1932

Abstract

Autoinflammatory diseases are inborn disorders of the innate immune system characterized by episodes of systemic inflammation that are mediated largely by myeloid cells. The field of autoinflammatory diseases has been established since 1999, following the identification of the first genes underlying periodic fever syndromes. This review focuses on developments that have transformed the field in the last two years. We discuss three newly described monogenic autoinflammatory diseases [deficiency of adenosine deaminase 2 (DADA2), a subtype of macrophage activation syndrome (MAS), and stimulator of interferon genes (STING)–associated vasculopathy with onset in infancy (SAVI)], discuss the possibilities of somatic mosaicism and digenic inheritance, and give an update on new concepts in pathways involved in familial Mediterranean fever (FMF). Finally, the new monogenic autoinflammatory disease haploinsufficiency of A20 (HA20) underscores the placement of monogenic diseases in the firmament of common autoinflammatory phenotypes. The advances in the last two years have shed light on the pathophysiology of several autoinflammatory diseases and have elucidated new pathways that play a role in innate immunity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-090413-025334
2016-08-31
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genom/17/1/annurev-genom-090413-025334.html?itemId=/content/journals/10.1146/annurev-genom-090413-025334&mimeType=html&fmt=ahah

Literature Cited

  1. Abe T, Barber GN. 1.  2014. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol. 88:5328–41 [Google Scholar]
  2. Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD. 2.  et al. 2010. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am. J. Hum. Genet. 87:866–72 [Google Scholar]
  3. Ahn J, Ruiz P, Barber GN. 3.  2014. Intrinsic self-DNA triggers inflammatory disease dependent on STING. J. Immunol. 193:4634–42 [Google Scholar]
  4. Aksentijevich I. 4.  2015. Update on genetics and pathogenesis of autoinflammatory diseases: the last 2 years. Semin. Immunopathol. 37:395–401 [Google Scholar]
  5. Aksentijevich I, Kastner DL. 5.  2011. Genetics of monogenic autoinflammatory diseases: past successes, future challenges. Nat. Rev. Rheumatol. 7:469–78 [Google Scholar]
  6. Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT. 6.  et al. 2002. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 46:3340–48 [Google Scholar]
  7. Aldea A, Calafell F, Aróstegui JI, Lao O, Rius J. 7.  et al. 2004. The west side story: MEFV haplotype in Spanish FMF patients and controls, and evidence of high LD and a recombination “hot-spot” at the MEFV locus. Hum. Mutat. 23:399 [Google Scholar]
  8. Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T. 8.  et al. 2011. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. PNAS 108:14914–19 [Google Scholar]
  9. Belkhir R, Moulonguet-Doleris L, Hachulla E, Prinseau J, Baglin A, Hanslik T. 9.  2007. Treatment of familial Mediterranean fever with anakinra. Ann. Intern. Med. 146:825–26 [Google Scholar]
  10. Belot A, Wassmer E, Twilt M, Lega JC, Zeef LA. 10.  et al. 2014. Mutations in CECR1 associated with a neutrophil signature in peripheral blood. Pediatr. Rheumatol. 12:44 [Google Scholar]
  11. Biesecker LG, Spinner NB. 11.  2013. A genomic view of mosaicism and human disease. Nat. Rev. Genet. 14:307–20 [Google Scholar]
  12. Booth DR, Gillmore JD, Lachmann HJ, Booth SE, Bybee A. 12.  et al. 2000. The genetic basis of autosomal dominant familial Mediterranean fever. QJM 93:217–21 [Google Scholar]
  13. Booty MG, Chae JJ, Masters SL, Remmers EF, Barham B. 13.  et al. 2009. Familial Mediterranean fever with a single MEFV mutation: Where is the second hit?. Arthritis Rheum. 60:1851–61 [Google Scholar]
  14. Bras J, Guerreiro R, Santo GC. 14.  2014. Mutant ADA2 in vasculopathies. N. Engl. J. Med. 371:478–80 [Google Scholar]
  15. Brehm A, Kruger E. 15.  2015. Dysfunction in protein clearance by the proteasome: impact on autoinflammatory diseases. Semin. Immunopathol. 37:323–33 [Google Scholar]
