. Nat. Commun. 6:7929 [Google Scholar]
  15. Bouhlel IB, Ohta M, Mayeux A, Bordes N, Dingli F. 15.  et al. 2015. Cell cycle control of spindle pole body duplication and splitting by Sfi1 and Cdc31 in fission yeast. J. Cell Sci. 128:1481–93 [Google Scholar]
  16. Brachat A, Kilmartin JV, Wach A, Philippsen P. 16.  1998. Saccharomyces cerevisiae cells with defective spindle pole body outer plaques accomplish nuclear migration via half-bridge-organized microtubules. Mol. Biol. Cell 9:977–91 [Google Scholar]
  17. Bridge AJ, Morphew M, Bartlett R, Hagan IM. 17.  1998. The fission yeast SPB component Cut12 links bipolar spindle formation to mitotic control. Genes Dev 12:927–42 [Google Scholar]
  18. Bullitt E, Rout MP, Kilmartin JV, Akey CW. 18.  1997. The yeast spindle pole body is assembled around a central crystal of Spc42p. Cell 89:1077–86 [Google Scholar]
  19. Burns S, Avena JS, Unruh JR, Yu Z, Smith SE. 19.  et al. 2015. Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. eLife 4:e08586 [Google Scholar]
  20. Byers B. 20.  1981. Multiple roles of the spindle pole bodies in the life cycle of Saccharomyces cerevisiae. Molecular Genetics in Yeast: Alfred Benzon Symposium, Vol. 16 D Von Wettstein, J Friis, M Kielland-Brandt, A Stenderup 119–31 Copenhagen, Den.: Munksgaard [Google Scholar]
  21. Byers B, Goetsch L. 21.  1974. Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harb. Symp. Quant. Biol. 38:123–31 [Google Scholar]
  22. Byers B, Goetsch L. 22.  1975. Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J. Bacteriol. 124:511–23 [Google Scholar]
  23. Casey AK, Dawson TR, Chen J, Friederichs JM, Jaspersen SL, Wente SR. 23.  2012. Integrity and function of the Saccharomyces cerevisiae spindle pole body depends on connections between the membrane proteins Ndc1, Rtn1, and Yop1. Genetics 192:441–55 [Google Scholar]
  24. Chen J, Smoyer CJ, Slaughter BD, Unruh JR, Jaspersen SL. 24.  2014. The SUN protein Mps3 controls Ndc1 distribution and function on the nuclear membrane. J. Cell Biol. 204:523–39 [Google Scholar]
  25. Chen XP, Yin H, Huffaker TC. 25.  1998. The yeast spindle pole body component Spc72p interacts with Stu2p and is required for proper microtubule assembly. J. Cell Biol. 141:1169–79 [Google Scholar]
  26. Chial HJ, Rout MP, Giddings TH Jr., Winey M. 26.  1998. Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies. J. Cell Biol. 143:1789–800 [Google Scholar]
  27. Chin CF, Bennett AM, Ma WK, Hall MC, Yeong FM. 27.  2012. Dependence of Chs2 ER export on dephosphorylation by cytoplasmic Cdc14 ensures that septum formation follows mitosis. Mol. Biol. Cell 23:45–58 [Google Scholar]
  28. Crasta K, Huang P, Morgan G, Winey M, Surana U. 28.  2006. Cdk1 regulates centrosome separation by restraining proteolysis of microtubule-associated proteins. EMBO J 25:2551–63 [Google Scholar]
  29. Crasta K, Lim HH, Giddings TH Jr., Winey M, Surana U. 29.  2008. Inactivation of Cdh1 by synergistic action of Cdk1 and polo kinase is necessary for proper assembly of the mitotic spindle. Nat. Cell Biol. 10:665–75 [Google Scholar]
  30. de Bruyn Kops A, Guthrie C. 30.  2001. An essential nuclear envelope integral membrane protein, Brr6p, required for nuclear transport. EMBO J 20:4183–93 [Google Scholar]
