1932

Abstract

Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell and as a result of intermolecular base pairing and interactions with RNA-binding proteins. Remarkable technical advances now allow us to probe RNA secondary structure at single-nucleotide resolution and genome-wide, both in vitro and in vivo. These data sets provide new glimpses into the RNA universe. Analyses of RNA structuromes in HIV, yeast, , and mammalian cells and tissues have revealed regulatory effects of RNA structure on messenger RNA (mRNA) polyadenylation, splicing, translation, and turnover. Application of new methods for genome-wide identification of mRNA modifications, particularly methylation and pseudouridylation, has shown that the RNA “epitranscriptome” both influences and is influenced by RNA structure. In this review, we describe newly developed genome-wide RNA structure-probing methods and synthesize the information emerging from their application.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120215-035034
2016-11-23
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genet/50/1/annurev-genet-120215-035034.html?itemId=/content/journals/10.1146/annurev-genet-120215-035034&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH. 1.  et al. 2010. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38:5884–92 [Google Scholar]
  2. Archer EJ, Simpson MA, Watts NJ, O'Kane R, Wang B. 2.  et al. 2013. Long-range architecture in a viral RNA genome. Biochemistry 52:3182–90 [Google Scholar]
  3. Aw JGA, Shen Y, Wilm A, Sun M, Lim XN. 3.  et al. 2016. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62:603–17 [Google Scholar]
  4. Bangerte BW, Chan SI. 4.  1969. Proton magnetic resonance studies of ribose dinucleoside monophosphates in aqueous solution. 2. Nature of base-stacking interaction in adenylyl-(3′ → 5′)-cytidine and cytidylyl-(3′ → 5′)-adenosine. J. Am. Chem. Soc. 91:3910–21 [Google Scholar]
  5. Bentele K, Saffert P, Rauscher R, Ignatova Z, Bluthgen N. 5.  2013. Efficient translation initiation dictates codon usage at gene start. Mol. Syst. Biol. 9:675 [Google Scholar]
  6. Bernat V, Disney MD. 6.  2015. RNA structures as mediators of neurological diseases and as drug targets. Neuron 87:28–46 [Google Scholar]
  7. Birkedal U, Christensen-Dalsgaard M, Krogh N, Sabarinathan R, Gorodkin J, Nielsen H. 7.  2015. Profiling of ribose methylations in RNA by high-throughput sequencing. Angew. Chem. Int. Ed. 54:451–55 [Google Scholar]
  8. Blyn LB, Risen LM, Griffey RH, Draper DE. 8.  2000. The RNA-binding domain of ribosomal protein L11 recognizes an rRNA tertiary structure stabilized by both thiostrepton and magnesium ion. Nucleic Acids Res. 28:1778–84 [Google Scholar]
  9. Breaker RR. 9.  2011. Prospects for riboswitch discovery and analysis. Mol. Cell 43:867–79 [Google Scholar]
  10. Buratti E, Baralle FE. 10.  2004. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol. Cell. Biol. 24:10505–14 [Google Scholar]
  11. Busch A, Hertel KJ. 11.  2012. Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip. Rev. RNA 3:1–12 [Google Scholar]
  12. Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA. 12.  et al. 2011. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res. 39:D195–201 [Google Scholar]
  13. Cantor CR, Jaskunas SR, Tinoco I. 13.  1966. Optical properties of ribonucleic acids predicted from oligomers. J. Mol. Biol. 20:39–62 [Google Scholar]
  14. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. 14.  2014. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–46 [Google Scholar]
  15. Chadalavada DM, Cerrone-Szakal AL, Bevilacqua PC. 15.  2007. Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA 13:2189–201 [Google Scholar]
  16. Conn GL, Draper DE, Lattman EE, Gittis AG. 16.  1999. Crystal structure of a conserved ribosomal protein-RNA complex. Science 284:1171–74 [Google Scholar]
  17. Cordero P, Kladwang W, VanLang CC, Das R. 17.  2012. Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. Biochemistry 51:7037–39 [Google Scholar]
  18. Cruz JA, Westhof E. 18.  2009. The dynamic landscapes of RNA architecture. Cell 136:604–9 [Google Scholar]
  19. Del Campo C, Bartholomaus A, Fedyunin I, Ignatova Z. 19.  2015. Secondary structure across the bacterial transcriptome reveals versatile roles in mRNA regulation and function. PLOS Genet. 11:e1005613 [Google Scholar]
  20. Dimock K, Stoltzfus CM. 20.  1977. Sequence specificity of internal methylation in B77 avian sarcoma virus RNA subunits. Biochemistry 16:471–78 [Google Scholar]
