1932

Abstract

Most age-related neurodegenerative diseases are associated with the misfolding and aberrant accumulation of specific proteins in the nervous system. The proteins self-assemble and spread by a prion-like process of corruptive molecular templating, whereby abnormally folded proteins induce the misfolding and aggregation of like proteins into characteristic lesions. Despite the apparent simplicity of this process at the molecular level, diseases such as Alzheimer's, Parkinson's, Creutzfeldt-Jakob, and others display remarkable phenotypic heterogeneity, both clinically and pathologically. Evidence is growing that this variability is mediated, at least in part, by the acquisition of diverse molecular architectures by the misfolded proteins, variants referred to as proteopathic strains. The structural and functional diversity of the assemblies is influenced by genetic, epigenetic, and local contextual factors. Insights into proteopathic strains gleaned from the classical prion diseases can be profitably incorporated into research on other neurodegenerative diseases. Their potentially wide-ranging influence on disease phenotype also suggests that proteopathic strains should be considered in the design and interpretation of diagnostic and therapeutic approaches to these disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120215-034943
2016-11-23
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genet/50/1/annurev-genet-120215-034943.html?itemId=/content/journals/10.1146/annurev-genet-120215-034943&mimeType=html&fmt=ahah

Literature Cited

  1. Aguzzi A, Polymenidou M. 1.  2004. Mammalian prion biology: one century of evolving concepts. Cell 116:313–27 [Google Scholar]
  2. Alpers MP.2.  2008. The epidemiology of kuru: monitoring the epidemic from its peak to its end. Philos. Trans. R. Soc. Lond. Ser. B 363:3707–13 [Google Scholar]
  3. Angers R, Christiansen J, Nalls AV, Kang HE, Hunter N. 3.  et al. 2014. Structural effects of PrP polymorphisms on intra- and interspecies prion transmission. PNAS 111:11169–74 [Google Scholar]
  4. Asante EA, Smidak M, Grimshaw A, Houghton R, Tomlinson A. 4.  et al. 2015. A naturally occurring variant of the human prion protein completely prevents prion disease. Nature 522:478–81 [Google Scholar]
  5. Ayers JI, Fromholt S, Koch M, DeBosier A, McMahon B. 5.  et al. 2014. Experimental transmissibility of mutant SOD1 motor neuron disease. Acta Neuropathol. 128:791–803 [Google Scholar]
  6. Bachevalier J, Landis LS, Walker LC, Brickson M, Mishkin M. 6.  et al. 1991. Aged monkeys exhibit behavioral deficits indicative of widespread cerebral dysfunction. Neurobiol. Aging 12:99–111 [Google Scholar]
  7. Basun H, Bogdanovic N, Ingelsson M, Almkvist O, Naslund J. 7.  et al. 2008. Clinical and neuropathological features of the arctic APP gene mutation causing early-onset Alzheimer disease. Arch. Neurol. 65:499–505 [Google Scholar]
  8. Benilova I, Gallardo R, Ungureanu AA, Castillo Cano V, Snellinx A. 8.  et al. 2014. The Alzheimer disease protective mutation A2T modulates kinetic and thermodynamic properties of amyloid-β (Aβ) aggregation. J. Biol. Chem. 289:30977–89 [Google Scholar]
  9. Berry DB, Lu D, Geva M, Watts JC, Bhardwaj S. 9.  et al. 2013. Drug resistance confounding prion therapeutics. PNAS 110:E4160–69 [Google Scholar]
  10. Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J. 10.  et al. 1995. Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer's disease. Arch. Neurol. 52:81–88 [Google Scholar]
  11. Boluda S, Iba M, Zhang B, Raible KM, Lee VM, Trojanowski JQ. 11.  2015. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer's disease or corticobasal degeneration brains. Acta Neuropathol. 129:221–37 [Google Scholar]
  12. Bushman DM, Kaeser GE, Siddoway B, Westra JW, Rivera RR. 12.  et al. 2015. Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer's disease brains. eLife 4:05116 [Google Scholar]
  13. Buxbaum JN, Linke RP. 13.  2012. A molecular history of the amyloidoses. J. Mol. Biol. 421:142–59 [Google Scholar]