  31. Dhani DK, Goult BT, George GM, Rogerson DT, Bitton DA. 31.  et al. 2013. Mzt1/Tam4, a fission yeast MOZART1 homologue, is an essential component of the γ-tubulin complex and directly interacts with GCP3Alp6. Mol. Biol. Cell 24:3337–49 [Google Scholar]
  32. Ding R, McDonald KL, McIntosh JR. 32.  1993. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast. Schizosaccharomyces pombe. J. Cell Biol. 120:141–51 [Google Scholar]
  33. Ding R, West RR, Morphew M, Oakley BR, McIntosh JR. 33.  1997. The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds. Mol. Biol. Cell 8:1461–79 [Google Scholar]
  34. Donaldson AD, Kilmartin JV. 34.  1996. Spc42p: a phosphorylated component of the S. cerevisiae spindle pole body (SPB) with an essential function during SPB duplication. J. Cell Biol. 132:887–901 [Google Scholar]
  35. Elliott S, Knop M, Schlenstedt G, Schiebel E. 35.  1999. Spc29p is a component of the Spc110p subcomplex and is essential for spindle pole body duplication. PNAS 96:6205–10 [Google Scholar]
  36. Elserafy M, Šarić M, Neuner A, Lin TC, Zhang W. 36.  et al. 2014. Molecular mechanisms that restrict yeast centrosome duplication to one event per cell cycle. Curr. Biol. 24:1456–66 [Google Scholar]
  37. Erlemann S, Neuner A, Gombos L, Gibeaux R, Antony C, Schiebel E. 37.  2012. An extended γ-tubulin ring functions as a stable platform in microtubule nucleation. J. Cell Biol. 197:59–74 [Google Scholar]
  38. Fitch I, Dahmann C, Surana U, Amon A, Nasmyth K. 38.  et al. 1992. Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell 3:805–18 [Google Scholar]
  39. Flory MR, Morphew M, Joseph JD, Means AR, Davis TN. 39.  2002. Pcp1p, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe. Cell Growth Differ 13:47–58 [Google Scholar]
  40. Fong CS, Sato M, Toda T. 40.  2010. Fission yeast Pcp1 links polo kinase-mediated mitotic entry to γ-tubulin-dependent spindle formation. EMBO J 29:120–30 [Google Scholar]
  41. Fong KK, Sarangapani KK, Yusko EC, Riffle M, Llauró A. 41.  et al. 2017. Direct measurement of microtubule attachment strength to yeast centrosome. Mol. Biol. Cell. 28:1853–61 [Google Scholar]
  42. Friederichs JM, Ghosh S, Smoyer CJ, McCroskey S, Miller BD. 42.  et al. 2011. The SUN protein Mps3 is required for spindle pole body insertion into the nuclear membrane and nuclear envelope homeostasis. PLOS Genet 7:e1002365 [Google Scholar]
  43. Fu J, Hagan IM, Glover DM. 43.  2015. The centrosome and its duplication cycle. Cold Spring Harb. Perspect. Biol. 7:a015800 [Google Scholar]
  44. Funaya C, Samarasinghe S, Pruggnaller S, Ohta M, Connolly Y. 44.  et al. 2012. Transient structure associated with the spindle pole body directs meiotic microtubule reorganization in S. pombe. Curr. Biol. 22:562–74 [Google Scholar]
  45. Geier BM, Wiech H, Schiebel E. 45.  1996. Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Kar1p and Spc110p. J. Biol. Chem. 271:28366–74 [Google Scholar]
  46. Gladfelter A, Berman J. 46.  2009. Dancing genomes: fungal nuclear positioning. Nat. Rev. Microbiol. 7:875–86 [Google Scholar]
  47. Grallert A, Chan KY, Alonso-Nuñez ML, Madrid M, Biswas A. 47.  et al. 2013. Removal of centrosomal PP1 by NIMA kinase unlocks the MPF feedback loop to promote mitotic commitment in S. pombe. Curr. Biol. 23:213–22 [Google Scholar]
  48. Grallert A, Patel A, Tallada VA, Chan KY, Bagley S. 48.  et al. 2013. Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast. Nat. Cell Biol. 15:88–95 [Google Scholar]
