1932

Abstract

Darwin's theory of evolution by natural selection is the foundation of modern biology. However, it has proven remarkably difficult to demonstrate at the genetic, genomic, and population level exactly how wild species adapt to their natural environments. We discuss how one can use large sets of multiple genome sequences from wild populations to understand adaptation, with an emphasis on the small herbaceous plant . We present motivation for such studies; summarize progress in describing whole-genome, species-wide sequence variation; and then discuss what insights have emerged from these resources, either based on sequence information alone or in combination with phenotypic data. We conclude with thoughts on opportunities with other plant species and the impact of expected progress in sequencing technology and genome engineering for studying adaptation in nature.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092110
2015-11-23
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genet/49/1/annurev-genet-120213-092110.html?itemId=/content/journals/10.1146/annurev-genet-120213-092110&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Arabidopsis Genome Initiat 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815 [Google Scholar]
  2. Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M. 2.  et al. 2005. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLOS Genet. 1:e60 [Google Scholar]
  3. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M. 3.  et al. 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–31 [Google Scholar]
  4. Bakker EG, Stahl EA, Toomajian C, Nordborg M, Kreitman M, Bergelson J. 4.  2006. Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range. Mol. Ecol. 15:1405–18 [Google Scholar]
  5. Bakker EG, Toomajian C, Kreitman M, Bergelson J. 5.  2006. A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell 18:1803–18 [Google Scholar]
  6. Barton NH, Turelli M. 6.  1989. Evolutionary quantitative genetics: How little do we know?. Annu. Rev. Genet. 23:337–70 [Google Scholar]
  7. Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B. 7.  et al. 2010. A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLOS Genet. 6:e1001193 [Google Scholar]
  8. Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B. 8.  et al. 2008. Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLOS Genet. 4:e1000004 [Google Scholar]
  9. Becker C, Hagmann J, Müller J, Koenig D, Stegle O. 9.  et al. 2011. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–49 [Google Scholar]
  10. Bentsink L, Jowett J, Hanhart CJ, Koornneef M. 10.  2006. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. PNAS 103:17042–47 [Google Scholar]
  11. Berg JJ, Coop G. 11.  2014. A population genetic signal of polygenic adaptation. PLOS Genet. 10:e1004412 [Google Scholar]
  12. Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S. 12.  et al. 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–43 [Google Scholar]
  13. Bomblies K, Yant L, Laitinen RA, Kim ST, Hollister JD. 13.  et al. 2010. Local-scale patterns of genetic variability, outcrossing, and spatial structure in natural stands of Arabidopsis thaliana. PLOS Genet. 6:e1000890 [Google Scholar]
  14. Brachi B, Faure N, Bergelson J, Cuguen J, Roux F. 14.  2013. Genome-wide association mapping of flowering time in in nature: genetics for underlying components and reaction norms across two successive years. Acta Bot. Gallica 160:205–19 [Google Scholar]
  15. Brachi B, Faure N, Horton M, Flahauw E, Vazquez A. 15.  et al. 2010. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLOS Genet. 6:e1000940 [Google Scholar]
  16. Brachi B, Villoutreix R, Faure N, Hautekèete N, Piquot Y. 16.  et al. 2013. Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in Arabidopsis thaliana. Mol. Ecol. 22:4222–40 [Google Scholar]
  17. Brady KU, Kruckeberg AR, Bradshaw HD Jr. 17.  2005. Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst. 36:243–66 [Google Scholar]