  14. Cancellotti E, Mahal SP, Somerville R, Diack A, Brown D. 14.  et al. 2013. Post-translational changes to PrP alter transmissible spongiform encephalopathy strain properties. EMBO J. 32:756–69 [Google Scholar]
  15. Castellani RJ, Smith MA. 15.  2011. Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is “too big to fail.”. J. Pathol. 224:147–52 [Google Scholar]
  16. Chandler RL.16.  1961. Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet 1:1378–79 [Google Scholar]
  17. Chiti F, Dobson CM. 17.  2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333–66 [Google Scholar]
  18. Chouraki V, Seshadri S. 18.  2014. Genetics of Alzheimer's disease. Adv. Genet. 87:245–94 [Google Scholar]
  19. Clavaguera F, Hench J, Goedert M, Tolnay M. 19.  2015. Invited review: prion-like transmission and spreading of tau pathology. Neuropathol. Appl. Neurobiol. 41:47–58 [Google Scholar]
  20. Cohen ML, Kim C, Haldiman T, ElHag M, Mehndiratta P. 20.  et al. 2015. Rapidly progressive Alzheimer's disease features distinct structures of amyloid-β. Brain 138:1009–22 [Google Scholar]
  21. Collinge J, Clarke AR. 21.  2007. A general model of prion strains and their pathogenicity. Science 318:930–36 [Google Scholar]
  22. Collinge J, Whitfield J, McKintosh E, Frosh A, Mead S. 22.  et al. 2008. A clinical study of kuru patients with long incubation periods at the end of the epidemic in Papua New Guinea. Philos. Trans. R. Soc. Lond. Ser. B 363:3725–39 [Google Scholar]
  23. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL. 23.  et al. 2014. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128:755–66 [Google Scholar]
  24. Crowell J, Hughson A, Caughey B, Bessen RA. 24.  2015. Host determinants of prion strain diversity independent of prion protein genotype. J. Virol. 89:10427–41 [Google Scholar]
  25. Crystal H, Dickson D, Fuld P, Masur D, Scott R. 25.  et al. 1988. Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer's disease. Neurology 38:1682–87 [Google Scholar]
  26. DeArmond SJ, Ironside JW, Bouzamondo-Bernstein E, Peretz D, Fraser JR. 26.  2004. Neuropathology of prion diseases. Prion Biology and Diseases SB Prusiner 777–856 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  27. Di Fede G, Catania M, Morbin M, Rossi G, Suardi S. 27.  et al. 2009. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science 323:1473–77 [Google Scholar]
  28. Duncan GW. 28.  2011. The aging brain and neurodegenerative diseases. Clin. Geriatr. Med. 27:629–44 [Google Scholar]
  29. Eisele YS, Fritschi SK, Hamaguchi T, Obermuller U, Fuger P. 29.  et al. 2014. Multiple factors contribute to the peripheral induction of cerebral β-amyloidosis. J. Neurosci. 34:10264–73 [Google Scholar]
  30. Eisele YS, Obermuller U, Heilbronner G, Baumann F, Kaeser SA. 30.  et al. 2010. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science 330:980–82 [Google Scholar]
  31. Eisenberg D, Jucker M. 31.  2012. The amyloid state of proteins in human diseases. Cell 148:1188–203 [Google Scholar]
  32. Fang YS, Tsai KJ, Chang YJ, Kao P, Woods R. 32.  et al. 2014. Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat. Commun. 5:4824 [Google Scholar]
  33. Farquhar J, Gajdusek DC. 33.  1981. Kuru: Early Letters and Field Notes from the Collection of D. Carleton Gajdusek. New York: Raven Press
  34. Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG. 34.  2015. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer's disease. Front. Cell. Neurosci. 9:191 [Google Scholar]
  35. Frank SA. 35.  2014. Somatic mosaicism and disease. Curr. Biol. 24:R577–81 [Google Scholar]
  36. Fritschi SK, Cintron A, Ye L, Mahler J, Buhler A. 36.  et al. 2014. Aβ seeds resist inactivation by formaldehyde. Acta Neuropathol. 128:477–84 [Google Scholar]
  37. Frontzek K, Lutz MI, Aguzzi A, Kovacs GG, Budka H. 37.  2016. Amyloid-β pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting. Swiss Med. Wkly. 146:w14287 [Google Scholar]
  38. Gajdusek DC, Gibbs CJ, Alpers M. 38.  1966. Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209:794–96 [Google Scholar]