  49. Gruneberg U, Campbell K, Simpson C, Grindlay J, Schiebel E. 49.  2000. Nud1p links astral microtubule organization and the control of exit from mitosis. EMBO J 19:6475–88 [Google Scholar]
  50. Haase SB, Winey M, Reed SI. 50.  2001. Multi-step control of spindle pole body duplication by cyclin-dependent kinase. Nat. Cell Biol. 3:38–42 [Google Scholar]
  51. Hagan IM, Grallert A. 51.  2013. Spatial control of mitotic commitment in fission yeast. Biochem. Soc. Trans. 41:1766–71 [Google Scholar]
  52. Hagan IM, Yanagida M. 52.  1995. The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J. Cell Biol. 129:1033–47 [Google Scholar]
  53. Heath IB. 53.  1980. Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis?. Int. Rev. Cytol. 64:1–80 [Google Scholar]
  54. Hergovich A, Hemmings BA. 54.  2012. Hippo signalling in the G2/M cell cycle phase: lessons learned from the yeast MEN and SIN pathways. Semin. Cell Dev. Biol. 23:794–802 [Google Scholar]
  55. Hodge CA, Choudhary V, Wolyniak MJ, Scarcelli JJ, Schneiter R, Col CN. 55.  2010. Integral membrane proteins Brr6 and Apq12 link assembly of the nuclear pore complex to lipid homeostasis in the endoplasmic reticulum. J. Cell Sci. 123:141–51 [Google Scholar]
  56. Holinger EP, Old WM, Giddings TH Jr., Wong C, Yates JR III, Winey M. 56.  2009. Budding yeast centrosome duplication requires stabilization of Spc29 via Mps1-mediated phosphorylation. J. Biol. Chem. 284:12949–55 [Google Scholar]
  57. Höög JL, Schwartz C, Noon AT, O'Toole ET, Mastronarde DN. 57.  et al. 2007. Organization of interphase microtubules in fission yeast analyzed by electron tomography. Dev. Cell 12:349–61 [Google Scholar]
  58. Horio T, Uzawa S, Jung MK, Oakley BR, Tanaka K, Yanagida M. 58.  1991. The fission yeast γ-tubulin is essential for mitosis and is localized at microtubule organizing centers. J. Cell Sci. 99:Pt 4693–700 [Google Scholar]
  59. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW. 59.  et al. 2003. Global analysis of protein localization in budding yeast. Nature 425:686–91 [Google Scholar]
  60. Jaspersen SL, Ghosh S. 60.  2012. Nuclear envelope insertion of spindle pole bodies and nuclear pore complexes. Nucleus 3:226–36 [Google Scholar]
  61. Jaspersen SL, Giddings TH Jr., Winey M. 61.  2002. Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J. Cell Biol. 159:945–56 [Google Scholar]
  62. Jaspersen SL, Huneycutt BJ, Giddings TH Jr., Resing KA, Ahn NG, Winey M. 62.  2004. Cdc28/Cdk1 regulates spindle pole body duplication through phosphorylation of Spc42 and Mps1. Dev. Cell 7:263–74 [Google Scholar]
  63. Jaspersen SL, Martin AE, Glazko G, Giddings TH Jr., Morgan G. 63.  et al. 2006. The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. J. Cell Biol. 174:665–75 [Google Scholar]
  64. Jaspersen SL, Winey M. 64.  2004. The budding yeast spindle pole body: structure, duplication, and function. Annu. Rev. Cell Dev. Biol. 20:1–28 [Google Scholar]
  65. Juanes MA, Piatti S. 65.  2016. The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae. Cell Mol. Life Sci. 73:3115–36 [Google Scholar]
  66. Katta SS, Chen J, Gardner JM, Friederichs JM, Smith SE. 66.  et al. 2015. Sec66-dependent regulation of yeast spindle-pole body duplication through Pom152. Genetics 201:1479–95 [Google Scholar]
  67. Keck JM, Jones MH, Wong CC, Binkley J, Chen D. 67.  et al. 2011. A cell cycle phosphoproteome of the yeast centrosome. Science 332:1557–61 [Google Scholar]