  16. Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E. 16.  et al. 2015. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Investig. 125:4196–211The first report of digenic inheritance in autoinflammatory disease, which provided insight into proteasome dysfunction and IFN production. [Google Scholar]
  17. Broz P, von Moltke J, Jones JW, Vance RE, Monack DM. 17.  2010. Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8:471–83 [Google Scholar]
  18. Caglar MK, Altugan FS, Ozyurt H, Atasoy HI. 18.  2008. Screening of family members of children with familial Mediterranean fever: true-autosomal and pseudo-autosomal inheritance. Acta Reumatol. Port. 33:415–20 [Google Scholar]
  19. Cai X, Chiu YH, Chen ZJ. 19.  2014. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54:289–96 [Google Scholar]
  20. Calligaris L, Marchetti F, Tommasini A, Ventura A. 20.  2008. The efficacy of anakinra in an adolescent with colchicine-resistant familial Mediterranean fever. Eur. J. Pediatr. 167:695–96 [Google Scholar]
  21. Canna SW, Behrens EM. 21.  2012. Not all hemophagocytes are created equally: appreciating the heterogeneity of the hemophagocytic syndromes. Curr. Opin. Rheumatol. 24:113–18 [Google Scholar]
  22. Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B. 22.  et al. 2014. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46:1140–46Along with Ref. 104, described NLRC4 mutations in MAS and demonstrated that IL-18 plays an important role in MAS pathogenesis. [Google Scholar]
  23. Cavalli G, Dinarello CA. 23.  2015. Treating rheumatological diseases and co-morbidities with interleukin-1 blocking therapies. Rheumatology 54:2134–44 [Google Scholar]
  24. Chae JJ, Cho YH, Lee GS, Cheng J, Liu PP. 24.  et al. 2011. Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity 34:755–68 [Google Scholar]
  25. Chae JJ, Kastner DL. 25.  2015. Pathogenesis. Familial Mediterranean Fever M Gattorno 13–30 Cham, Switz.: Springer [Google Scholar]
  26. Chae JJ, Wood G, Masters SL, Richard K, Park G. 26.  et al. 2006. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. PNAS 103:9982–87 [Google Scholar]
  27. Collins AC, Cai H, Li T, Franco LH, Li XD. 27.  et al. 2015. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17:820–28 [Google Scholar]
  28. Coornaert B, Carpentier I, Beyaert R. 28.  2009. A20: central gatekeeper in inflammation and immunity. J. Biol. Chem. 284:8217–21 [Google Scholar]
  29. de Jesus AA, Canna SW, Liu Y, Goldbach-Mansky R. 29.  2015. Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annu. Rev. Immunol. 33:823–74 [Google Scholar]
  30. de Koning HD, Schalkwijk J, van der Ven-Jongekrijg J, Stoffels M, van der Meer JW, Simon A. 30.  2013. Sustained efficacy of the monoclonal anti-interleukin-1 beta antibody canakinumab in a 9-month trial in Schnitzler's syndrome. Ann. Rheum. Dis. 72:1634–38 [Google Scholar]
  31. de Koning HD, van Gijn ME, Stoffels M, Jongekrijg J, Zeeuwen PL. 31.  et al. 2015. Myeloid lineage–restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. J. Allergy Clin. Immunol. 135:561–64Along with Ref. 146, provided a proof of concept that adult-onset autoinflammatory diseases are caused by mosaicism, explaining different phenotypes and ages of onset. [Google Scholar]
  32. del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A. 32.  et al. 2002. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N. Engl. J. Med. 346:243–49 [Google Scholar]
  33. Deng L, Liang H, Xu M, Yang X, Burnette B. 33.  et al. 2014. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41:843–52 [Google Scholar]
  34. Dinarello CA, Simon A, van der Meer JW. 34.  2012. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11:633–52 [Google Scholar]
  35. Dinarello CA, Wolff SM, Goldfinger SE, Dale DC, Alling DW. 35.  1974. Colchicine therapy for familial Mediterranean fever. A double-blind trial. N. Engl. J. Med. 291:934–37 [Google Scholar]
  36. Dolezal T, Dolezelova E, Zurovec M, Bryant PJ. 36.  2005. A role for adenosine deaminase in Drosophila larval development. PLOS Biol. 3:e201 [Google Scholar]