  39. Gambetti P, Cali I, Notari S, Kong Q, Zou WQ, Surewicz WK. 39.  2011. Molecular biology and pathology of prion strains in sporadic human prion diseases. Acta Neuropathol. 121:79–90 [Google Scholar]
  40. Ghaemmaghami S, Watts JC, Nguyen HO, Hayashi S, DeArmond SJ, Prusiner SB. 40.  2011. Conformational transformation and selection of synthetic prion strains. J. Mol. Biol. 413:527–42 [Google Scholar]
  41. Ghiso J, Frangione B. 41.  2002. Amyloidosis and Alzheimer's disease. Adv. Drug Deliv. Rev. 54:1539–51 [Google Scholar]
  42. Glenner GG, Wong CW. 42.  1984. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120:885–90 [Google Scholar]
  43. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F. 43.  et al. 1991. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349:704–6 [Google Scholar]
  44. Goedert M. 44.  2015. Alzheimer's and Parkinson's diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein.. Science 349:1255555 [Google Scholar]
  45. Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC. 45.  1987. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science 235:877–80 [Google Scholar]
  46. Greenwald J, Riek R. 46.  2010. Biology of amyloid: structure, function, and regulation. Structure 18:1244–60 [Google Scholar]
  47. Haass C, Kaether C, Thinakaran G, Sisodia S. 47.  2012. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med. 2:a006270 [Google Scholar]
  48. Haass C, Selkoe DJ. 48.  2007. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8:101–12 [Google Scholar]
  49. Hamaguchi T, Eisele YS, Varvel NH, Lamb BT, Walker LC, Jucker M. 49.  2012. The presence of Aβ seeds, and not age per se, is critical to the initiation of Aβ deposition in the brain. Acta Neuropathol. 123:31–37 [Google Scholar]
  50. Hamaguchi T, Taniguchi Y, Sakai K, Kitamoto T, Takao M. 50.  et al. 2016. Significant association of cadaveric dura mater grafting with subpial Aβ deposition and meningeal amyloid angiopathy. Acta Neuropathol. 132:313–15 [Google Scholar]
  51. Hardy J. 51.  2006. A hundred years of Alzheimer's disease research. Neuron 52:3–13 [Google Scholar]
  52. Hardy J, Selkoe DJ. 52.  2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–56 [Google Scholar]
  53. Hardy JA, Higgins GA. 53.  1992. Alzheimer's disease: the amyloid cascade hypothesis. Science 256:184–85 [Google Scholar]
  54. Heilbronner G, Eisele YS, Langer F, Kaeser SA, Novotny R. 54.  et al. 2013. Seeded strain-like transmission of β-amyloid morphotypes in APP transgenic mice. EMBO Rep. 14:1017–22 [Google Scholar]
  55. Heuer E, Rosen RF, Cintron A, Walker LC. 55.  2012. Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr. Pharm. Des. 18:1159–69 [Google Scholar]
  56. Hoffner G, Djian P. 56.  2014. Polyglutamine aggregation in Huntington disease: Does structure determine toxicity?. Mol. Neurobiol. 52:1297–314 [Google Scholar]
  57. Holtzman DM, Morris JC, Goate AM. 57.  2011. Alzheimer's disease: the challenge of the second century. Sci. Trans. Med. 3:77sr1 [Google Scholar]
  58. Humphries C, Kohli MA. 58.  2014. Rare variants and transcriptomics in Alzheimer disease. Curr. Genet. Med. Rep. 2:75–84 [Google Scholar]
  59. Ikonomovic MD, Abrahamson EE, Price JC, Hamilton RL, Mathis CA. 59.  et al. 2012. Early AD pathology in a [C-11]PiB-negative case: a PiB-amyloid imaging, biochemical, and immunohistochemical study. Acta Neuropathol. 123:433–47 [Google Scholar]
  60. Imran M, Mahmood S. 60.  2011. An overview of animal prion diseases. Virol. J. 8:493 [Google Scholar]
  61. Imran M, Mahmood S. 61.  2011. An overview of human prion diseases. Virol. J. 8:559 [Google Scholar]
  62. Ironside JW, Head MW, Bell JE, McCardle L, Will RG. 62.  2000. Laboratory diagnosis of variant Creutzfeldt-Jakob disease. Histopathology 37:1–9 [Google Scholar]
  63. Irwin DJ, Abrams JY, Schonberger LB, Leschek EW, Mills JL. 63.  et al. 2013. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70:4462–68 [Google Scholar]
  64. Jack CR Jr., Holtzman DM. 64.  2013. Biomarker modeling of Alzheimer's disease. Neuron 80:1347–58 [Google Scholar]
