1932

Abstract

The Ras-MAPK and PI3K-AKT-mTOR signaling cascades were originally identified as cancer regulatory pathways but have now been demonstrated to be critical for synaptic plasticity and behavior. Neurodevelopmental disorders arising from mutations in these pathways exhibit related neurological phenotypes, including cognitive dysfunction, autism, and intellectual disability. The downstream targets of these pathways include regulation of transcription and protein synthesis. Other disorders that affect protein translation include fragile X syndrome (an important cause of syndromal autism), and other translational regulators are now also linked to autism. Here, we review how mechanisms of synaptic plasticity have been revealed by studies of mouse models for Ras-MAPK, PI3K-AKT-mTOR, and translation regulatory pathway disorders. We discuss the face validity of these mouse models and review current progress in clinical trials directed at ameliorating cognitive and behavioral symptoms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-091416-035332
2017-08-31
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genom/18/1/annurev-genom-091416-035332.html?itemId=/content/journals/10.1146/annurev-genom-091416-035332&mimeType=html&fmt=ahah

Literature Cited

  1. Abs E, Goorden SMI, Schreiber J, Overwater IE, Hoogeveen-Westerveld M. 1.  et al. 2013. TORC1-dependent epilepsy caused by acute biallelic Tsc1 deletion in adult mice. Ann. Neurol. 74:569–79 [Google Scholar]
  2. Aman MG, Findling RL, Hardan AY, Hendren RL, Melmed RD. 2.  et al. 2017. Safety and efficacy of memantine in children with autism: randomized, placebo-controlled study and open-label extension. J. Child Adolesc. Psychopharmacol. 27:403–12 [Google Scholar]
  3. Anastasaki C, Woo AS, Messiaen LM, Gutmann DH. 3.  2015. Elucidating the impact of neurofibromatosis-1 germline mutations on neurofibromin function and dopamine-based learning. Hum. Mol. Genet. 24:3518–28 [Google Scholar]
  4. Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H. 4.  et al. 2005. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat. Genet. 37:1038–40 [Google Scholar]
  5. Araki Y, Zeng M, Zhang M, Huganir RL. 5.  2015. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85:173–89 [Google Scholar]
  6. Auerbach BD, Osterweil EK, Bear MF. 6.  2011. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480:63–68 [Google Scholar]
  7. Bagni C, Tassone F, Neri G, Hagerman R. 7.  2012. Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J. Clin. Investig. 122:4314–22 [Google Scholar]
  8. Banko JL, Hou L, Poulin F, Sonenberg N, Klann E. 8.  2006. Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 26:2167–73 [Google Scholar]
  9. Banko JL, Poulin F, Hou L, DeMaria CT, Sonenberg N, Klann E. 9.  2005. The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J. Neurosci. 25:9581–90 [Google Scholar]
  10. Barnes SA, Wijetunge LS, Jackson AD, Katsanevaki D, Osterweil EK. 10.  et al. 2015. Convergence of hippocampal pathophysiology in Syngap+/ and Fmr1/y mice. J. Neurosci. . 35:15073–81 [Google Scholar]
  11. Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL. 11.  2013. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78:510–22 [Google Scholar]
  12. Bateup HS, Takasaki KT, Saulnier JL, Denefrio CL, Sabatini BL. 12.  2011. Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function. J. Neurosci. 31:8862–69 [Google Scholar]
  13. Bearden CE, Hellemann GS, Rosser T, Montojo C, Jonas R. 13.  et al. 2016. A randomized placebo-controlled lovastatin trial for neurobehavioral function in neurofibromatosis 1. Ann. Clin. Transl. Neurol. 3:266–79 [Google Scholar]
  14. Berry-Kravis EM, Des Portes V, Hagerman R, Jacquemont S, Charles P. 14.  et al. 2016. Mavoglurant in fragile X syndrome: results of two randomized, double-blind, placebo-controlled trials. Sci. Transl. Med. 8:321ra5 [Google Scholar]
  15. Berry-Kravis EM, Hessl D, Rathmell B, Zarevics P, Cherubini M. 15.  et al. 2012. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci. Transl. Med. 4:152ra127 [Google Scholar]
  16. Bhattacharya A, Kaphzan H, Alvarez-Dieppa AC, Murphy JP, Pierre P, Klann E. 16.  2012. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76:325–37 [Google Scholar]