  37. Drenth JP, Cuisset L, Grateau G, Vasseur C, van de Velde-Visser SD. 37.  et al. 1999. Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. Nat. Genet. 22:178–81 [Google Scholar]
  38. Duong BH, Onizawa M, Oses-Prieto JA, Advincula R, Burlingame A. 38.  et al. 2015. A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity. Immunity 42:55–67 [Google Scholar]
  39. Feldmann J, Prieur AM, Quartier P, Berquin P, Certain S. 39.  et al. 2002. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am. J. Hum. Genet. 71:198–203 [Google Scholar]
  40. Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P. 40.  et al. 2012. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13:449–56 [Google Scholar]
  41. 41. French FMF Consort 1997. A candidate gene for familial Mediterranean fever. Nat. Genet. 17:25–31 [Google Scholar]
  42. Gao D, Wu J, Wu YT, Du F, Aroh C. 42.  et al. 2013. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:903–6 [Google Scholar]
  43. Garg N, Kasapcopur O, Foster J II, Barut K, Tekin A. 43.  et al. 2014. Novel adenosine deaminase 2 mutations in a child with a fatal vasculopathy. Eur. J. Pediatr. 173:827–30 [Google Scholar]
  44. Gavrilin MA, Abdelaziz DH, Mostafa M, Abdulrahman BA, Grandhi J. 44.  et al. 2012. Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. J. Immunol. 188:3469–77 [Google Scholar]
  45. Gavrilin MA, Mitra S, Seshadri S, Nateri J, Berhe F. 45.  et al. 2009. Pyrin critical to macrophage IL-1β response to Francisella challenge. J. Immunol. 182:7982–89 [Google Scholar]
  46. Goldbach-Mansky R, Dailey NJ, Canna SW, Gelabert A, Jones J. 46.  et al. 2006. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1β inhibition. N. Engl. J. Med. 355:581–92 [Google Scholar]
  47. Goldfinger SE. 47.  1972. Colchicine for familial Mediterranean fever. N. Engl. J. Med. 287:1302 [Google Scholar]
  48. Gonzalez Santiago TM, Zavialov A, Saarela J, Seppanen M, Reed AM. 48.  et al. 2015. Dermatologic features of ADA2 deficiency in cutaneous polyarteritis nodosa. JAMA Dermatol. 151:1230–34 [Google Scholar]
  49. Groettrup M, Kirk CJ, Basler M. 49.  2010. Proteasomes in immune cells: more than peptide producers?. Nat. Rev. Immunol. 10:73–78 [Google Scholar]
  50. Hashkes PJ, Spalding SJ, Giannini EH, Huang B, Johnson A. 50.  et al. 2012. Rilonacept for colchicine-resistant or -intolerant familial Mediterranean fever: a randomized trial. Ann. Intern. Med. 157:533–41 [Google Scholar]
  51. Henneman L, Schneiders MS, Turkenburg M, Waterham HR. 51.  2010. Compromized geranylgeranylation of RhoA and Rac1 in mevalonate kinase deficiency. J. Inherit. Metab. Dis. 33:625–32 [Google Scholar]
  52. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. 52.  2001. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet. 29:301–5 [Google Scholar]
  53. Holzinger D, Kessel C, Omenetti A, Gattorno M. 53.  2015. From bench to bedside and back again: translational research in autoinflammation. Nat. Rev. Rheumatol. 11:573–85 [Google Scholar]
  54. Horneff G, Rhouma A, Weber C, Lohse P. 54.  2013. Macrophage activation syndrome as the initial manifestation of tumour necrosis factor receptor 1-associated periodic syndrome (TRAPS). Clin. Exp. Rheumatol. 31:99–102 [Google Scholar]
  55. Houten SM, Kuis W, Duran M, de Koning TJ, van Royen-Kerkhof A. 55.  et al. 1999. Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nat. Genet. 22:175–77 [Google Scholar]
  56. Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ. 56.  et al. 2012. Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 148:727–38 [Google Scholar]
  57. Hymowitz SG, Wertz IE. 57.  2010. A20: from ubiquitin editing to tumour suppression. Nat. Rev. Cancer 10:332–41 [Google Scholar]
  58. Ichida H, Kawaguchi Y, Sugiura T, Takagi K, Katsumata Y. 58.  et al. 2014. Clinical manifestations of adult-onset Still's disease presenting with erosive arthritis: association with low levels of ferritin and interleukin-18. Arthritis Care Res. 66:642–46 [Google Scholar]
  59. Iijima R, Kunieda T, Yamaguchi S, Kamigaki H, Fujii-Taira I. 59.  et al. 2008. The extracellular adenosine deaminase growth factor, ADGF/CECR1, plays a role in Xenopus embryogenesis via the adenosine/P1 receptor. J. Biol. Chem. 283:2255–64 [Google Scholar]