  65. Jaunmuktane Z, Mead S, Ellis M, Wadsworth JD, Nicoll AJ. 65.  et al. 2015. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 525:7568247–50 Erratum in Nature 526(7574):595 [Google Scholar]
  66. Johnson KA, Gregas M, Becker JA, Kinnecom C, Salat DH. 66.  et al. 2007. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann. Neurol. 62:229–34 [Google Scholar]
  67. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV. 67.  et al. 2012. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 488:96–99 [Google Scholar]
  68. Jucker M, Walker LC. 68.  2013. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51 [Google Scholar]
  69. Jucker M, Walker LC. 69.  2015. Neurodegeneration: amyloid-β pathology induced in humans. Nature 525:7568193–94 [Google Scholar]
  70. Kalimo H, Lalowski M, Bogdanovic N, Philipson O, Bird TD. 70.  et al. 2013. The Arctic AβPP mutation leads to Alzheimer's disease pathology with highly variable topographic deposition of differentially truncated Aβ. Acta Neuropathol. Commun. 1:60 [Google Scholar]
  71. Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA. 71.  et al. 2000. Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice. J. Neurosci. 20:3606–11 [Google Scholar]
  72. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL. 72.  et al. 1987. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–36 [Google Scholar]
  73. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G. 73.  et al. 2004. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann. Neurol. 55:306–19 [Google Scholar]
  74. Klunk WE, Lopresti BJ, Ikonomovic MD, Lefterov IM, Koldamova RP. 74.  et al. 2005. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-β in Alzheimer's disease brain but not in transgenic mouse brain. J. Neurosci. 25:10598–606 [Google Scholar]
  75. Knowles TP, Vendruscolo M, Dobson CM. 75.  2014. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15:384–96 [Google Scholar]
  76. Kovacs GG. 76.  2015. Invited review: Neuropathology of tauopathies: principles and practice. Neuropathol. Appl. Neurobiol. 41:3–23 [Google Scholar]
  77. Kovacs GG, Lutz MI, Ricken G, Ströbel T, Höftberger R. 77.  et al. 2016. Dura mater is a potential source of Aβ seeds. Acta Neuropathol. 131:6911–23 [Google Scholar]
  78. Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HW. 78.  et al. 2015. The epigenetics of aging and neurodegeneration. Prog. Neurobiol. 131:21–64 [Google Scholar]
  79. Lee VM.79.  2001. Biomedicine. Tauists and β-aptists united—well almost!. Science 293:1446–47 [Google Scholar]
  80. Levine H 3rd, Walker LC. 80.  2010. Molecular polymorphism of Aβ in Alzheimer's disease. Neurobiol. Aging 31:542–48 [Google Scholar]
  81. Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I. 81.  et al. 1990. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248:1124–26 [Google Scholar]
  82. Li J, Browning S, Mahal SP, Oelschlegel AM, Weissmann C. 82.  2010. Darwinian evolution of prions in cell culture. Science 327:869–72 [Google Scholar]
  83. Liu CC, Kanekiyo T, Xu H, Bu G. 83.  2013. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9:106–18 [Google Scholar]
  84. Liu P, Reed MN, Kotilinek LA, Grant MK, Forster CL. 84.  et al. 2015. Quaternary structure defines a large class of amyloid-β oligomers neutralized by sequestration. Cell Rep. 11:1760–71 [Google Scholar]
  85. Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R. 85.  2013. Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Cell 154:1257–68 [Google Scholar]
  86. Maat-Schieman M, Roos R, van Duinen S. 86.  2005. Hereditary cerebral hemorrhage with amyloidosis-Dutch type. Neuropathology 25:288–97 [Google Scholar]
  87. Magnusson K, Simon R, Sjolander D, Sigurdson CJ, Hammarstrom P, Nilsson KP. 87.  2014. Multimodal fluorescence microscopy of prion strain specific PrP deposits stained by thiophene-based amyloid ligands. Prion 8:319–29 [Google Scholar]
  88. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. 88.  1985. Amyloid plaque core protein in Alzheimer disease and Down syndrome. PNAS 82:4245–49 [Google Scholar]