  21. Ding Y, Kwok CK, Tang Y, Bevilacqua PC, Assmann SM. 21.  2015. Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Nat. Protoc. 10:1050–66 [Google Scholar]
  22. Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM. 22.  2014. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505:696–700 [Google Scholar]
  23. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L. 23.  et al. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–6 [Google Scholar]
  24. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N. 24.  et al. 2016. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–46 [Google Scholar]
  25. Dvir S, Velten L, Sharon E, Zeevi D, Carey LB. 25.  et al. 2013. Deciphering the rules by which 5′-UTR sequences affect protein expression in yeast. PNAS 110:E2792–801 [Google Scholar]
  26. Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B. 26.  1987. Probing the structure of RNAs in solution. Nucleic Acids Res. 15:9109–28 [Google Scholar]
  27. Elkon R, Ugalde AP, Agami R. 27.  2013. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet. 14:496–506 [Google Scholar]
  28. Flynn RA, Zhang QC, Spitale RC, Lee B, Mumbach MR, Chang HY. 28.  2016. Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat. Protoc. 11:273–90 [Google Scholar]
  29. Fu XD, Ares M Jr. 29.  2014. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15:689–701 [Google Scholar]
  30. Glisovic T, Bachorik JL, Yong J, Dreyfuss G. 30.  2008. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582:1977–86 [Google Scholar]
  31. Gorochowski TE, Ignatova Z, Bovenberg RA, Roubos JA. 31.  2015. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate. Nucleic Acids Res. 43:3022–32 [Google Scholar]
  32. Gosai SJ, Foley SW, Wang D, Silverman IM, Selamoglu N. 32.  et al. 2015. Global analysis of the RNA–protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus. Mol. Cell 57:376–88 [Google Scholar]
  33. Graveley BR, Fleming ES, Gilmartin GM. 33.  1996. RNA structure is a critical determinant of poly(A) site recognition by cleavage and polyadenylation specificity factor. Mol. Cell. Biol. 16:4942–51 [Google Scholar]
  34. Grosjean H. 34.  2005. Modification and editing of RNA: historical overview and important facts to remember. Topics Curr. Genet. 12:1–22 [Google Scholar]
  35. Halvorsen M, Martin JS, Broadaway S, Laederach A. 35.  2010. Disease-associated mutations that alter the RNA structural ensemble. PLOS Genet. 6:e1001074 [Google Scholar]
  36. Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M. 36.  et al. 1965. Structure of a ribonucleic acid. Science 147:1462–65 [Google Scholar]
  37. Hou J, Wang X, McShane E, Zauber H, Sun W. 37.  et al. 2015. Extensive allele-specific translational regulation in hybrid mice. Mol. Syst. Biol. 11:825 [Google Scholar]
  38. Hudson GA, Bloomingdale RJ, Znosko BM. 38.  2013. Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides. RNA 19:1474–82 [Google Scholar]
  39. Hunt AG. 39.  2011. RNA regulatory elements and polyadenylation in plants. Front. Plant Sci. 2:109 [Google Scholar]
  40. Incarnato D, Neri F, Anselmi F, Oliviero S. 40.  2014. Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol. 15:491 [Google Scholar]
  41. Jackson RJ, Hellen CU, Pestova TV. 41.  2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11:113–27 [Google Scholar]
  42. Jin YF, Yang Y, Zhang P. 42.  2011. New insights into RNA secondary structure in the alternative splicing of pre-mRNAs. RNA Biol. 8:450–57 [Google Scholar]
  43. Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC. 43.  et al. 2010. Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–7 [Google Scholar]
  44. Khoddami V, Cairns BR. 44.  2013. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol. 31:458–64 [Google Scholar]
  45. Khoddami V, Yerra A, Cairns BR. 45.  2015. Experimental approaches for target profiling of RNA cytosine methyltransferases. Methods Enzymol. 560:273–96 [Google Scholar]
  46. Kierzek E, Malgowska M, Lisowiec J, Turner DH, Gdaniec Z, Kierzek R. 46.  2014. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res. 42:3492–501 [Google Scholar]
  47. Kim SH, Quigley GJ, Suddath FL, McPherson A, Sneden D. 47.  et al. 1973. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science 179:285–88 [Google Scholar]
  48. Klasens BI, Das AT, Berkhout B. 48.  1998. Inhibition of polyadenylation by stable RNA secondary structure. Nucleic Acids Res. 26:1870–76 [Google Scholar]