  18. Brandvain Y, Slotte T, Hazzouri KM, Wright SI, Coop G. 18.  2013. Genomic identification of founding haplotypes reveals the history of the selfing species Capsella rubella. PLOS Genet. 9:e1003754 [Google Scholar]
  19. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. 19.  2013. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31:1119–25 [Google Scholar]
  20. Caicedo AL, Schaal BA, Kunkel BN. 20.  1999. Diversity and molecular evolution of the RPS2 resistance gene in Arabidopsis thaliana. PNAS 96:302–6 [Google Scholar]
  21. Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE. 21.  et al. 2012. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205 [Google Scholar]
  22. Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S. 22.  et al. 2011. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat. Genet. 43:956–63 [Google Scholar]
  23. Carroll SB. 23.  2005. Evolution at two levels: on genes and form. PLOS Biol. 3:e245 [Google Scholar]
  24. Chan EK, Rowe HC, Corwin JA, Joseph B, Kliebenstein DJ. 24.  2011. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLOS Biol. 9:e1001125 [Google Scholar]
  25. Chan EK, Rowe HC, Kliebenstein DJ. 25.  2010. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics 185:991–1007 [Google Scholar]
  26. Chao DY, Baraniecka P, Danku J, Koprivova A, Lahner B. 26.  et al. 2014. Variation in sulfur and selenium accumulation is controlled by naturally occurring isoforms of the key sulfur assimilation enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 across the Arabidopsis species range. Plant Physiol. 166:1593–608 [Google Scholar]
  27. Chao DY, Chen Y, Chen J, Shi S, Chen Z. 27.  et al. 2014. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLOS Biol. 12:e1002009 [Google Scholar]
  28. Chao DY, Silva A, Baxter I, Huang YS, Nordborg M. 28.  et al. 2012. Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLOS Genet. 8:e1002923 [Google Scholar]
  29. Charlesworth B. 29.  1992. Evolutionary rates in partially self-fertilizing species. Am. Nat. 140:126–48 [Google Scholar]
  30. Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G. 30.  et al. 2007. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317:338–42 [Google Scholar]
  31. Clausen J, Keck DD, Hiesey WM. 31.  1940. Experimental Studies on the Nature of Species. I. Effect of Varied Environments on Western North American Plants. Washington, D.C: Carnegie Inst. Wash. Publ452
  32. Cortijo S, Wardenaar R, Colome-Tatche M, Gilly A, Etcheverry M. 32.  et al. 2014. Mapping the epigenetic basis of complex traits. Science 343:1145–48 [Google Scholar]
  33. Dansgaard W, Johnsen SJ, Clausen HB, Dahljensen D, Gundestrup NS. 33.  et al. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–20 [Google Scholar]
  34. Dickins TE, Rahman Q. 34.  2012. The extended evolutionary synthesis and the role of soft inheritance in evolution. Proc. Biol. Sci. R. Soc. 279:2913–21 [Google Scholar]
  35. Dubin MJ, Zhang P, Meng D, Remigereau M-S, Osborne EJ. 35.  et al. 2014. DNA methylation variation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4:e05255 [Google Scholar]
  36. Ellegren H, Smeds L, Burri R, Olason PI, Backstrom N. 36.  et al. 2012. The genomic landscape of species divergence in Ficedula flycatchers. Nature 491:756–60 [Google Scholar]
  37. Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P. 37.  et al. 2014. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat. Genet. 46:1089–96 [Google Scholar]
  38. Fischer MC, Rellstab C, Tedder A, Zoller S, Gugerli F. 38.  et al. 2013. Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis halleri from the Alps. Mol. Ecol. 22:5594–607 [Google Scholar]
  39. Fisher RA. 39.  1918. The correlation between relatives on the assumption of Mendelian inheritance. Trans. R. Soc. Edinb. 52:399–433 [Google Scholar]
  40. Flor HH. 40.  1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–96 [Google Scholar]
  41. Fournier-Level A, Korte A, Cooper M, Nordborg M, Schmitt J, Wilczek A. 41.  2011. A map of local adaptation in Arabidopsis thaliana. Science 334:86–89 [Google Scholar]
  42. Frank SA. 42.  1993. Coevolutionary genetics of plants and pathogens. Evol. Ecol. 7:45–75 [Google Scholar]