  68. Kilmartin JV. 68.  2003. Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J. Cell Biol. 162:1211–21 [Google Scholar]
  69. Kilmartin JV, Dyos SL, Kershaw D, Finch JT. 69.  1993. A spacer protein in the Saccharomyces cerevisiae spindle poly body whose transcript is cell cycle-regulated. J. Cell Biol. 123:1175–84 [Google Scholar]
  70. Kilmartin JV, Goh PY. 70.  1996. Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. EMBO J 15:4592–602 [Google Scholar]
  71. Klenchin VA, Frye JJ, Jones MH, Winey M, Rayment I. 71.  2011. Structure-function analysis of the C-terminal domain of CNM67, a core component of the Saccharomyces cerevisiae spindle pole body. J. Biol. Chem. 286:18240–50 [Google Scholar]
  72. Klutstein M, Cooper JP. 72.  2014. The chromosomal courtship dance—homolog pairing in early meiosis. Curr. Opin. Cell Biol. 26:123–31 [Google Scholar]
  73. Knop M, Pereira G, Geissler S, Grein K, Schiebel E. 73.  1997. The spindle pole body component Spc97p interacts with the γ-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication. EMBO J 16:1550–64 [Google Scholar]
  74. Knop M, Schiebel E. 74.  1998. Receptors determine the cellular localization of a γ-tubulin complex and thereby the site of microtubule formation. EMBO J 17:3952–67 [Google Scholar]
  75. Kollman JM, Greenberg CH, Li S, Moritz M, Zelter A. 75.  et al. 2015. Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat. Struct. Mol. Biol. 22:132–37 [Google Scholar]
  76. Kollman JM, Merdes A, Mourey L, Agard DA. 76.  2011. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 12:709–21 [Google Scholar]
  77. Kollman JM, Polka JK, Zelter A, Davis TN, Agard DA. 77.  2010. Microtubule nucleating γTuSC assembles structures with 13-fold microtubule-like symmetry. Nature 466:879–82 [Google Scholar]
  78. Kollman JM, Zelter A, Muller EG, Fox B, Rice LM. 78.  et al. 2008. The structure of the γ-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. Mol. Biol. Cell 19:207–15 [Google Scholar]
  79. Kuilman T, Maiolica A, Godfrey M, Scheidel N, Aebersold R, Uhlmann F. 79.  2015. Identification of Cdk targets that control cytokinesis. EMBO J 34:81–96 [Google Scholar]
  80. Kupke T, Di Cecco L, Müller HM, Neuner A, Adolf F. 80.  et al. 2011. Targeting of Nbp1 to the inner nuclear membrane is essential for spindle pole body duplication. EMBO J 30:3337–52 [Google Scholar]
  81. Lang C, Grava S, Finlayson M, Trimble R, Philippsen P, Jaspersen SL. 81.  2010. Structural mutants of the spindle pole body cause distinct alteration of cytoplasmic microtubules and nuclear dynamics in multinucleated hyphae. Mol. Biol. Cell 21:753–66 [Google Scholar]
  82. Lang C, Grava S, van den Hoorn T, Trimble R, Philippsen P, Jaspersen SL. 82.  2010. Mobility, microtubule nucleation and structure of microtubule-organizing centers in multinucleated hyphae of Ashbya gossypii. Mol. Biol. Cell 21:18–28 [Google Scholar]
  83. Lau CK, Giddings TH Jr., Winey M. 83.  2004. A novel allele of Saccharomyces cerevisiae NDC1 reveals a potential role for the spindle pole body component Ndc1p in nuclear pore assembly. Eukaryot. Cell 3:447–58 [Google Scholar]
  84. Lee IJ, Wang N, Hu W, Schott K, Bähler J. 84.  et al. 2014. Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast. Mol. Biol. Cell 25:2735–49 [Google Scholar]