  49. Knapp G. 49.  1989. Enzymatic approaches to probing of RNA secondary and tertiary structure. Method Enzymol. 180:192–212 [Google Scholar]
  50. Konig J, Zarnack K, Rot G, Curk T, Kayikci M. 50.  et al. 2010. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17:909–15 [Google Scholar]
  51. Kozak M. 51.  2005. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37 [Google Scholar]
  52. Krzyzosiak WJ, Sobczak K, Wojciechowska M, Fiszer A, Mykowska A, Kozlowski P. 52.  2012. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res. 40:11–26 [Google Scholar]
  53. Kudla G, Murray AW, Tollervey D, Plotkin JB. 53.  2009. Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–58 [Google Scholar]
  54. Kwok CK, Tang Y, Assmann SM, Bevilacqua PC. 54.  2015. The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem. Sci. 40:221–32 [Google Scholar]
  55. Leamy KA, Assmann SM, Mathews DH, Bevilacqua PB. 55.  2016. Bridging the gap between in vitro and in vivo RNA folding. Q. Rev. Biol. In press
  56. Li F, Zheng Q, Ryvkin P, Dragomir I, Desai Y. 56.  et al. 2012. Global analysis of RNA secondary structure in two metazoans. Cell Rep. 1:69–82 [Google Scholar]
  57. Li F, Zheng Q, Vandivier LE, Willmann MR, Chen Y, Gregory BD. 57.  2012. Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome. Plant Cell 24:4346–59 [Google Scholar]
  58. Li S, Breaker RR. 58.  2013. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing. Nucleic Acids Res 41:3022–31 [Google Scholar]
  59. Li X, Xiong X, Wang K, Wang L, Shu X. 59.  et al. 2016. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 12:311–16 [Google Scholar]
  60. Limbach PA, Crain PF, Mccloskey JA. 60.  1994. The modified nucleosides of RNA: summary. Nucleic Acids Res. 22:2183–96 [Google Scholar]
  61. Lin Y, May GE, Joel McManus C. 61.  2015. Mod-seq: a high-throughput method for probing RNA secondary structure. Methods Enzymol. 558:125–52 [Google Scholar]
  62. Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. 62.  2015. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12:767–72 [Google Scholar]
  63. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. 63.  2015. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518:560–64 [Google Scholar]
  64. Lockard RE, Kumar A. 64.  1981. Mapping tRNA structure in solution using double-strand-specific ribonuclease V1 from cobra venom. Nucleic Acids Res. 9:5125–40 [Google Scholar]
  65. London RE. 65.  1991. Methods for measurement of intracellular magnesium: NMR and fluorescence. Annu. Rev. Physiol. 53:241–58 [Google Scholar]
  66. Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C. 66.  et al. 2011. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6:26 [Google Scholar]
  67. Lovci MT, Ghanem D, Marr H, Arnold J, Gee S. 67.  et al. 2013. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20:1434–42 [Google Scholar]
  68. Lowman HB, Draper DE. 68.  1986. On the recognition of helical RNA by cobra venom V1 nuclease. J. Biol. Chem. 261:5396–403 [Google Scholar]
  69. Lu ZJ, Turner DH, Mathews DH. 69.  2006. A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation. Nucleic Acids Res. 34:4912–24 [Google Scholar]
  70. Lu Z, Zhang QC, Lee B, Flynn RA, Smith MA. 70.  et al. 2016. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165:1267–79 [Google Scholar]
  71. Lusk JE, Williams RJ, Kennedy EP. 71.  1968. Magnesium and the growth of Escherichia coli. J. Biol. Chem. 243:2618–24 [Google Scholar]
  72. Mao YH, Liu HL, Liu YL, Tao SH. 72.  2014. Deciphering the rules by which dynamics of mRNA secondary structure affect translation efficiency in Saccharomyces cerevisiae. Nucleic Acids Res. 42:4813–22 [Google Scholar]
  73. Markham NR, Zuker M. 73.  2008. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453:3–31 [Google Scholar]
  74. Martin JS, Halvorsen M, Davis-Neulander L, Ritz J, Gopinath C. 74.  et al. 2012. Structural effects of linkage disequilibrium on the transcriptome. RNA 18:77–87 [Google Scholar]
  75. Mathews DH. 75.  2004. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10:1178–90 [Google Scholar]
  76. Mathews DH, Sabina J, Zuker M, Turner DH. 76.  1999. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288:911–40 [Google Scholar]
  77. Mayr C. 77.  2016. Evolution and biological roles of alternative 3′ UTRs. Trends Cell Biol. 26:227–37 [Google Scholar]