  17. Bozdagi O, Sakurai T, Dorr N, Pilorge M, Takahashi N, Buxbaum JD. 17.  2012. Haploinsufficiency of Cyfip1 produces fragile X-like phenotypes in mice. PLOS ONE 7:e42422 [Google Scholar]
  18. Bramham CR, Jensen KB, Proud CG. 18.  2016. Tuning specific translation in cancer metastasis and synaptic memory: control at the MNK-eIF4E axis. Trends Biochem. Sci. 41:847–58 [Google Scholar]
  19. Brems H, Beert E, de Ravel T, Legius E. 19.  2009. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol 10:508–15 [Google Scholar]
  20. Brems H, Chmara M, Sahbatou M, Denayer E, Taniguchi K. 20.  et al. 2007. Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat. Genet. 39:1120–26 [Google Scholar]
  21. Brems H, Pasmant E, Van Minkelen R, Wimmer K, Upadhyaya M. 21.  et al. 2012. Review and update of SPRED1 mutations causing Legius syndrome. Hum. Mutat. 33:1538–46 [Google Scholar]
  22. Brown JA, Emnett RJ, White CR, Yuede CM, Conyers SB. 22.  et al. 2010. Reduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 mutant mice. Hum. Mol. Genet. 19:4515–28 [Google Scholar]
  23. Çaku A, Pellerin D, Bouvier P, Riou E, Corbin F. 23.  2014. Effect of lovastatin on behavior in children and adults with fragile X syndrome: an open-label study. Am. J. Med. Genet. A 164A2834–42 [Google Scholar]
  24. Chen AP, Ohno M, Giese KP, Kühn R, Chen RL, Silva AJ. 24.  2006. Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory. J. Neurosci. Res. 83:28–38 [Google Scholar]
  25. Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y. 25.  et al. 2014. The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 156:195–207 [Google Scholar]
  26. Chévere-Torres I, Kaphzan H, Bhattacharya A, Kang A, Maki JM. 26.  et al. 2012. Metabotropic glutamate receptor-dependent long-term depression is impaired due to elevated ERK signaling in the δRG mouse model of tuberous sclerosis complex. Neurobiol. Dis. 45:1101–10 [Google Scholar]
  27. Chévere-Torres I, Maki JM, Santini E, Klann E. 27.  2012. Impaired social interactions and motor learning skills in tuberous sclerosis complex model mice expressing a dominant/negative form of tuberin. Neurobiol. Dis. 45:156–64 [Google Scholar]
  28. Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y. 28.  et al. 2012. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151:709–23 [Google Scholar]
  29. Clipperton-Allen AE, Page DT. 29.  2014. Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral tests. Hum. Mol. Genet. 23:3490–505 [Google Scholar]
  30. Contractor A, Klyachko VA, Portera-Cailliau C. 30.  2015. Altered neuronal and circuit excitability in fragile X syndrome. Neuron 87:699–715 [Google Scholar]
  31. Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J. 31.  et al. 2002. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415:526–30 [Google Scholar]
  32. Costa RM, Yang T, Huynh DP, Pulst SM, Viskochil DH. 32.  et al. 2001. Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of NF1. . Nat. Genet. 27:399–405 [Google Scholar]
  33. Cox D, Butler M. 33.  2015. The 15q11.2 BP1-BP2 microdeletion syndrome: a review. Int. J. Mol. Sci. 16:4068–82 [Google Scholar]
  34. Crawley JN, Heyer WD, LaSalle JM. 34.  2016. Autism and cancer share risk genes, pathways, and drug targets. Trends Genet 32:139–46 [Google Scholar]
  35. Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y. 35.  et al. 2008. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135:549–60 [Google Scholar]
  36. de Esch CEF, van den Berg WE, Buijsen RAM, Jaafar IA, Nieuwenhuizen-Bakker IM. 36.  et al. 2015. Fragile X mice have robust mGluR5-dependent alterations of social behaviour in the Automated Tube Test. Neurobiol. Dis. 75:31–39 [Google Scholar]
  37. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K. 37.  et al. 2014. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209–15 [Google Scholar]
  38. De Rubeis S, Pasciuto E, Li KW, Fernández E, Di Marino D. 38.  et al. 2013. CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron 79:1169–82 [Google Scholar]
  39. Debrabant J, Plasschaert E, Caeyenberghs K, Vingerhoets G, Legius E. 39.  et al. 2014. Deficient motor timing in children with neurofibromatosis type 1. Res. Dev. Disabil. 35:3131–38 [Google Scholar]