  60. 60. Int. FMF Consort 1997. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797–807 [Google Scholar]
  61. Ishikawa H, Barber GN. 61.  2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–78 [Google Scholar]
  62. Izawa K, Hijikata A, Tanaka N, Kawai T, Saito MK. 62.  et al. 2012. Detection of base substitution-type somatic mosaicism of the NLRP3 gene with >99.9% statistical confidence by massively parallel sequencing. DNA Res. 19:143–52 [Google Scholar]
  63. Jeru I, Papin S, L'Hoste S, Duquesnoy P, Cazeneuve C. 63.  et al. 2005. Interaction of pyrin with 14.3.3 in an isoform-specific and phosphorylation-dependent manner regulates its translocation to the nucleus. Arthritis Rheum. 52:1848–57 [Google Scholar]
  64. Jiménez-Treviño S, González-Roca E, Ruiz-Ortiz E, Yagüe J, Ramos E, Aróstegui JI. 64.  2013. First report of vertical transmission of a somatic NLRP3 mutation in cryopyrin-associated periodic syndromes. Ann. Rheum. Dis. 72:1109–10 [Google Scholar]
  65. Jin L, Waterman PM, Jonscher KR, Short CM, Reisdorph NA, Cambier JC. 65.  2008. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol. Cell. Biol. 28:5014–26 [Google Scholar]
  66. Jones JD, Dangl JL. 66.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  67. Kajiwara K, Berson EL, Dryja TP. 67.  1994. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264:1604–8 [Google Scholar]
  68. Kastner DL, Zhou Q, Aksentijevich I. 68.  2014. Mutant ADA2 in vasculopathies. N. Engl. J. Med. 371:480–81 [Google Scholar]
  69. Katsanis N, Ansley SJ, Badano JL, Eichers ER, Lewis RA. 69.  et al. 2001. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 293:2256–59 [Google Scholar]
  70. Kitamura A, Maekawa Y, Uehara H, Izumi K, Kawachi I. 70.  et al. 2011. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J. Clin. Investig. 121:4150–60 [Google Scholar]
  71. Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K. 71.  2014. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J. Exp. Med. 211:2385–96 [Google Scholar]
  72. Klarquist J, Hennies CM, Lehn MA, Reboulet RA, Feau S, Janssen EM. 72.  2014. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J. Immunol. 193:6124–34 [Google Scholar]
  73. Kuijk LM, Beekman JM, Koster J, Waterham HR, Frenkel J, Coffer PJ. 73.  2008. HMG-CoA reductase inhibition induces IL-1β release through Rac1/PI3K/PKB-dependent caspase-1 activation. Blood 112:3563–73 [Google Scholar]
  74. Kuijk LM, Govers AM, Frenkel J, Hofhuis WJ. 74.  2007. Effective treatment of a colchicine-resistant familial Mediterranean fever patient with anakinra. Ann. Rheum. Dis. 66:1545–46 [Google Scholar]
  75. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. 75.  2013. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341:1390–94 [Google Scholar]
  76. Lipsker D. 76.  2010. The Schnitzler syndrome. Orphanet J. Rare Dis. 5:38 [Google Scholar]
  77. Liu S, Cai X, Wu J, Cong Q, Chen X. 77.  et al. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347aaa2630
  78. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE. 78.  et al. 2014. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371:507–18Described a new disorder characterized by constitutive STING-IFNβ pathway activation. [Google Scholar]
  79. Liu Y, Ramot Y, Torrelo A, Paller AS, Si N. 79.  et al. 2012. Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 64:895–907 [Google Scholar]
  80. Ma A, Malynn BA. 80.  2012. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 12:774–85 [Google Scholar]
  81. Malynn BA, Ma A. 81.  2009. A20 takes on tumors: tumor suppression by an ubiquitin-editing enzyme. J. Exp. Med. 206:977–80 [Google Scholar]
  82. Mandey SH, Kuijk LM, Frenkel J, Waterham HR. 82.  2006. A role for geranylgeranylation in interleukin-1β secretion. Arthritis Rheum. 54:3690–95 [Google Scholar]
  83. Mariathasan S, Monack DM. 83.  2007. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat. Rev. Immunol. 7:31–40 [Google Scholar]
