1932

Abstract

ENCODE projects exist for many eukaryotes, including humans, but as of yet no defined project exists for plants. A plant ENCODE would be invaluable to the research community and could be more readily produced than its metazoan equivalents by capitalizing on the preexisting infrastructure provided from similar projects. Collecting and normalizing plant epigenomic data for a range of species will facilitate hypothesis generation, cross-species comparisons, annotation of genomes, and an understanding of epigenomic functions throughout plant evolution. Here, we discuss the need for such a project, outline the challenges it faces, and suggest ways forward to build a plant ENCODE.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092443
2014-11-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/genet/48/1/annurev-genet-120213-092443.html?itemId=/content/journals/10.1146/annurev-genet-120213-092443&mimeType=html&fmt=ahah

Literature Cited

  1. Addoquaye C, Eshoo T, Bartel D, Axtell M. 1.  2008. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18:758–62 [Google Scholar]
  2. Adli M, Bernstein BE. 2.  2011. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat. Protoc. 6:1656–68 [Google Scholar]
  3. 3. Arabidopsis Genome Initiat 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815 [Google Scholar]
  4. Alleman M, Sidorenko L, McGinnis K, Seshadri V, Dorweiler JE. 4.  et al. 2006. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442:295–98 [Google Scholar]
  5. Allen MA, Hillier LW, Waterston RH, Blumenthal T. 5.  2011. A global analysis of C. elegans trans-splicing. Genome Res. 21:255–64 [Google Scholar]
  6. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H. 6.  et al. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–57 [Google Scholar]
  7. 6a. Amborella Genome Proj 2013. The Amborella genome and the evolution of flowering plants. Science 342:1241089 [Google Scholar]
  8. Arvey A, Tempera I, Tsai K, Chen HS, Tikhmyanova N. 7.  et al. 2012. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe 12:233–45 [Google Scholar]
  9. Becker C, Hagmann J, Muller J, Koenig D, Stegle O. 8.  et al. 2011. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–49 [Google Scholar]
  10. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. 9.  2013. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39 [Google Scholar]
  11. Berezikov E, Robine N, Samsonova A, Westholm JO, Naqvi A. 10.  et al. 2011. Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res. 21:203–15 [Google Scholar]
  12. Bernatavichute Y, Zhang X, Cokus S, Pellegrini M, Jacobsen S, Dilkes B. 11.  2008. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLOS ONE 3:e3156 [Google Scholar]
  13. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A. 12.  et al. 2010. The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol. 28:1045–48 [Google Scholar]
  14. Bragg JN, Wu J, Gordon SP, Guttman ME, Thilmony R. 13.  et al. 2012. Generation and characterization of the Western Regional Research Center Brachypodium T-DNA insertional mutant collection. PLOS ONE 7:e41916 [Google Scholar]
  15. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P. 14.  et al. 2001. Minimum information about a microarray experiment (MIAME): toward standards for microarray data. Nat. Genet. 29:365–71 [Google Scholar]
  16. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 15.  2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10:1213–18 [Google Scholar]
  17. Callinan PA, Feinberg AP. 16.  2006. The emerging science of epigenomics. Hum. Mol. Genet. 15:Spec. No. 1R95–101 [Google Scholar]
  18. Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S. 17.  et al. 2011. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat. Genet. 43:956–63 [Google Scholar]
  19. Carelli M, Calderini O, Panara F, Porceddu A, Losini I. 18.  et al. 2013. Reverse genetics in Medicago truncatula using a TILLING mutant collection. Methods Mol. Biol. 1069:101–18 [Google Scholar]
  20. Cherbas L, Willingham A, Zhang D, Yang L, Zou Y. 19.  et al. 2011. The transcriptional diversity of 25 Drosophila cell lines. Genome Res. 21:301–14 [Google Scholar]