  89. McKintosh E, Tabrizi SJ, Collinge J. 89.  2003. Prion diseases. J. Neurovirol. 9:183–93 [Google Scholar]
  90. Mead S, Reilly MM. 90.  2015. A new prion disease: relationship with central and peripheral amyloidoses. Nat. Rev. Neurol. 11:90–97 [Google Scholar]
  91. Meinhardt J, Sachse C, Hortschansky P, Grigorieff N, Fandrich M. 91.  2009. Aβ(1–40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils. J. Mol. Biol. 386:869–77 [Google Scholar]
  92. Melki R. 92.  2015. Role of different α-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases. J. Parkinson's Dis. 5:217–27 [Google Scholar]
  93. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C. 93.  et al. 2006. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313:1781–84 [Google Scholar]
  94. Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A. 94.  et al. 2008. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature 451:720–24 [Google Scholar]
  95. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H. 95.  et al. 2012. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71:362–81 [Google Scholar]
  96. Nilsson KP, Aslund A, Berg I, Nystrom S, Konradsson P. 96.  et al. 2007. Imaging distinct conformational states of amyloid-β fibrils in Alzheimer's disease using novel luminescent probes. ACS Chem. Biol. 2:553–60 [Google Scholar]
  97. Paravastu AK, Leapman RD, Yau WM, Tycko R. 97.  2008. Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils. PNAS 105:18349–54 [Google Scholar]
  98. Parchi P, Saverioni D. 98.  2012. Molecular pathology, classification, and diagnosis of sporadic human prion disease variants. Folia Neuropathol. 50:20–45 [Google Scholar]
  99. Pattison IH. 99.  1972. Scrapie: a personal view. J. Clin. Pathol. Suppl. R. Coll. Pathol. 6:110–14 [Google Scholar]
  100. Pattison IH, Millson GC. 100.  1961. Scrapie produced experimentally in goats with special reference to the clinical syndrome. J. Comp. Pathol. 71:101–9 [Google Scholar]
  101. Pedersen JS, Otzen DE. 101.  2008. Amyloid—a state in many guises: survival of the fittest fibril fold. Protein Sci. 17:2–10 [Google Scholar]
  102. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R. 102.  et al. 2015. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–44 [Google Scholar]
  103. Peretz D, Williamson RA, Legname G, Matsunaga Y, Vergara J. 103.  et al. 2002. A change in the conformation of prions accompanies the emergence of a new prion strain. Neuron 34:921–32 [Google Scholar]
  104. Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R. 104.  2005. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307:262–65 [Google Scholar]
  105. Phinney AL, Deller T, Stalder M, Calhoun ME, Frotscher M. 105.  et al. 1999. Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J. Neurosci. 19:8552–59 [Google Scholar]
  106. Piccini A, Russo C, Gliozzi A, Relini A, Vitali A. 106.  et al. 2005. β-Amyloid is different in normal aging and in Alzheimer disease. J. Biol. Chem. 34:186–92 [Google Scholar]
  107. Portelius E, Bogdanovic N, Gustavsson MK, Volkmann I, Brinkmalm G. 107.  et al. 2010. Mass spectrometric characterization of brain amyloid β isoform signatures in familial and sporadic Alzheimer's disease. Acta Neuropathol. 120:185–93 [Google Scholar]
  108. Portelius E, Lashley T, Westerlund A, Persson R, Fox NC. 108.  et al. 2015. Brain amyloid-β fragment signatures in pathological ageing and Alzheimer's disease by hybrid immunoprecipitation mass spectrometry. Neurodegener. Dis. 15:50–57 [Google Scholar]
  109. Potter H, Wisniewski T. 109.  2012. Apolipoprotein E: essential catalyst of the Alzheimer amyloid cascade. Int. J. Alzheimers Dis. 2012:489428 [Google Scholar]
  110. Prusiner SB. 110.  1998. Prions. PNAS 95:13363–83 [Google Scholar]
  111. Prusiner SB. 111.  2013. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet. 47:601–23 [Google Scholar]
  112. Puchtler H, Sweat F. 112.  1966. A review of early concepts of amyloid in context with contemporary chemical literature from 1839 to 1859. J. Histochem. Cytochem. 14:123–34 [Google Scholar]