  43. Friesen ML, Cordeiro MA, Penmetsa RV, Badri M, Huguet T. 43.  et al. 2010. Population genomic analysis of Tunisian Medicago truncatula reveals candidates for local adaptation. Plant J. 63:623–35 [Google Scholar]
  44. Friesen ML, von Wettberg EJ, Badri M, Moriuchi KS, Barhoumi F. 44.  et al. 2014. The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula. BMC Genomics 15:1160 [Google Scholar]
  45. Gan X, Stegle O, Behr J, Steffen JG, Drewe P. 45.  et al. 2011. Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477:419–23 [Google Scholar]
  46. Gao L, Roux F, Bergelson J. 46.  2009. Quantitative fitness effects of infection in a gene-for-gene system. New Phytol. 184:485–94 [Google Scholar]
  47. Geraldes A, Farzaneh N, Grassa CJ, McKown AD, Guy RD. 47.  et al. 2014. Landscape genomics of Populus trichocarpa: the role of hybridization, limited gene flow, and natural selection in shaping patterns of population structure. Evolution 68:3260–80 [Google Scholar]
  48. Gomaa NH, Montesinos-Navarro A, Alonso-Blanco C, Picó FX. 48.  2011. Temporal variation in genetic diversity and effective population size of Mediterranean and subalpine Arabidopsis thaliana populations. Mol. Ecol. 20:3540–54 [Google Scholar]
  49. Grant PR, Grant BR. 49.  2002. Unpredictable evolution in a 30-year study of Darwin's finches. Science 296:707–11 [Google Scholar]
  50. Hagmann J, Becker C, Müller J, Stegle O, Meyer RC. 50.  et al. 2015. Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLOS Genet. 11:e1004920 [Google Scholar]
  51. Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB. 51.  et al. 2011. Adaptation to climate across the Arabidopsis thaliana genome. Science 334:83–86 [Google Scholar]
  52. Hancock AM, Witonsky DB, Alkorta-Aranburu G, Beall CM, Gebremedhin A. 52.  et al. 2011. Adaptations to climate-mediated selective pressures in humans. PLOS Genet. 7:e1001375 [Google Scholar]
  53. Harper JL. 53.  1977. Population Biology of Plants San Francisco: Academic892
  54. Hartl DL, Taubes CH. 54.  1996. Compensatory nearly neutral mutations: selection without adaptation. J. Theor. Biol. 182:303–9 [Google Scholar]
  55. Heard E, Martienssen RA. 55.  2014. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109 [Google Scholar]
  56. Henderson CR. 56.  1984. Applications of Linear Models in Animal Breeding Guelph, Ont: Univ. Guelph Press462
  57. Hodges SA, Derieg NJ. 57.  2009. Adaptive radiations: from field to genomic studies. PNAS 106:Suppl. 19947–54 [Google Scholar]
  58. Hoekstra HE, Coyne JA. 58.  2007. The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016 [Google Scholar]
  59. Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K. 59.  2012. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLOS Genet. 8:e1003093 [Google Scholar]
  60. Hollister JD, Gaut BS. 60.  2009. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 19:1419–28 [Google Scholar]
  61. Horton M, Hancock AM, Huang YS, Toomajian C, Atwell S. 61.  et al. 2012. Genome-wide pattern of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat. Genet. 44:212–16 [Google Scholar]
  62. Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD. 62.  et al. 2014. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5:5320 [Google Scholar]
  63. Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF. 63.  et al. 2011. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43:476–81 [Google Scholar]
  64. Huang X, Han B. 64.  2014. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 65:531–51 [Google Scholar]
  65. Huard-Chauveau C, Perchepied L, Debieu M, Rivas S, Kroj T. 65.  et al. 2013. An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. PLOS Genet. 9:e1003766 [Google Scholar]
  66. Huber CD, Nordborg M, Hermisson J, Hellmann I. 66.  2014. Keeping it local: evidence for positive selection in Swedish Arabidopsis thaliana. Mol. Biol. Evol. 31:3026–39 [Google Scholar]
  67. Jensen JD. 67.  2014. On the unfounded enthusiasm for soft selective sweeps. Nat. Commun. 5:5281 [Google Scholar]