  21. Chia JM, Song C, Bradbury PJ, Costich D, de Leon N. 20.  et al. 2012. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 44:803–7 [Google Scholar]
  22. Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H. 21.  et al. 2010. Relationship between nucleosome positioning and DNA methylation. Nature 466:388–92 [Google Scholar]
  23. Chung WJ, Agius P, Westholm JO, Chen M, Okamura K. 22.  et al. 2011. Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans. Genome Res. 21:286–300 [Google Scholar]
  24. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B. 23.  et al. 2008. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–19 [Google Scholar]
  25. Coleman-Derr D, Zilberman D. 24.  2012. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLOS Genet. 8:e1002988 [Google Scholar]
  26. Cooper JL, Henikoff S, Comai L, Till BJ. 27.  2013. TILLING and ecotilling for rice. Methods Mol. Biol. 956:39–56 [Google Scholar]
  27. Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM. 28.  et al. 2008. TILLING to detect induced mutations in soybean. BMC Plant Biol. 8:9 [Google Scholar]
  28. Cortijo S, Wardenaar R, Colome-Tatche M, Gilly A, Etcheverry M. 29.  et al. 2014. Mapping the epigenetic basis of complex traits. Science 343:1145–48 [Google Scholar]
  29. Crawford GE, Holt IE, Whittle J, Webb BD, Tai D. 30.  et al. 2006. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16:123–31 [Google Scholar]
  30. Dalmais M, Antelme S, Ho-Yue-Kuang S, Wang Y, Darracq O. 31.  et al. 2013. A TILLING platform for functional genomics in Brachypodium distachyon. PLOS ONE 8:e65503 [Google Scholar]
  31. Deal RB, Henikoff S. 32.  2010. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18:1030–40 [Google Scholar]
  32. Deal RB, Henikoff S. 33.  2011. The INTACT method for cell type–specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat. Protoc. 6:56–68 [Google Scholar]
  33. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y. 34.  et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–80 [Google Scholar]
  34. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T. 35.  et al. 2012. Landscape of transcription in human cells. Nature 489:101–8 [Google Scholar]
  35. Eaton ML, Prinz JA, MacAlpine HK, Tretyakov G, Kharchenko PV, MacAlpine DM. 36.  2011. Chromatin signatures of the Drosophila replication program. Genome Res. 21:164–74 [Google Scholar]
  36. Eichten SR, Briskine R, Song J, Li Q, Swanson-Wagner R. 37.  et al. 2013. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell 25:2783–97 [Google Scholar]
  37. Eichten SR, Swanson-Wagner RA, Schnable JC, Waters AJ, Hermanson PJ. 37.  et al. 2011. Heritable epigenetic variation among maize inbreds. PLOS Genet. 7:e1002372 [Google Scholar]
  38. 38. ENCODE Proj. Consort. EP, Bernstein BE, Birney E, Dunham I, Green ED et al. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74 [Google Scholar]
  39. 39. EPIC Plan. Consort 2012. Reading the second code: mapping epigenomes to understand plant growth, development, and adaptation to the environment. Plant Cell 24:2257–61 [Google Scholar]
  40. Ercan S, Lubling Y, Segal E, Lieb JD. 40.  2011. High nucleosome occupancy is encoded at X-linked gene promoters in C. elegans. Genome Res. 21:237–44 [Google Scholar]
  41. Ezkurdia I, del Pozo A, Frankish A, Rodriguez JM, Harrow J. 41.  et al. 2012. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function. Mol. Biol. Evol. 29:2265–83 [Google Scholar]
  42. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM. 42.  et al. 2007. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLOS ONE 2:e219 [Google Scholar]
  43. Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M. 43.  et al. 2010. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl. Acad. Sci. USA 107:8689–94 [Google Scholar]
  44. Feng Z, Zhang B, Ding W, Liu X, Yang DL. 44.  et al. 2013. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23:1229–32 [Google Scholar]
  45. Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW. 45.  et al. 2010. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 20:45–58 [Google Scholar]