  78. McClung CR, Davis SJ. 78.  2010. Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Curr. Biol. 20:R1086–92 [Google Scholar]
  79. McManus CJ, Graveley BR. 79.  2011. RNA structure and the mechanisms of alternative splicing. Curr. Opin. Genet. Dev. 21:373–79 [Google Scholar]
  80. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA. 80.  et al. 2015. 5′ UTR m6A promotes cap-independent translation. Cell 163:999–1010 [Google Scholar]
  81. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 81.  2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–46 [Google Scholar]
  82. Nallagatla SR, Bevilacqua PC. 82.  2008. Nucleoside modifications modulate activation of the protein kinase PKR in an RNA structure-specific manner. RNA 14:1201–13 [Google Scholar]
  83. Nilsen TW, Graveley BR. 83.  2010. Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–63 [Google Scholar]
  84. Ouyang ZQ, Snyder MP, Chang HY. 84.  2013. SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data. Genome Res. 23:377–87 [Google Scholar]
  85. Pelletier J, Sonenberg N. 85.  1987. The involvement of mRNA secondary structure in protein synthesis. Biochem. Cell Biol. 65:576–81 [Google Scholar]
  86. Pop C, Rouskin S, Ingolia NT, Han L, Phizicky EM. 86.  et al. 2014. Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol. Syst. Biol. 10:770 [Google Scholar]
  87. Reuter JS, Mathews DH. 87.  2010. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinform. 11:129 [Google Scholar]
  88. Rich A, Davies DR. 88.  1956. A new two-stranded helical structure: polyadenylic acid and polyuridylic acid. J. Am. Chem. Soc. 78:3548–49 [Google Scholar]
  89. Richter JD, Coller J. 89.  2015. Pausing on polyribosomes: Make way for elongation in translational control. Cell 163:292–300 [Google Scholar]
  90. Roost C, Lynch SR, Batista PJ, Qu K, Chang HY, Kool ET. 90.  2015. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137:2107–15 [Google Scholar]
  91. Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS. 91.  2014. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–5 [Google Scholar]
  92. Rozenski J, Crain PF, McCloskey JA. 92.  1999. The RNA modification database: 1999 update. Nucleic Acids Res. 27:196–97 [Google Scholar]
  93. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH. 93.  et al. 2014. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–62 [Google Scholar]
  94. Seetin MG, Mathews DH. 94.  2012. RNA structure prediction: an overview of methods. Methods Mol. Biol. 905:99–122 [Google Scholar]
  95. Shabalina SA, Ogurtsov AY, Spiridonov NA. 95.  2006. A periodic pattern of mRNA secondary structure created by the genetic code. Nucleic Acids Res. 34:2428–37 [Google Scholar]
  96. Sharma E, Sterne-Weiler T, O'Hanlon D, Blencowe BJ. 96.  2016. Global mapping of human RNA-RNA interactions. Mol. Cell 62:618–26 [Google Scholar]
  97. Shen YJ, Venu RC, Nobuta K, Wu XH, Notibala V. 97.  et al. 2011. Transcriptome dynamics through alternative polyadenylation in developmental and environmental responses in plants revealed by deep sequencing. Genome Res. 21:1478–86 [Google Scholar]
  98. Siegfried NA, Busan S, Rice GM, Nelson JAE, Weeks KM. 98.  2014. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11:959–65 [Google Scholar]
  99. Silverman IM, Gregory BD. 99.  2015. Transcriptome-wide ribonuclease-mediated protein footprinting to identify RNA–protein interaction sites. Methods 72:76–85 [Google Scholar]
  100. Silverman IM, Li F, Alexander A, Goff L, Trapnell C. 100.  et al. 2014. RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome. Genome Biol. 15:R3 [Google Scholar]
  101. Sloma MF, Mathews DH. 101.  2015. Improving RNA secondary structure prediction with structure mapping data. Methods Enzymol. 553:91–114 [Google Scholar]
  102. Smola MJ, Calabrese JM, Weeks KM. 102.  2015. Detection of RNA–protein interactions in living cells with SHAPE. Biochemistry 54:6867–75 [Google Scholar]
  103. Smola MJ, Rice GM, Busan S, Siegfried NA, Weeks KM. 103.  2015. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10:1643–69 [Google Scholar]
  104. Solem AC, Halvorsen M, Ramos SB, Laederach A. 104.  2015. The potential of the riboSNitch in personalized medicine. Wiley Interdiscip. Rev. RNA 6:517–32 [Google Scholar]
  105. Spitale RC, Crisalli P, Flynn RA, Torre EA, Kool ET, Chang HY. 105.  2013. RNA SHAPE analysis in living cells. Nat. Chem. Biol. 9:18–20 [Google Scholar]