  113. Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D. 113.  et al. 2006. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7:940–46 [Google Scholar]
  114. Reitz C, Brayne C, Mayeux R. 114.  2011. Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 7:137–52 [Google Scholar]
  115. Requena JR, Wille H. 115.  2014. The structure of the infectious prion protein: experimental data and molecular models. Prion 8:60–66 [Google Scholar]
  116. Resnick SM, Bilgel M, Moghekar A, An Y, Cai Q. 116.  et al. 2015. Changes in Aβ biomarkers and associations with APOE genotype in 2 longitudinal cohorts. Neurobiol. Aging 36:2333–39 [Google Scholar]
  117. Revesz T, Ghiso J, Lashley T, Plant G, Rostagno A. 117.  et al. 2003. Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J. Neuropathol. Exp. Neurol. 62:885–98 [Google Scholar]
  118. Roberts HL, Brown DR. 118.  2015. Seeking a mechanism for the toxicity of oligomeric α-synuclein. Biomolecules 5:282–305 [Google Scholar]
  119. Robinson JL, Geser F, Stieber A, Umoh M, Kwong LK. 119.  et al. 2013. TDP-43 skeins show properties of amyloid in a subset of ALS cases. Acta Neuropathol. 125:121–31 [Google Scholar]
  120. Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE. 120.  et al. 2015. Structure of the toxic core of α-synuclein from invisible crystals. Nature 525:486–90 [Google Scholar]
  121. Rosen RF, Ciliax BJ, Wingo TS, Gearing M, Dooyema J. 121.  et al. 2010. Deficient high-affinity binding of Pittsburgh compound B in a case of Alzheimer's disease. Acta Neuropathol. 119:221–33 [Google Scholar]
  122. Rosen RF, Tomidokoro Y, Farberg AS, Dooyema J, Ciliax B. 122.  et al. 2016. Comparative pathobiology of β-amyloid and the unique susceptibility of humans to Alzheimer's disease. Neurobiol. Aging 44:185–96 [Google Scholar]
  123. Rosen RF, Walker LC, Levine H 3rd. 123.  2011. PIB binding in aged primate brain: enrichment of high-affinity sites in humans with Alzheimer's disease. Neurobiol. Aging 32:223–34 [Google Scholar]
  124. Safar J, Wille H, Itri V, Groth D, Serban H. 124.  et al. 1998. Eight prion strains have PrPSc molecules with different conformations. Nat. Med. 4:1157–65 [Google Scholar]
  125. Safar JG, Xiao X, Kabir ME, Chen S, Kim C. 125.  et al. 2015. Structural determinants of phenotypic diversity and replication rate of human prions. PLOS Pathog. 11:e1004832 [Google Scholar]
  126. Sanders DW, Kaufman SK, Holmes BB, Diamond MI. 126.  2016. Prions and protein assemblies that convey biological information in health and disease. Neuron 89:433–48 [Google Scholar]
  127. Selkoe DJ. 127.  1999. Biology of β-amyloid precursor protein and the mechanism of Alzheimer disease. Alzheimer Disease RD Terry, R Katzman, KL Bick, SS Sisodia 293–310 Philadelphia: Lippincott, Williams, and Wilkins [Google Scholar]
  128. Selkoe DJ. 128.  2011. Resolving controversies on the path to Alzheimer's therapeutics. Nat. Med. 17:1060–65 [Google Scholar]
  129. Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G. 129.  et al. 2014. Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid 21:221–24 [Google Scholar]
  130. Sipe JD, Cohen AS. 130.  2000. Review: history of the amyloid fibril. J. Struct. Biol. 130:88–98 [Google Scholar]
  131. Smethurst P, Sidle KC, Hardy J. 131.  2015. Review: Prion-like mechanisms of transactive response DNA binding protein of 43 kDa (TDP-43) in amyotrophic lateral sclerosis (ALS). Neuropathol. Appl. Neurobiol. 41:578–97 [Google Scholar]
  132. Spillantini MG, Goedert M. 132.  2013. Tau pathology and neurodegeneration. Lancet Neurol 12:609–22 [Google Scholar]
  133. Spirig T, Ovchinnikova O, Vagt T, Glockshuber R. 133.  2014. Direct evidence for self-propagation of different amyloid-β fibril conformations. Neurodegener. Dis. 14:151–59 [Google Scholar]
  134. Stohr J, Condello C, Watts JC, Bloch L, Oehler A. 134.  et al. 2014. Distinct synthetic Aβ prion strains producing different amyloid deposits in bigenic mice. PNAS 111:10329–34 [Google Scholar]