  46. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H. 46.  et al. 2009. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462:58–64 [Google Scholar]
  47. Gan X, Stegle O, Behr J, Steffen JG, Drewe P. 47.  et al. 2011. Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477:419–23 [Google Scholar]
  48. Gaudinier A, Zhang L, Reece-Hoyes JS, Taylor-Teeples M, Pu L. 48.  et al. 2011. Enhanced Y1H assays for Arabidopsis. Nat. Methods 8:1053–55 [Google Scholar]
  49. Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y. 49.  et al. 2013. CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res. 23:628–37 [Google Scholar]
  50. German MA, Pillay M, Jeong DH, Hetawal A, Luo S. 50.  et al. 2008. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol. 26:941–46 [Google Scholar]
  51. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK. 51.  et al. 2012. Architecture of the human regulatory network derived from ENCODE data. Nature 489:91–100 [Google Scholar]
  52. Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI. 52.  et al. 2010. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330:1775–87 [Google Scholar]
  53. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. 53.  2007. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res. 17:877–85 [Google Scholar]
  54. Giresi PG, Lieb JD. 54.  2009. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (formaldehyde assisted isolation of regulatory elements). Methods 48:233–39 [Google Scholar]
  55. Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE. 55.  et al. 2011. The iPlant Collaborative: cyberinfrastructure for plant biology. Front. Plant Sci. 2:34 [Google Scholar]
  56. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES. 56.  et al. 2009. A first-generation haplotype map of maize. Science 326:1115–17 [Google Scholar]
  57. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM. 57.  et al. 2011. The developmental transcriptome of Drosophila melanogaster. Nature 471:473–79 [Google Scholar]
  58. Gregory BD, O'Malley RC, Lister R, Urich MA, Tonti-Filippini J. 58.  et al. 2008. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev. Cell 14:854–66 [Google Scholar]
  59. Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M. 59.  et al. 2013. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat. Genet. 45:891–98 [Google Scholar]
  60. Hoffman MM, Ernst J, Wilder SP, Kundaje A, Harris RS. 60.  et al. 2013. Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res. 41:827–41 [Google Scholar]
  61. Hoskins RA, Landolin JM, Brown JB, Sandler JE, Takahashi H. 61.  et al. 2011. Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Res. 21:182–92 [Google Scholar]
  62. Jacquemin J, Bhatia D, Singh K, Wing RA. 62.  2013. The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion–people question. Curr. Opin. Plant Biol. 16:147–56 [Google Scholar]
  63. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M. 63.  et al. 2009. Assessing the impact of transgenerational epigenetic variation on complex traits. PLOS Genet. 5:e1000530 [Google Scholar]
  64. Johnson DS, Mortazavi A, Myers RM, Wold B. 64.  2007. Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–502 [Google Scholar]
  65. Johnson LM, Du J, Hale CJ, Bischof S, Feng S. 65.  et al. 2014. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507:124–28 [Google Scholar]
  66. Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC. 66.  et al. 2011. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471:480–85 [Google Scholar]
  67. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. 67.  2014. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46:310–15 [Google Scholar]
  68. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M. 68.  et al. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–76 [Google Scholar]
  69. Kumar AP, Boualem A, Bhattacharya A, Parikh S, Desai N. 69.  et al. 2013. SMART: sunflower mutant population and reverse genetic tool for crop improvement. BMC Plant Biol. 13:38 [Google Scholar]
  70. Lam HM, Xu X, Liu X, Chen W, Yang G. 70.  et al. 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 42:1053–59 [Google Scholar]