  68. Jiang C, Mithani A, Belfield EJ, Mott R, Hurst LD, Harberd NP. 68.  2014. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res. 24:1821–29 [Google Scholar]
  69. Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E. 69.  et al. 2012. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484:55–61 [Google Scholar]
  70. Joseph B, Corwin JA, Li B, Atwell S, Kliebenstein DJ. 70.  2013. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome. eLife 2:e00776 [Google Scholar]
  71. Kaplan N, Dekker J. 71.  2013. High-throughput genome scaffolding from in vivo DNA interaction frequency. Nat. Biotechnol. 31:1143–47 [Google Scholar]
  72. Karasov TL, Kniskern JM, Gao L, DeYoung BJ, Ding J. 72.  et al. 2014. The long-term maintenance of a resistance polymorphism through diffuse interactions. Nature 512:436–40 [Google Scholar]
  73. Kim KE, Peluso P, Babayan P, Yeadon PJ, Yu C. 73.  et al. 2014. Long-read, whole-genome shotgun sequence data for five model organisms. Sci. Data 1:140045 [Google Scholar]
  74. Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM. 74.  et al. 2007. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat. Genet. 39:1151–55 [Google Scholar]
  75. Kimura M. 75.  1983. The Neutral Theory of Molecular Evolution Cambridge: Cambridge Univ. Press384
  76. Kliebenstein DJ. 76.  2009. A quantitative genetics and ecological model system: understanding the aliphatic glucosinolate biosynthetic network via QTLs. Phytochem. Rev. 8:243–54 [Google Scholar]
  77. Kniskern JM, Barrett LG, Bergelson J. 77.  2011. Maladaptation in wild populations of the generalist plant pathogen Pseudomonas syringae. Evolution 65:818–30 [Google Scholar]
  78. Korves T. 78.  2004. A novel cost of R gene resistance in the presence of disease. Am. Nat. 163:489–504 [Google Scholar]
  79. Korves TM, Schmid KJ, Caicedo AL, Mays C, Stinchcombe JR. 79.  et al. 2007. Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field. Am. Nat. 169:E141–57 [Google Scholar]
  80. Kreitman M. 80.  2000. Methods to detect selection in populations with applications to the human. Annu. Rev. Genomics Hum. Genet. 1:539–59 [Google Scholar]
  81. Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G. 81.  et al. 2012. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 15:378–92 [Google Scholar]
  82. Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T. 82.  2003. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. PNAS 100:Suppl. 214587–92 [Google Scholar]
  83. Lachaise D, Silvain JF. 83.  2004. How two Afrotropical endemics made two cosmopolitan human commensals: the Drosophila melanogasterD. simulans palaeogeographic riddle. Genetica 120:17–39 [Google Scholar]
  84. Lam ET, Hastie A, Lin C, Ehrlich D, Das SK. 84.  et al. 2012. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 30:771–76 [Google Scholar]
  85. Lamichhaney S, Berglund J, Almen MS, Maqbool K, Grabherr M. 85.  et al. 2015. Evolution of Darwin's finches and their beaks revealed by genome sequencing. Nature 518:371–75 [Google Scholar]
  86. Lamichhaney S, Martinez Barrio A, Rafati N, Sundstrom G, Rubin CJ. 86.  et al. 2012. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. PNAS 109:19345–50 [Google Scholar]
  87. Lande R, Arnold SJ. 87.  1983. The measurement of selection on correlated characters. Evolution 37:1210–26 [Google Scholar]
  88. Lasky JR, Des Marais DL, McKay JK, Richards JH, Juenger TE, Keitt TH. 88.  2012. Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate. Mol. Ecol. 21:5512–29 [Google Scholar]
  89. Lee CR, Mitchell-Olds T. 89.  2012. Environmental adaptation contributes to gene polymorphism across the Arabidopsis thaliana genome. Mol. Biol. Evol. 29:3721–28 [Google Scholar]
  90. Lee SH, DeCandia TR, Ripke S, Yang J. 90.  Schizophr. Psychiatr. Genome-Wide Assoc. Study Consort. 2012. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat. Genet. 44:247–50 [Google Scholar]
  91. Lee YW, Gould BA, Stinchcombe JR. 91.  2014. Identifying the genes underlying quantitative traits: a rationale for the QTN programme. AoB Plants 6:pii:plu004 [Google Scholar]