  85. Li P, Shao Y, Jin H, Yu HG. 85.  2015. Ndj1, a telomere-associated protein, regulates centrosome separation in budding yeast meiosis. J. Cell Biol. 209:247–59 [Google Scholar]
  86. Li S, Sandercock AM, Conduit P, Robinson CV, Williams RL, Kilmartin JV. 86.  2006. Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication. J. Cell Biol. 173:867–77 [Google Scholar]
  87. Lin TC, Gombos L, Neuner A, Sebastian D, Olsen JV. 87.  et al. 2011. Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function. PLOS ONE 6:e19700 [Google Scholar]
  88. Lin TC, Neuner A, Flemming D, Liu P, Chinen T. 88.  et al. 2016. MOZART1 and γ-tubulin complex receptors are both required to turn γ-TuSC into an active microtubule nucleation template. J. Cell Biol. 215:823–40 [Google Scholar]
  89. Lin TC, Neuner A, Schiebel E. 89.  2015. Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol 25:296–307 [Google Scholar]
  90. Lin TC, Neuner A, Schlosser YT, Scharf AN, Weber L, Schiebel E. 90.  2014. Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation. eLife 3:e02208 [Google Scholar]
  91. Liu Q, Pante N, Misteli T, Elsagga M, Crisp M. 91.  et al. 2007. Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178:785–98 [Google Scholar]
  92. Lone MA, Atkinson AE, Hodge CA, Cottier S, Martínez-Montañés F. 92.  et al. 2015. Yeast integral membrane proteins Apq12, Brl1, and Brr6 form a complex important for regulation of membrane homeostasis and nuclear pore complex biogenesis. Eukaryot. Cell 14:1217–27 [Google Scholar]
  93. Lynch EM, Groocock LM, Borek WE, Sawin KE. 93.  2014. Activation of the γ-tubulin complex by the Mto1/2 complex. Curr. Biol. 24:896–903 [Google Scholar]
  94. Lyon AS, Morin G, Moritz M, Yabut KC, Vojnar T. 94.  et al. 2016. Higher-order oligomerization of Spc110p drives γ-tubulin ring complex assembly. Mol. Biol. Cell 27:2245–58 [Google Scholar]
  95. Masuda H, Mori R, Yukawa M, Toda T. 95.  2013. Fission yeast MOZART1/Mzt1 is an essential γ-tubulin complex component required for complex recruitment to the microtubule organizing center, but not its assembly. Mol. Biol. Cell 24:2894–906 [Google Scholar]
  96. Masuda H, Toda T. 96.  2016. Synergistic role of fission yeast Alp16GCP6 and Mzt1MOZART1 in γ-tubulin complex recruitment to mitotic spindle pole bodies and spindle assembly. Mol. Biol. Cell 27:1753–63 [Google Scholar]
  97. McCully EK, Robinow CF. 97.  1971. Mitosis in the fission yeast Schizosaccharomyces pombe: a comparative study with light and electron microscopy. J. Cell Sci. 9:475–507 [Google Scholar]
  98. Miller DP, Hall H, Chaparian R, Mara M, Mueller A. 98.  et al. 2015. Dephosphorylation of Iqg1 by Cdc14 regulates cytokinesis in budding yeast. Mol. Biol. Cell 26:2913–26 [Google Scholar]
  99. Miller MP, Asbury CL, Biggins S. 99.  2016. A TOG protein confers tension sensitivity to kinetochore-microtubule attachments. Cell 165:1428–39 [Google Scholar]
  100. Muller EG, Snydsman BE, Novik I, Hailey DW, Gestaut DR. 100.  et al. 2005. The organization of the core proteins of the yeast spindle pole body. Mol. Biol. Cell 16:3341–52 [Google Scholar]
  101. Muñoz-Centeno MC, McBratney S, Monterrosa A, Byers B, Mann C, Winey M. 101.  1999. Saccharomyces cerevisiae MPS2 encodes a membrane protein localized at the spindle pole body and the nuclear envelope. Mol. Biol. Cell 10:2393–406 [Google Scholar]