  71. Latzel V, Allan E, Bortolini Silveira A, Colot V, Fischer M, Bossdorf O. 71.  2013. Epigenetic diversity increases the productivity and stability of plant populations. Nat. Commun. 4:2875 [Google Scholar]
  72. Lee BK, Iyer VR. 72.  2012. Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation. J. Biol. Chem. 287:30906–13 [Google Scholar]
  73. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J. 73.  et al. 2009. The sequence alignment/map format and SAM tools. Bioinformatics 25:2078–79 [Google Scholar]
  74. Li X, Wang X, He K, Ma Y, Su N. 74.  et al. 2008. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–76 [Google Scholar]
  75. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T. 75.  et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93 [Google Scholar]
  76. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA. 76.  et al. 2013. Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905 [Google Scholar]
  77. Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC. 77.  et al. 2008. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–36 [Google Scholar]
  78. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G. 78.  et al. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–22 [Google Scholar]
  79. Liu T, Rechtsteiner A, Egelhofer TA, Vielle A, Latorre I. 79.  et al. 2011. Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res. 21:227–36 [Google Scholar]
  80. Long Q, Rabanal FA, Meng D, Huber CD, Farlow A. 80.  et al. 2013. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat. Genet. 45:884–90 [Google Scholar]
  81. Louwers M, Bader R, Haring M, van Driel R, de Laat W, Stam M. 81.  2009. Tissue- and expression level–specific chromatin looping at maize b1 epialleles. Plant Cell 21:832–42 [Google Scholar]
  82. Ma S, Shah S, Bohnert HJ, Snyder M, Dinesh-Kumar SP. 82.  2013. Incorporating motif analysis into gene co-expression networks reveals novel modular expression pattern and new signaling pathways. PLOS Genet. 9:e1003840 [Google Scholar]
  83. Makarevitch I, Eichten SR, Briskine R, Waters AJ, Danilevskaya ON. 83.  et al. 2013. Genomic distribution of maize facultative heterochromatin marked by trimethylation of H3K27. Plant Cell 25:780–93 [Google Scholar]
  84. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E. 84.  et al. 2012. Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190–95 [Google Scholar]
  85. 85. modENCODE Consort., Roy S, Ernst J, Kharchenko PV, Kheradpour P, et al. 2010. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330:1787–97 [Google Scholar]
  86. Moissiard G, Cokus SJ, Cary J, Feng S, Billi AC. 86.  et al. 2012. MORC family ATPases required for heterochromatin condensation and gene silencing. Science 336:1448–51 [Google Scholar]
  87. Mortazavi A, Williams B, Mccue K, Schaeffer L, Wold B. 87.  2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5:621–28 [Google Scholar]
  88. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. 88.  2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31:691–93 [Google Scholar]
  89. Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E. 89.  et al. 2012. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489:83–90 [Google Scholar]
  90. Nielsen CB, Younesy H, O'Geen H, Xu X, Jackson AR. 90.  et al. 2012. Spark: a navigational paradigm for genomic data exploration. Genome Res. 22:2262–69 [Google Scholar]
  91. Niu W, Lu ZJ, Zhong M, Sarov M, Murray JI. 91.  et al. 2011. Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans. Genome Res. 21:245–54 [Google Scholar]
  92. Nordman J, Li S, Eng T, Macalpine D, Orr-Weaver TL. 92.  2011. Developmental control of the DNA replication and transcription programs. Genome Res. 21:175–81 [Google Scholar]
  93. Okabe Y, Asamizu E, Saito T, Matsukura C, Ariizumi T. 93.  et al. 2011. Tomato TILLING technology: development of a reverse genetics tool for the efficient isolation of mutants from Micro-Tom mutant libraries. Plant Cell Physiol. 52:1994–2005 [Google Scholar]
  94. Olson A, Klein RR, Dugas DV, Lu Z, Regulski M. 94.  et al. 2014. Expanding and vetting sorghum bicolor gene annotations through transcriptome and methylome sequencing. Plant Genome doi: 10.3835/plantgenome2013.08.0025