  92. Leinonen PH, Sandring S, Quilot B, Clauss MJ, Mitchell-Olds T. 92.  et al. 2009. Local adaptation in European populations of Arabidopsis lyrata (Brassicaceae). Am. J. Bot. 96:1129–37 [Google Scholar]
  93. Leitch IJ, Chase MW, Bennett MD. 93.  1998. Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann. Bot. 82:85–94 [Google Scholar]
  94. Li P, Filiault D, Box MS, Kerdaffrec E, van Oosterhout C. 94.  et al. 2014. Multiple FLC haplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana. Genes Dev. 28:1635–40 [Google Scholar]
  95. Li Y, Cheng R, Spokas KA, Palmer AA, Borevitz JO. 95.  2014. Genetic variation for life history sensitivity to seasonal warming in Arabidopsis thaliana. Genetics 196:569–77 [Google Scholar]
  96. Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO. 96.  2010. Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. PNAS 107:21199–204 [Google Scholar]
  97. Lin T, Zhu G, Zhang J, Xu X, Yu Q. 97.  et al. 2014. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46:1220–26 [Google Scholar]
  98. Liu S, Ying K, Yeh CT, Yang J, Swanson-Wagner R. 98.  et al. 2012. Changes in genome content generated via segregation of non-allelic homologs. Plant J. 72:390–99 [Google Scholar]
  99. Long Q, Rabanal FA, Meng D, Huber CD, Farlow A. 99.  et al. 2013. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat. Genet. 45:884–90 [Google Scholar]
  100. Mandel JR, Nambeesan S, Bowers JE, Marek LF, Ebert D. 100.  et al. 2013. Association mapping and the genomic consequences of selection in sunflower. PLOS Genet. 9:e1003378 [Google Scholar]
  101. Manel S, Schwartz MK, Luikart G, Taberlet P. 101.  2003. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18:189–97 [Google Scholar]
  102. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA. 102.  et al. 2009. Finding the missing heritability of complex diseases. Nature 461:747–53 [Google Scholar]
  103. Matzke MA, Mosher RA. 103.  2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15:394–408 [Google Scholar]
  104. McKown AD, Klapste J, Guy RD, Geraldes A, Porth I. 104.  et al. 2014. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol. 203:535–53 [Google Scholar]
  105. Méndez-Vigo B, Gomaa NH, Alonso-Blanco C, Picó FX. 105.  2013. Among- and within-population variation in flowering time of Iberian Arabidopsis thaliana estimated in field and glasshouse conditions. New Phytol. 197:1332–43 [Google Scholar]
  106. Mikola J. 106.  1982. Bud-set phenology as an indicator of climatic adaptation of Scots pine in Finland. Silva Fenn. 16:178–84 [Google Scholar]
  107. Montesinos A, Tonsor SJ, Alonso-Blanco C, Picó FX. 107.  2009. Demographic and genetic patterns of variation among populations of Arabidopsis thaliana from contrasting native environments. PLOS ONE 4:e7213 [Google Scholar]
  108. Montesinos-Navarro A, Wig J, Picó FX, Tonsor SJ. 108.  2011. Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude. New Phytol. 189:282–94 [Google Scholar]
  109. Morgenstern EK. 109.  1996. Geographic Variation in Forest Trees. Genetic Basis and Application of Knowledge in Silviculture. Vancouver: UBC Press209
  110. Nemri A, Atwell S, Tarone AM, Huang YS, Zhao K. 110.  et al. 2010. Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using combined association and linkage mapping. PNAS 107:10302–7 [Google Scholar]
  111. Nielsen R. 111.  2005. Molecular signatures of natural selection. Annu. Rev. Genet. 39:197–218 [Google Scholar]
  112. Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C. 112.  et al. 2005. The pattern of polymorphism in Arabidopsis thaliana. PLOS Biol. 3:e196 [Google Scholar]
  113. Nordborg M, Weigel D. 113.  2008. Next-generation genetics in plants. Nature 456:720–23 [Google Scholar]
  114. Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D. 114.  2008. Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res. 18:2024–33 [Google Scholar]
  115. Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM. 115.  et al. 2010. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94 [Google Scholar]
  116. Otto SP. 116.  2007. The evolutionary consequences of polyploidy. Cell 131:452–62 [Google Scholar]