  135. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C. 135.  et al. 1997. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. PNAS 94:13287–92 [Google Scholar]
  136. Surmacz-Chwedoruk W, Nieznanska H, Wojcik S, Dzwolak W. 136.  2012. Cross-seeding of fibrils from two types of insulin induces new amyloid strains. Biochemistry 51:9460–69 [Google Scholar]
  137. Tanaka M, Collins SR, Toyama BH, Weissman JS. 137.  2006. The physical basis of how prion conformations determine strain phenotypes. Nature 442:585–89 [Google Scholar]
  138. Taniguchi-Watanabe S, Arai T, Kametani F, Nonaka T, Masuda-Suzukake M. 138.  et al. 2015. Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol. 131:267–80 [Google Scholar]
  139. Tanzi RE. 139.  2012. The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2:a006296 [Google Scholar]
  140. Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P. 140.  et al. 1987. Amyloid β protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235:880–84 [Google Scholar]
  141. Tycko R. 141.  2014. Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci. 23:1528–39 [Google Scholar]
  142. Tycko R. 142.  2015. Amyloid polymorphism: structural basis and neurobiological relevance. Neuron 86:632–45 [Google Scholar]
  143. Van Broeckhoven C, Haan J, Bakker E, Hardy JA, Van Hul W. 143.  et al. 1990. Amyloid β protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 248:1120–22 [Google Scholar]
  144. Vasconcelos B, Stancu IC, Buist A, Bird M, Wang P. 144.  et al. 2016. Heterotypic seeding of Tau fibrillization by pre-aggregated Aβ provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathol. 131:549–69 [Google Scholar]
  145. Walker L, Levine H, Jucker M. 145.  2006. Koch's postulates and infectious proteins. Acta Neuropathol. 112:1–4 [Google Scholar]
  146. Walker LC, Jucker M. 146.  2015. Neurodegenerative diseases: expanding the prion concept. Annu. Rev. Neurosci. 38:87–103 [Google Scholar]
  147. Walker LC, Pahnke J, Madauss M, Vogelgesang S, Pahnke A. 147.  et al. 2000. Apolipoprotein E4 promotes the early deposition of Aβ42 and then Aβ40 in the elderly. Acta Neuropathol. 100:36–42 [Google Scholar]
  148. Warzok RW, Kessler C, Apel G, Schwarz A, Egensperger R. 148.  et al. 1998. Apolipoprotein E4 promotes incipient Alzheimer pathology in the elderly. Alzheimer Dis. Assoc. Disord. 12:33–39 [Google Scholar]
  149. Watts JC, Condello C, Stohr J, Oehler A, Lee J. 149.  et al. 2014. Serial propagation of distinct strains of Aβ prions from Alzheimer's disease patients. PNAS 111:10323–28 [Google Scholar]
  150. Weissmann C. 150.  2004. The state of the prion. Nat. Rev. Microbiol. 2:861–71 [Google Scholar]
  151. Weissmann C. 151.  2012. Mutation and selection of prions. PLOS Pathog. 8:e1002582 [Google Scholar]
  152. Westermark GT, Fandrich M, Westermark P. 152.  2015. AA amyloidosis: pathogenesis and targeted therapy. Annu. Rev. Pathol. 10:321–44 [Google Scholar]
  153. Whitfield JT, Pako WH, Collinge J, Alpers MP. 153.  2008. Mortuary rites of the South Fore and kuru. Philos. Trans. R. Soc. Lond. Ser. B 363:3721–24 [Google Scholar]
  154. Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K. 154.  et al. 1996. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347:921–25 [Google Scholar]
  155. Wingo TS, Lah JJ, Levey AI, Cutler DJ. 155.  2012. Autosomal recessive causes likely in early-onset Alzheimer disease. Arch Neurol. 69:159–64 [Google Scholar]
  156. Ye L, Fritschi SK, Schelle J, Obermuller U, Degenhardt K. 156.  et al. 2015. Persistence of Aβ seeds in APP null mouse brain. Nat. Neurosci. 18:1559–61 [Google Scholar]
  157. Ye L, Hamaguchi T, Fritschi SK, Eisele YS, Obermuller U. 157.  et al. 2015. Progression of seed-induced Aβ deposition within the limbic connectome. Brain Pathol. 25:743–52 [Google Scholar]
  158. Yu JT, Tan L, Hardy J. 158.  2014. Apolipoprotein E in Alzheimer's disease: an update. Annu. Rev. Neurosci. 37:79–100 [Google Scholar]
/content/journals/10.1146/annurev-genet-120215-034943
Loading
/content/journals/10.1146/annurev-genet-120215-034943
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error