  95. Ossowski S, Schneeberger K, Clark R, Lanz C, Warthmann N, Weigel D. 95.  2008. Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res. 18:2024–33 [Google Scholar]
  96. Patterson GI, Harris LJ, Walbot V, Chandler VL. 96.  1991. Genetic analysis of B-Peru, a regulatory gene in maize. Genetics 127:205–20 [Google Scholar]
  97. Patterson GI, Kubo KM, Shroyer T, Chandler VL. 97.  1995. Sequences required for paramutation of the maize b gene map to a region containing the promoter and upstream sequences. Genetics 140:1389–406 [Google Scholar]
  98. Patterson GI, Thorpe CJ, Chandler VL. 98.  1993. Paramutation, an allelic interaction, is associated with a stable and heritable reduction of transcription of the maize b regulatory gene. Genetics 135:881–94 [Google Scholar]
  99. Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, Smith RP. 99.  et al. 2012. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30:265–70 [Google Scholar]
  100. Rawat N, Sehgal SK, Joshi A, Rothe N, Wilson DL. 100.  et al. 2012. A diploid wheat TILLING resource for wheat functional genomics. BMC Plant Biol. 12:205 [Google Scholar]
  101. Regulski M, Lu Z, Kendall J, Donoghue MT, Reinders J. 101.  et al. 2013. The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res.231651–62
  102. Reinders J, Wulff BB, Mirouze M, Mari-Ordonez A, Dapp M. 102.  et al. 2009. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23:939–50 [Google Scholar]
  103. Riddle NC, Minoda A, Kharchenko PV, Alekseyenko AA, Schwartz YB. 103.  et al. 2011. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res. 21:147–63 [Google Scholar]
  104. Rogers C, Wen J, Chen R, Oldroyd G. 104.  2009. Deletion-based reverse genetics in Medicago truncatula. Plant Physiol. 151:1077–86 [Google Scholar]
  105. Roudier F, Ahmed I, Berard C, Sarazin A, Mary-Huard T. 105.  et al. 2011. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 30:1928–38 [Google Scholar]
  106. Roux F, Colome-Tatche M, Edelist C, Wardenaar R, Guerche P. 106.  et al. 2011. Genome-wide epigenetic perturbation jump-starts patterns of heritable variation found in nature. Genetics 188:1015–17 [Google Scholar]
  107. Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P. 107.  et al. 2004. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J. 39:450–64 [Google Scholar]
  108. Salvi S, Sponza G, Morgante M, Tomes D, Niu X. 108.  et al. 2007. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl. Acad. Sci. USA 104:11376–81 [Google Scholar]
  109. Sanyal A, Lajoie BR, Jain G, Dekker J. 109.  2012. The long-range interaction landscape of gene promoters. Nature 489:109–13 [Google Scholar]
  110. Schmitz RJ, He Y, Valdes-Lopez O, Khan SM, Joshi T. 110.  et al. 2013. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 23:1663–74 [Google Scholar]
  111. Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA. 111.  et al. 2011. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–73 [Google Scholar]
  112. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M. 112.  et al. 2013. Patterns of population epigenomic diversity. Nature 495:193–98 [Google Scholar]
  113. Schmitz RJ, Zhang X. 113.  2011. High-throughput approaches for plant epigenomic studies. Curr. Opin. Plant Biol. 14:130–36 [Google Scholar]
  114. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A. 114.  et al. 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–98 [Google Scholar]
  115. Schultz MD, Schmitz RJ, Ecker JR. 115.  2012. “Leveling” the playing field for analyses of single-base resolution DNA methylomes. Trends Genet. 28:583–85 [Google Scholar]
  116. Shan Q, Wang Y, Li J, Zhang Y, Chen K. 116.  et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31:686–88 [Google Scholar]
  117. Shen X, Forsberg S, Petterson M, Sheng Z, Carlborg O. 117.  2013. Natural CMT2 variation is associated with genome-wide methylation changes and temperature adaptation. arXiv arXiv:1310.4522 [q-bio.PE] [Google Scholar]
  118. Shen Y, Yue F, McCleary DF, Ye Z, Edsall L. 118.  et al. 2012. A map of the cis-regulatory sequences in the mouse genome. Nature 488:116–20 [Google Scholar]