  117. Pagny G, Paulstephenraj PS, Poque S, Sicard O, Cosson P. 117.  et al. 2012. Family-based linkage and association mapping reveals novel genes affecting Plum pox virus infection in Arabidopsis thaliana. New Phytol. 196:873–86 [Google Scholar]
  118. Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA. 118.  2012. Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol. Ecol. 21:2991–3005 [Google Scholar]
  119. Poland JA, Brown PJ, Sorrells ME, Jannink JL. 119.  2012. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLOS ONE 7:e32253 [Google Scholar]
  120. Poormohammad Kiani S, Trontin C, Andreatta M, Simon M, Robert T. 120.  et al. 2012. Allelic heterogeneity and trade-off shape natural variation for response to soil micronutrient. PLOS Genet. 8:e1002814 [Google Scholar]
  121. Puzey J, Vallejo-Marin M. 121.  2014. Genomics of invasion: diversity and selection in introduced populations of monkeyflowers (Mimulus guttatus). Mol. Ecol. 23:4472–85 [Google Scholar]
  122. Qi J, Chen Y, Copenhaver GP, Ma H. 122.  2014. Detection of genomic variations and DNA polymorphisms and impact on analysis of meiotic recombination and genetic mapping. PNAS 111:10007–12 [Google Scholar]
  123. Ralph P, Coop G. 123.  2010. Parallel adaptation: one or many waves of advance of an advantageous allele?. Genetics 186:647–68 [Google Scholar]
  124. Reed RD, Papa R, Martin A, Hines HM, Counterman BA. 124.  et al. 2011. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333:1137–41 [Google Scholar]
  125. Robledo-Arnuncio JJ. 125.  2011. Wind pollination over mesoscale distances: an investigation with Scots pine. New Phytol. 190:222–33 [Google Scholar]
  126. Rockman MV. 126.  2012. The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution 66:1–17 [Google Scholar]
  127. Roux F, Colomé-Tatché M, Edelist C, Wardenaar R, Guerche P. 127.  et al. 2011. Genome-wide epigenetic perturbation jump-starts patterns of heritable variation found in nature. Genetics 188:1015–17 [Google Scholar]
  128. Salt DE, Baxter I, Lahner B. 128.  2008. Ionomics and the study of the plant ionome. Annu. Rev. Plant Biol. 59:709–33 [Google Scholar]
  129. Savolainen O, Pyhäjärvi T, Knürr T. 129.  2007. Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst. 38:595–619 [Google Scholar]
  130. Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA. 130.  et al. 2011. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–73 [Google Scholar]
  131. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M. 131.  et al. 2013. Patterns of population epigenomic diversity. Nature 495:193–98 [Google Scholar]
  132. Schneeberger K, Ossowski S, Ott F, Klein JD, Wang X. 132.  et al. 2011. Reference-guided assembly of four diverse Arabidopsis thaliana genomes. PNAS 108:10249–54 [Google Scholar]
  133. Shen X, De Jonge J, Forsberg SK, Pettersson ME, Sheng Z. 133.  et al. 2014. Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. PLOS Genet. 10:e1004842 [Google Scholar]
  134. Silady RA, Effgen S, Koornneef M, Reymond M. 134.  2011. Variation in seed dormancy quantitative trait loci in Arabidopsis thaliana originating from one site. PLOS ONE 6:e20886 [Google Scholar]
  135. Silveira AB, Trontin C, Cortijo S, Barau J, Del Bem LE. 135.  et al. 2013. Extensive natural epigenetic variation at a de novo originated gene. PLOS Genet. 9:e1003437 [Google Scholar]
  136. Soria-Carrasco V, Gompert Z, Comeault AA, Farkas TE, Parchman TL. 136.  et al. 2014. Stick insect genomes reveal natural selection's role in parallel speciation. Science 344:738–42 [Google Scholar]
  137. Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J. 137.  1999. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–71 [Google Scholar]
  138. Stern DL, Orgogozo V. 138.  2008. The loci of evolution: How predictable is genetic evolution?. Evolution 62:2155–77 [Google Scholar]
  139. Tang C, Toomajian C, Sherman-Broyles S, Plagnol V, Guo YL. 139.  et al. 2007. The evolution of selfing in Arabidopsis thaliana. Science 317:1070–72 [Google Scholar]