  102. Nannas NJ, O'Toole ET, Winey M, Murray AW. 102.  2014. Chromosomal attachments set length and microtubule number in the Saccharomyces cerevisiae mitotic spindle. Mol. Biol. Cell 25:4034–48 [Google Scholar]
  103. Neiman AM. 103.  2011. Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 189:737–65 [Google Scholar]
  104. Nishikawa S, Terazawa Y, Nakayama T, Hirata A, Makio T, Endo T. 104.  2003. Nep98p is a component of the yeast spindle pole body and essential for nuclear division and fusion. J. Biol. Chem. 278:9938–43 [Google Scholar]
  105. O'Toole ET, Mastronarde DN, Giddings TH Jr., Winey M, Burke DJ, McIntosh JR. 105.  1997. Three-dimensional analysis and ultrastructural design of mitotic spindles from the cdc20 mutant of Saccharomyces cerevisiae. Mol. Biol. Cell 8:1–11 [Google Scholar]
  106. O'Toole ET, Winey M, McIntosh JR. 106.  1999. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 10:2017–31 [Google Scholar]
  107. Ohta M, Sato M, Yamamoto M. 107.  2012. Spindle pole body components are reorganized during fission yeast meiosis. Mol. Biol. Cell 23:1799–811 [Google Scholar]
  108. Okada N, Toda T, Yamamoto M, Sato M. 108.  2014. CDK-dependent phosphorylation of Alp7-Alp14 (TACC-TOG) promotes its nuclear accumulation and spindle microtubule assembly. Mol. Biol. Cell 25:1969–82 [Google Scholar]
  109. Pearson CG, Maddox PS, Zarzar TR, Salmon ED, Bloom K. 109.  2003. Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics. Mol. Biol. Cell 14:4181–95 [Google Scholar]
  110. Peng Y, Moritz M, Han X, Giddings TH, Lyon A. 110.  et al. 2015. Interaction of CK1δ with γTuSC ensures proper microtubule assembly and spindle positioning. Mol. Biol. Cell 26:2505–18 [Google Scholar]
  111. Pereira G, Grueneberg U, Knop M, Schiebel E. 111.  1999. Interaction of the yeast γ-tubulin complex-binding protein Spc72p with Kar1p is essential for microtubule function during karyogamy. EMBO J 18:4180–95 [Google Scholar]
  112. Pereira G, Höfken T, Grindlay J, Manson C, Schiebel E. 112.  2000. The Bub2p spindle checkpoint links nuclear migration with mitotic exit. Mol. Cell 6:1–10 [Google Scholar]
  113. Pereira G, Knop M, Schiebel E. 113.  1998. Spc98p directs the yeast γ-tubulin complex into the nucleus and is subject to cell cycle-dependent phosphorylation on the nuclear side of the spindle pole body. Mol. Biol. Cell 9:775–93 [Google Scholar]
  114. Robinow CF, Marak J. 114.  1966. A fiber apparatus in the nucleus of the yeast cell. J. Cell Biol. 29:129–51 [Google Scholar]
  115. Rosenberg JA, Tomlin GC, McDonald WH, Snydsman BE, Muller EG. 115.  et al. 2006. Ppc89 links multiple proteins, including the septation initiation network, to the core of the fission yeast spindle-pole body. Mol. Biol. Cell 17:3793–805 [Google Scholar]
  116. Saitoh YH, Ogawa K, Nishimoto T. 116.  2005. Brl1p—a novel nuclear envelope protein required for nuclear transport. Traffic 6:502–17 [Google Scholar]
  117. Samejima I, Lourenço PC, Snaith HA, Sawin KE. 117.  2005. Fission yeast mto2p regulates microtubule nucleation by the centrosomin-related protein mto1p. Mol. Biol. Cell 16:3040–51 [Google Scholar]
  118. Sato M, Toda T. 118.  2007. Alp7/TACC is a crucial target in Ran-GTPase-dependent spindle formation in fission yeast. Nature 447:334–37 [Google Scholar]
  119. Sato M, Vardy L, Angel Garcia M, Koonrugsa N, Toda T. 119.  2004. Interdependency of fission yeast Alp14/TOG and coiled coil protein Alp7 in microtubule localization and bipolar spindle formation. Mol. Biol. Cell 15:1609–22 [Google Scholar]