  84. Martinon F, Burns K, Tschopp J. 84.  2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10:417–26 [Google Scholar]
  85. Masters SL, Simon A, Aksentijevich I, Kastner DL. 85.  2009. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27:621–68A classic review and classification of autoinflammatory diseases, addressing both clinical and pathway details. [Google Scholar]
  86. Masumoto J, Taniguchi S, Ayukawa K, Sarvotham H, Kishino T. 86.  et al. 1999. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J. Biol. Chem. 274:33835–38 [Google Scholar]
  87. Mazodier K, Marin V, Novick D, Farnarier C, Robitail S. 87.  et al. 2005. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome. Blood 106:3483–89 [Google Scholar]
  88. McDermott A, Jacks J, Kessler M, Emanuel PD, Gao L. 88.  2015. Proteasome-associated autoinflammatory syndromes: advances in pathogeneses, clinical presentations, diagnosis, and management. Int. J. Dermatol. 54:121–29 [Google Scholar]
  89. McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW. 89.  et al. 1999. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:133–44 [Google Scholar]
  90. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW. 90.  et al. 2006. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7:569–75 [Google Scholar]
  91. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M. 91.  et al. 2010. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11:1136–42 [Google Scholar]
  92. Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S. 92.  et al. 2001. CARD15 mutations in Blau syndrome. Nat. Genet. 29:19–20 [Google Scholar]
  93. Nakagawa K, González-Roca E, Souto A, Kawai T, Umebayashi H. 93.  et al. 2015. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes. Ann. Rheum. Dis. 74:603–10 [Google Scholar]
  94. Navon Elkan P, Pierce SB, Segel R, Walsh T, Barash J. 94.  et al. 2014. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N. Engl. J. Med. 370:921–31Along with Ref. 148, showed that CECR1 mutations lead to ADA2 deficiency, causing a spectrum of fevers, strokes, and vasculopathy. [Google Scholar]
  95. Novick D, Kim S, Kaplanski G, Dinarello CA. 95.  2013. Interleukin-18, more than a Th1 cytokine. Semin. Immunol. 25:439–48 [Google Scholar]
  96. Omenetti A, Carta S, Delfino L, Martini A, Gattorno M, Rubartelli A. 96.  2014. Increased NLRP3-dependent interleukin 1β secretion in patients with familial Mediterranean fever: correlation with MEFV genotype. Ann. Rheum. Dis. 73:462–69 [Google Scholar]
  97. Omoyinmi E, Melo Gomes S, Standing A, Rowczenio DM, Eleftheriou D. 97.  et al. 2014. Whole-exome sequencing revealing somatic NLRP3 mosaicism in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheumatol. 66:197–202 [Google Scholar]
  98. Pachlopnik Schmid J, Cote M, Menager MM, Burgess A, Nehme N. 98.  et al. 2010. Inherited defects in lymphocyte cytotoxic activity. Immunol. Rev. 235:10–23 [Google Scholar]
  99. Park YH, Wood G, Kastner DL, Chae JJ. 99.  2016. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. In press. doi: 10.1038/ni.3457
  100. Priori R, Colafrancesco S, Alessandri C, Minniti A, Perricone C. 100.  et al. 2014. Interleukin 18: a biomarker for differential diagnosis between adult-onset Still's disease and sepsis. J. Rheumatol. 41:1118–23 [Google Scholar]
  101. Ravelli A, Davi S, Minoia F, Martini A, Cron RQ. 101.  2015. Macrophage activation syndrome. Hematol. Oncol. Clin. N. Am. 29:927–41 [Google Scholar]
  102. Richards N, Schaner P, Diaz A, Stuckey J, Shelden E. 102.  et al. 2001. Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J. Biol. Chem. 276:39320–29 [Google Scholar]
  103. Roldan R, Ruiz AM, Miranda MD, Collantes E. 103.  2008. Anakinra: new therapeutic approach in children with familial Mediterranean fever resistant to colchicine. Joint Bone Spine 75:504–5 [Google Scholar]
  104. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E. 104.  et al. 2014. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46:1135–39Along with Ref. 22, described NLRC4 mutations in MAS and demonstrated that IL-18 plays an important role in MAS pathogenesis. [Google Scholar]