  106. Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B. 106.  et al. 2015. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:486–90 [Google Scholar]
  107. Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT. 107.  et al. 2012. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40:5023–33 [Google Scholar]
  108. Talkish J, May G, Lin Y, Woolford JL Jr., McManus CJ. 108.  2014. Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20:713–20 [Google Scholar]
  109. Tang Y, Assmann SM, Bevilacqua PC. 109.  2016. Protein structure is related to RNA structural reactivity in vivo. J. Mol. Biol. 428:758–66 [Google Scholar]
  110. Tang Y, Bouvier E, Kwok CK, Ding Y, Nekrutenko A. 110.  et al. 2015. StructureFold: genome-wide RNA secondary structure mapping and reconstruction in vivo. Bioinformatics 31:2668–75 [Google Scholar]
  111. Truong DM, Sidote DJ, Russell R, Lambowitz AM. 111.  2013. Enhanced group II intron retrohoming in magnesium-deficient Escherichia coli via selection of mutations in the ribozyme core. PNAS 110:E3800–9 [Google Scholar]
  112. Tserovski L, Marchand V, Hauenschild R, Blanloeil-Oillo F, Helm M, Motorin Y. 112.  2016. High-throughput sequencing for 1-methyladenosine (m1A) mapping in RNA. Methods In press
  113. Uhlenbeck OC. 113.  1972. Complementary oligonucleotide binding to transfer RNA. J. Mol. Biol. 65:25–41 [Google Scholar]
  114. Underwood JG, Uzilov AV, Katzman S, Onodera CS, Mainzer JE. 114.  et al. 2010. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods 7:995–1001 [Google Scholar]
  115. Vandivier L, Li F, Zheng Q, Willmann M, Chen Y, Gregory B. 115.  2013. Arabidopsis mRNA secondary structure correlates with protein function and domains. Plant Signal. Behav. 8:e24301 [Google Scholar]
  116. Vandivier LE, Li F, Gregory BD. 116.  2015. High-throughput nuclease-mediated probing of RNA secondary structure in plant transcriptomes. Methods Mol. Biol. 1284:41–70 [Google Scholar]
  117. Wachter A, Tunc-Ozdemir M, Grove BC, Green PJ, Shintani DK, Breaker RR. 117.  2007. Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell 19:3437–50 [Google Scholar]
  118. Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY. 118.  2011. Understanding the transcriptome through RNA structure. Nat. Rev. Genet. 12:641–55 [Google Scholar]
  119. Wan Y, Qu K, Ouyang ZQ, Kertesz M, Li J. 119.  et al. 2012. Genome-wide measurement of RNA folding energies. Mol. Cell 48:169–81 [Google Scholar]
  120. Wan Y, Qu K, Zhang QC, Flynn RA, Manor O. 120.  et al. 2014. Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505:706–9 [Google Scholar]
  121. Wang X, Lu Z, Gomez A, Hon GC, Yue Y. 121.  et al. 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–20 [Google Scholar]
  122. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D. 122.  et al. 2015. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–99 [Google Scholar]
  123. Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. 123.  2014. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16:191–98 [Google Scholar]
  124. Warf MB, Berglund JA. 124.  2010. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem. Sci. 35:169–78 [Google Scholar]
  125. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr.. 125.  et al. 2009. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460:711–16 [Google Scholar]
  126. Wen JD, Lancaster L, Hodges C, Zeri AC, Yoshimura SH. 126.  et al. 2008. Following translation by single ribosomes one codon at a time. Nature 452:598–603 [Google Scholar]
  127. Wickiser JK, Winkler WC, Breaker RR, Crothers DM. 127.  2005. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol. Cell 18:49–60 [Google Scholar]
  128. Xia TB, SantaLucia J, Burkard ME, Kierzek R, Schroeder SJ. 128.  et al. 1998. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37:14719–35 [Google Scholar]
  129. Zaug AJ, Cech TR. 129.  1995. Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA. RNA 1:363–74 [Google Scholar]
  130. Zheng Q, Ryvkin P, Li F, Dragomir I, Valladares O. 130.  et al. 2010. Genome-wide double-stranded RNA sequencing reveals the functional significance of base-paired RNAs in Arabidopsis. PLOS Genet. 6:e1001141 [Google Scholar]
  131. Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. 131.  2015. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526:591–94 [Google Scholar]
/content/journals/10.1146/annurev-genet-120215-035034
Loading
/content/journals/10.1146/annurev-genet-120215-035034
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error