  120. Sawin KE, Tran PT. 120.  2006. Cytoplasmic microtubule organization in fission yeast. Yeast 23:1001–14 [Google Scholar]
  121. Schaerer F, Morgan G, Winey M, Philippsen P. 121.  2001. Cnm67p is a spacer protein of the Saccharomyces cerevisiae spindle pole body outer plaque. Mol. Biol. Cell 12:2519–33 [Google Scholar]
  122. Schramm C, Elliott S, Shevchenko A, Shevchenko A, Schiebel E. 122.  2000. The Bbp1p-Mps2p complex connects the SPB to the nuclear envelope and is essential for SPB duplication. EMBO J 19:421–33 [Google Scholar]
  123. Schutz AR, Winey M. 123.  1998. New alleles of the yeast MPS1 gene reveal multiple requirements in spindle pole body duplication. Mol. Biol. Cell 9:759–74 [Google Scholar]
  124. Seybold C, Elserafy M, Rüthnick D, Ozboyaci M, Neuner A. 124.  et al. 2015. Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope. J. Cell Biol. 209:843–61 [Google Scholar]
  125. Sezen B. 125.  2015. Reduction of Saccharomyces cerevisiae Pom34 protein level by SESA network is related to membrane lipid composition. FEMS Yeast Res 15:fov089 [Google Scholar]
  126. Sezen B, Seedorf M, Schiebel E. 126.  2009. The SESA network links duplication of the yeast centrosome with the protein translation machinery. Genes Dev 23:1559–70 [Google Scholar]
  127. Simanis V. 127.  2015. Pombe's thirteen—control of fission yeast cell division by the septation initiation network. J. Cell Sci. 128:1465–74 [Google Scholar]
  128. Sosa BA, Rothballer A, Kutay U, Schwartz TU. 128.  2012. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 149:1035–47 [Google Scholar]
  129. Souès S, Adams IR. 129.  1998. SPC72: a spindle pole component required for spindle orientation in the yeast Saccharomyces cerevisiae. J. Cell Sci. 111:Pt 182809–18 [Google Scholar]
  130. Spang A, Grein K, Schiebel E. 130.  1996. The spacer protein Spc110p targets calmodulin to the central plaque of the yeast spindle pole body. J. Cell Sci. 109:Pt 92229–37 [Google Scholar]
  131. Stearns T, Evans L, Kirschner M. 131.  1991. γ-tubulin is a highly conserved component of the centrosome. Cell 65:825–36 [Google Scholar]
  132. Sundberg HA, Goetsch L, Byers B, Davis TN. 132.  1996. Role of calmodulin and Spc110p interaction in the proper assembly of spindle pole body components. J. Cell Biol. 133:111–24 [Google Scholar]
  133. Tallada VA, Bridge AJ, Emery PA, Hagan IM. 133.  2007. Suppression of the Schizosaccharomyces pombe cut12.1 cell-cycle defect by mutations in cdc25 and genes involved in transcriptional and translational control. Genetics 176:73–83 [Google Scholar]
  134. Tallada VA, Tanaka K, Yanagida M, Hagan IM. 134.  2009. The S. pombe mitotic regulator Cut12 promotes spindle pole body activation and integration into the nuclear envelope. J. Cell Biol. 185:875–88 [Google Scholar]
  135. Tamm T, Grallert A, Grossman EP, Alvarez-Tabares I, Stevens FE, Hagan IM. 135.  2011. Brr6 drives the Schizosaccharomyces pombe spindle pole body nuclear envelope insertion/extrusion cycle. J. Cell Biol. 195:467–84 [Google Scholar]
  136. Tanaka K, Kanbe T. 136.  1986. Mitosis in the fission yeast Schizosaccharomyces pombe as revealed by freeze-substitution electron microscopy. J. Cell Sci. 80:253–68 [Google Scholar]