  105. Saito M, Fujisawa A, Nishikomori R, Kambe N, Nakata-Hizume M. 105.  et al. 2005. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 52:3579–85 [Google Scholar]
  106. Saito M, Nishikomori R, Kambe N, Fujisawa A, Tanizaki H. 106.  et al. 2008. Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood 111:2132–41 [Google Scholar]
  107. Schaffer AA. 107.  2013. Digenic inheritance in medical genetics. J. Med. Genet. 50:641–52 [Google Scholar]
  108. Schnitzler L, Schubert B, Verret JL, Simon L, Alquier P. 108.  1976. Cutaneous manifestations in disseminated intravascular coagulation syndrome. Ann. Dermatol. Syphiligr. 103:124–34 [Google Scholar]
  109. Segel R, King MC, Levy-Lahad E. 109.  2014. Mutant ADA2 in vasculopathies. N. Engl. J. Med. 371:481 [Google Scholar]
  110. Seifert U, Bialy LP, Ebstein F, Bech-Otschir D, Voigt A. 110.  et al. 2010. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142:613–24 [Google Scholar]
  111. Shimizu M, Yokoyama T, Yamada K, Kaneda H, Wada H. 111.  et al. 2010. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology 49:1645–53 [Google Scholar]
  112. Shoham NG, Centola M, Mansfield E, Hull KM, Wood G. 112.  et al. 2003. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. PNAS 100:13501–6 [Google Scholar]
  113. Simon A, Asli B, Braun-Falco M, de Koning H, Fermand JP. 113.  et al. 2013. Schnitzler's syndrome: diagnosis, treatment, and follow-up. Allergy 68:562–68 [Google Scholar]
  114. Standing A, Omoyinmi E, Brogan P. 114.  2013. Gene hunting in autoinflammation. Clin. Transl. Allergy 3:32 [Google Scholar]
  115. Stetson DB, Medzhitov R. 115.  2006. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93–103 [Google Scholar]
  116. Stoffels M, Simon A. 116.  2011. Hyper-IgD syndrome or mevalonate kinase deficiency. Curr. Opin. Rheumatol. 23:419–23 [Google Scholar]
  117. Stoffels M, Szperl A, Simon A, Netea MG, Plantinga TS. 117.  et al. 2014. MEFV mutations affecting pyrin amino acid 577 cause autosomal dominant autoinflammatory disease. Ann. Rheum. Dis. 73:455–61 [Google Scholar]
  118. Strowig T, Henao-Mejia J, Elinav E, Flavell R. 118.  2012. Inflammasomes in health and disease. Nature 481:278–86 [Google Scholar]
  119. Sun L, Wu J, Du F, Chen X, Chen ZJ. 119.  2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–91 [Google Scholar]
  120. Sun W, Li Y, Chen L, Chen H, You F. 120.  et al. 2009. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. PNAS 106:8653–58 [Google Scholar]
  121. Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA. 121.  2007. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204:3235–45 [Google Scholar]
  122. Takeuchi M, Kastner DL, Remmers EF. 122.  2015. The immunogenetics of Behçet's disease: a comprehensive review. J. Autoimmun. 64:137–48 [Google Scholar]
  123. Tanaka N, Izawa K, Saito MK, Sakuma M, Oshima K. 123.  et al. 2011. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an international multicenter collaborative study. Arthritis Rheum. 63:3625–32 [Google Scholar]
  124. Terrell CE, Jordan MB. 124.  2013. Perforin deficiency impairs a critical immunoregulatory loop involving murine CD8+ T cells and dendritic cells. Blood 121:5184–91 [Google Scholar]
  125. Thompson LF, Seegmiller JE. 125.  1980. Adenosine deaminase deficiency and severe combined immunodeficiency disease. Adv. Enzymol. Relat. Areas Mol. Biol. 51:167–210 [Google Scholar]
  126. Treon SP, Xu L, Yang G, Zhou Y, Liu X. 126.  et al. 2012. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N. Engl. J. Med. 367:826–33 [Google Scholar]
  127. van der Burgh R, Pervolaraki K, Turkenburg M, Waterham HR, Frenkel J, Boes M. 127.  2014. Unprenylated RhoA contributes to IL-1β hypersecretion in mevalonate kinase deficiency model through stimulation of Rac1 activity. J. Biol. Chem. 289:27757–65 [Google Scholar]
  128. Van Eyck L, Hershfield MS, Pombal D, Kelly SJ, Ganson NJ. 128.  et al. 2015. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J. Allergy Clin. Immunol. 135:283–87 [Google Scholar]
  129. Van Eyck L, Liston A, Wouters C. 129.  2014. Mutant ADA2 in vasculopathies. N. Engl. J. Med. 371:480 [Google Scholar]