  140. Teshima KM, Coop G, Przeworski M. 140.  2006. How reliable are empirical genomic scans for selective sweeps?. Genome Res. 16:702–12 [Google Scholar]
  141. Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. 141.  2002. Signature of balancing selection in Arabidopsis. PNAS 99:11525–30 [Google Scholar]
  142. Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J. 142.  2003. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77 [Google Scholar]
  143. Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M. 143.  et al. 2010. Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465:632–36 [Google Scholar]
  144. Tschaplinski TJ, Plett JM, Engle NL, Deveau A, Cushman KC. 144.  et al. 2014. Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. Mol. Plant-Microbe Interact. 27:546–56 [Google Scholar]
  145. Turchin MC, Chiang CW, Palmer CD, Sankararaman S, Reich D. 145.  et al. 2012. Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nat. Genet. 44:1015–19 [Google Scholar]
  146. Turesson G. 146.  1922. The genotypical response of the plant species to the habitat. Hereditas 3:211–350 [Google Scholar]
  147. Turesson G. 147.  1922. The species and the variety as ecological units. Hereditas 3:100–13 [Google Scholar]
  148. Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV. 148.  2010. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat. Genet. 42:260–63 [Google Scholar]
  149. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I. 149.  et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–604 [Google Scholar]
  150. Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R. 150.  et al. 2007. Epigenetic natural variation in Arabidopsis thaliana. PLOS Biol. 5:e174 [Google Scholar]
  151. Verslues PE, Lasky JR, Juenger TE, Liu TW, Kumar MN. 151.  2014. Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. Plant Physiol. 164:144–59 [Google Scholar]
  152. Vilhjálmsson BJ, Nordborg M. 152.  2013. The nature of confounding in genome-wide association studies. Nat. Rev. Genet. 14:1–2 [Google Scholar]
  153. Vitti JJ, Grossman SR, Sabeti PC. 153.  2013. Detecting natural selection in genomic data. Annu. Rev. Genet. 47:97–120 [Google Scholar]
  154. Voytas DF. 154.  2013. Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant Biol. 64:327–50 [Google Scholar]
  155. Waddington CH. 155.  1961. Genetic assimilation. Adv. Genet. 10:257–93 [Google Scholar]
  156. Weigel D. 156.  2012. Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol. 158:2–22 [Google Scholar]
  157. Wilczek AM, Roe JL, Knapp MC, Cooper MD, Lopez-Gallego C. 157.  et al. 2009. Effects of genetic perturbation on seasonal life history plasticity. Science 323:930–34 [Google Scholar]
  158. Wright S. 158.  1931. Evolution in Mendelian populations. Genetics 16:97–159 [Google Scholar]
  159. Wu CA, Lowry DB, Cooley AM, Wright KM, Lee YW, Willis JH. 159.  2008. Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity 100:220–30 [Google Scholar]
  160. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK. 160.  et al. 2010. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42:565–69 [Google Scholar]
  161. Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD. 161.  et al. 2013. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr. Biol. 23:2151–56 [Google Scholar]
  162. Yoshida K, Burbano HA, Krause J, Thines M, Weigel D, Kamoun S. 162.  2014. Mining herbaria for plant pathogen genomes: back to the future. PLOS Pathog. 10:e1004028 [Google Scholar]
  163. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M. 163.  et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38:203–8 [Google Scholar]
  164. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C. 164.  et al. 2007. An Arabidopsis example of association mapping in structured samples. PLOS Genet. 3:e4 [Google Scholar]
  165. Züst T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA. 165.  2012. Natural enemies drive geographic variation in plant defenses. Science 338:116–19 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092110
Loading
/content/journals/10.1146/annurev-genet-120213-092110
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error