  119. Song QX, Lu X, Li QT, Chen H, Hu XY. 119.  et al. 2013. Genome-wide analysis of DNA methylation in soybean. Mol. Plant 6:1961–74 [Google Scholar]
  120. Spencer WC, Zeller G, Watson JD, Henz SR, Watkins KL. 120.  et al. 2011. A spatial and temporal map of C. elegans gene expression. Genome Res. 21:325–41 [Google Scholar]
  121. Stam M, Belele C, Dorweiler JE, Chandler VL. 121.  2002. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev. 16:1906–18 [Google Scholar]
  122. Stam M, Belele C, Ramakrishna W, Dorweiler JE, Bennetzen JL, Chandler VL. 122.  2002. The regulatory regions required for B′ paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162:917–30 [Google Scholar]
  123. Stephenson P, Baker D, Girin T, Perez A, Amoah S. 123.  et al. 2010. A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol. 10:62 [Google Scholar]
  124. Stroud H, Otero S, Desvoyes B, Ramirez-Parra E, Jacobsen SE, Gutierrez C. 124.  2012. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 109:5370–75 [Google Scholar]
  125. Studer A, Zhao Q, Ross-Ibarra J, Doebley J. 125.  2011. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43:1160–63 [Google Scholar]
  126. Takuno S, Gaut BS. 126.  2012. Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly. Mol. Biol. Evol. 29:219–27 [Google Scholar]
  127. Takuno S, Gaut BS. 127.  2013. Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proc. Natl. Acad. Sci. USA 110:1797–802 [Google Scholar]
  128. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C. 128.  et al. 2009. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6:377–82 [Google Scholar]
  129. Thomas BC, Rapaka L, Lyons E, Pedersen B, Freeling M. 129.  2007. Arabidopsis intragenomic conserved noncoding sequence. Proc. Natl. Acad. Sci. USA 104:3348–53 [Google Scholar]
  130. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT. 130.  et al. 2012. The accessible chromatin landscape of the human genome. Nature 489:75–82 [Google Scholar]
  131. Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H. 131.  et al. 2009. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol. 9:115 [Google Scholar]
  132. Vaughn MW, Tanurdzić M, Lippman Z, Jiang H, Carrasquillo R. 132.  et al. 2007. Epigenetic natural variation in Arabidopsis thaliana. PLOS Biol. 5:e174 [Google Scholar]
  133. Wang X, Elling AA, Li X, Li N, Peng Z. 133.  et al. 2009. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21:1053–69 [Google Scholar]
  134. Weigel D, Nordborg M. 134.  2005. Natural variation in Arabidopsis. How do we find the causal genes?. Plant Physiol. 138:567–68 [Google Scholar]
  135. Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B. 135.  et al. 2010. Local DNA hypomethylation activates genes in rice endosperm. Proc. Natl. Acad. Sci. USA 107:18729–34 [Google Scholar]
  136. Zemach A, McDaniel IE, Silva P, Zilberman D. 136.  2010. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–19 [Google Scholar]
  137. Zentner GE, Scacheri PC. 137.  2012. The chromatin fingerprint of gene enhancer elements. J. Biol. Chem. 287:30888–96 [Google Scholar]
  138. Zhang W, Wu Y, Schnable JC, Zeng Z, Freeling M. 138.  et al. 2012. High-resolution mapping of open chromatin in the rice genome. Genome Res. 22:151–62 [Google Scholar]
  139. Zhang W, Zhang T, Wu Y, Jiang J. 139.  2012. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 24:2719–31 [Google Scholar]
  140. Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE. 140.  2009. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 10:R62 [Google Scholar]
  141. Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M. 141.  et al. 2007. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLOS Biol. 5:e129 [Google Scholar]
  142. Zhong S, Fei Z, Chen YR, Zheng Y, Huang M. 142.  et al. 2013. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat. Biotechnol. 31:154–59 [Google Scholar]
  143. Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S. 143.  2008. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125–29 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092443
Loading
/content/journals/10.1146/annurev-genet-120213-092443
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error