  130. van Montfrans J, Zavialov A, Zhou Q. 130.  2014. Mutant ADA2 in vasculopathies. N. Engl. J. Med. 371:478 [Google Scholar]
  131. Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E. 131.  et al. 2014. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512:69–73 [Google Scholar]
  132. Vockley J. 132.  2011. Digenic inheritance. Encyclopedia of Life Sciences (eLS). Chichester, UK: Wiley & Sons doi: 10.1002/9780470015902.a0005560.pub2 [Google Scholar]
  133. Wada T, Kanegane H, Ohta K, Katoh F, Imamura T. 133.  et al. 2014. Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine 65:74–78 [Google Scholar]
  134. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L. 134.  et al. 2004. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430:694–99 [Google Scholar]
  135. Westendorp WF, Nederkoorn PJ, Aksentijevich I, Hak AE, Lichtenbelt KD, Braun KP. 135.  2015. Unexplained early-onset lacunar stroke and inflammatory skin lesions: Consider ADA2 deficiency. Neurology 84:2092–93 [Google Scholar]
  136. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ. 136.  et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–42 [Google Scholar]
  137. Wu J, Sun L, Chen X, Du F, Shi H. 137.  et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–30 [Google Scholar]
  138. Xu H, Yang J, Gao W, Li L, Li P. 138.  et al. 2014. Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome. Nature 513:237–41 [Google Scholar]
  139. Yang J, Xu H, Shao F. 139.  2014. Immunological function of familial Mediterranean fever disease protein pyrin. Sci. China Life Sci. 57:1156–61 [Google Scholar]
  140. Yu JW, Wu J, Zhang Z, Datta P, Ibrahimi I. 140.  et al. 2006. Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization. Cell Death Differ. 13:236–49 [Google Scholar]
  141. Zavialov AV, Engstrom A. 141.  2005. Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity. Biochem. J. 391:51–57 [Google Scholar]
  142. Zavialov AV, Gracia E, Glaichenhaus N, Franco R, Zavialov AV, Lauvau G. 142.  2010. Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J. Leukoc. Biol. 88:279–90 [Google Scholar]
  143. Zemer D, Revach M, Pras M, Modan B, Schor S. 143.  et al. 1974. A controlled trial of colchicine in preventing attacks of familial mediterranean fever. N. Engl. J. Med. 291:932–34 [Google Scholar]
  144. Zheng QY, Yan D, Ouyang XM, Du LL, Yu H. 144.  et al. 2005. Digenic inheritance of deafness caused by mutations in genes encoding cadherin 23 and protocadherin 15 in mice and humans. Hum. Mol. Genet. 14:103–11 [Google Scholar]
  145. Zhong B, Yang Y, Li S, Wang YY, Li Y. 145.  et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:538–50 [Google Scholar]
  146. Zhou Q, Aksentijevich I, Wood GM, Walts AD, Hoffmann P. 146.  et al. 2015. Cryopyrin-associated periodic syndrome caused by a myeloid-restricted somatic NLRP3 mutation. Arthritis Rheumatol. 67:2482–86Along with Ref. 31, provided a proof of concept that adult-onset autoinflammatory diseases are caused by mosaicism, explaining different phenotypes and ages of onset. [Google Scholar]
  147. Zhou Q, Wang H, Schwartz DM, Stoffels M, Park YH. 147.  et al. 2016. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48:67–73Showed that TNFAIP3 mutations cause haploinsufficiency of A20 such that A20 cannot sufficiently inhibit NF-κB and IL-1 signaling. [Google Scholar]
  148. Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C. 148.  et al. 2014. Early-onset stroke and vasculopathy associated with mutations in ADA2. N. Engl. J. Med. 370:911–20Along with Ref. 94, showed that CECR1 mutations lead to ADA2 deficiency, causing a spectrum of fevers, strokes, and vasculopathy. [Google Scholar]
  149. Zoller EE, Lykens JE, Terrell CE, Aliberti J, Filipovich AH. 149.  et al. 2011. Hemophagocytosis causes a consumptive anemia of inflammation. J. Exp. Med. 208:1203–14 [Google Scholar]
/content/journals/10.1146/annurev-genom-090413-025334
Loading
/content/journals/10.1146/annurev-genom-090413-025334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error