  137. Teixidó-Travesa N, Roig J, Lüders J. 137.  2012. The where, when and how of microtubule nucleation—one ring to rule them all. J. Cell Sci. 125:4445–56 [Google Scholar]
  138. Teixidó-Travesa N, Villén J, Lacasa C, Bertran MT, Archinti M. 138.  et al. 2010. The γTuRC revisited: A comparative analysis of interphase and mitotic human γTuRC redefines the set of core components and identifies the novel subunit GCP8. Mol. Biol. Cell 21:3963–72 [Google Scholar]
  139. Truebestein L, Leonard TA. 139.  2016. Coiled-coils: the long and short of it. Bioessays 38:903–16 [Google Scholar]
  140. Uzawa S, Li F, Jin Y, McDonald KL, Braunfeld MB. 140.  et al. 2004. Spindle pole body duplication in fission yeast occurs at the G1/S boundary but maturation is blocked until exit from S by an event downstream of cdc10+. Mol. Biol. Cell 15:5219–30 [Google Scholar]
  141. Vallen EA, Hiller MA, Scherson TY, Rose MD. 141.  1992. Separate domains of KAR1 mediate distinct functions in mitosis and nuclear fusion. J. Cell Biol. 117:1277–87 [Google Scholar]
  142. Vardy L, Toda T. 142.  2000. The fission yeast γ-tubulin complex is required in G1 phase and is a component of the spindle assembly checkpoint. EMBO J 19:6098–111 [Google Scholar]
  143. Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A. 143.  1998. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2:709–18 [Google Scholar]
  144. Vogel J, Drapkin B, Oomen J, Beach D, Bloom K, Snyder M. 144.  2001. Phosphorylation of γ-tubulin regulates microtubule organization in budding yeast. Dev. Cell 1:621–31 [Google Scholar]
  145. Wälde S, King MC. 145.  2014. The KASH protein Kms2 coordinates mitotic remodeling of the spindle pole body. J. Cell Sci. 127:3625–40 [Google Scholar]
  146. West RR, Vaisberg EV, Ding R, Nurse P, McIntosh JR. 146.  1998. cut11+: a gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe. Mol. Biol. Cell 9:2839–55 [Google Scholar]
  147. Winey M, Bloom K. 147.  2012. Mitotic spindle form and function. Genetics 190:1197–224 [Google Scholar]
  148. Winey M, Goetsch L, Baum P, Byers B. 148.  1991. MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J. Cell Biol. 114:745–54 [Google Scholar]
  149. Winey M, Hoyt MA, Chan C, Goetsch L, Botstein D, Byers B. 149.  1993. NDC1: a nuclear periphery component required for yeast spindle pole body duplication. J. Cell Biol. 122:743–51 [Google Scholar]
  150. Winey M, Mamay CL, O'Toole ET, Mastronarde DN, Giddings TH Jr.. 150.  et al. 1995. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129:1601–15 [Google Scholar]
  151. Winey M, O'Toole ET. 151.  2001. The spindle cycle in budding yeast. Nat. Cell Biol. 3:E23–27 [Google Scholar]
  152. Witkin KL, Friederichs JM, Cohen-Fix O, Jaspersen SL. 152.  2010. Changes in the nuclear envelope environment affect spindle pole body duplication in Saccharomyces cerevisiae. Genetics 186:867–83 [Google Scholar]
  153. Zhang D, Oliferenko S. 153.  2014. Tts1, the fission yeast homologue of the TMEM33 family, functions in NE remodeling during mitosis. Mol. Biol. Cell 25:2970–83 [Google Scholar]
  154. Zizlsperger N, Malashkevich VN, Pillay S, Keating AE. 154.  2008. Analysis of coiled-coil interactions between core proteins of the spindle pole body. Biochemistry 47:11858–68 [Google Scholar]
/content/journals/10.1146/annurev-genet-120116-024733
Loading
/content/journals/10.1146/annurev-genet-120116-024733
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error