  40. Denayer E, Ahmed T, Brems H, Van Woerden G, Borgesius NZ. 40.  et al. 2008. Spred1 is required for synaptic plasticity and hippocampus-dependent learning. J. Neurosci. 28:14443–49 [Google Scholar]
  41. Denayer E, Chmara M, Brems H, Kievit AM, van Bever Y. 41.  et al. 2011. Legius syndrome in fourteen families. Hum. Mutat. 32:E1985–98 [Google Scholar]
  42. Dileone M, Profice P, Pilato F, Alfieri P, Cesarini L. 42.  et al. 2010. Enhanced human brain associative plasticity in Costello syndrome. J. Physiol. 588:3445–56 [Google Scholar]
  43. Dileone M, Ranieri F, Florio L, Capone F, Musumeci G. 43.  et al. 2016. Differential effects of HRAS mutation on LTP-like activity induced by different protocols of repetitive transcranial magnetic stimulation. Brain Stimul 9:33–38 [Google Scholar]
  44. Dziembowska M, Pretto DI, Janusz A, Kaczmarek L, Leigh MJ. 44.  et al. 2013. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. Am. J. Med. Genet. A 161A1897–903 [Google Scholar]
  45. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W. 45.  et al. 2008. Reversal of learning deficits in a Tsc2+/ mouse model of tuberous sclerosis. Nat. Med. 14:843–48 [Google Scholar]
  46. Ehninger D, Silva AJ. 46.  2011. Increased levels of anxiety-related behaviors in a Tsc2 dominant negative transgenic mouse model of tuberous sclerosis. Behav. Genet. 41:357–63 [Google Scholar]
  47. Erickson CA, Mullett JE, McDougle CJ. 47.  2010. Brief report: acamprosate in fragile X syndrome. J. Autism Dev. Disord. 40:1412–16 [Google Scholar]
  48. Fraser MM, Bayazitov IT, Zakharenko SS, Baker SJ. 48.  2008. Phosphatase and tensin homolog, deleted on chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities. Neuroscience 151:476–88 [Google Scholar]
  49. French JA, Lawson JA, Yapici Z, Ikeda H, Polster T. 49.  et al. 2016. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388:2153–63 [Google Scholar]
  50. Fu C, Cawthon B, Clinkscales W, Bruce A, Winzenburger P, Ess KC. 50.  2012. GABAergic interneuron development and function is modulated by the Tsc1 gene. Cereb. Cortex 22:2111–19 [Google Scholar]
  51. Gantois I, Pop AS, de Esch CEF, Buijsen RAM, Pooters T. 51.  et al. 2013. Chronic administration of AFQ056/Mavoglurant restores social behaviour in Fmr1 knockout mice. Behav. Brain Res. 239:72–79 [Google Scholar]
  52. Garg S, Brooks A, Burns A, Burkitt-Wright E, Kerr B. 52.  et al. 2017. Autism spectrum disorder and other neurobehavioural comorbidities in rare disorders of the Ras/MAPK pathway. Dev. Med. Child Neurol 59544–49 [Google Scholar]
  53. Gibson JR, Bartley AF, Hays SA, Huber KM. 53.  2008. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J. Neurophysiol. 100:2615–26 [Google Scholar]
  54. Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T. 54.  et al. 2013. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493:371–77 [Google Scholar]
  55. Goorden SMI, Van Woerden GM, Van Der Weerd L, Cheadle JP, Elgersma Y. 55.  2007. Cognitive deficits in Tsc1+/ mice in the absence of cerebral lesions and seizures. Ann. Neurol. 62:648–55 [Google Scholar]
  56. Greene-Colozzi EA, Sadowski AR, Chadwick E, Tsai PT, Sahin M. 56.  2014. Both maternal and pup genotype influence ultrasonic vocalizations and early developmental milestones in Tsc2+/ mice. Epilepsy Res. Treat. 2014:784137 [Google Scholar]
  57. Gripp KW, Lin AE. 57.  2012. Costello syndrome: a Ras/mitogen activated protein kinase pathway syndrome (rasopathy) resulting from HRAS germline mutations. Genet. Med. 14:285–92 [Google Scholar]
  58. Guo X, Hamilton PJ, Reish NJ, Sweatt JD, Miller CA, Rumbaugh G. 58.  2009. Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of schizophrenia. Neuropsychopharmacology 34:1659–72 [Google Scholar]
  59. Hamdan FF, Gauthier J, Spiegelman D, Noreau A, Yang Y. 59.  et al. 2009. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N. Engl. J. Med. 360:599–605 [Google Scholar]
  60. Henderson C, Wijetunge L, Kinoshita MN, Shumway M, Hammond RS. 60.  et al. 2012. Reversal of disease-related pathologies in the fragile Z mouse model by selective activation of GABAB receptors with arbaclofen. Sci. Transl. Med. 4:152ra28 [Google Scholar]
  61. Henske EP, Jóźwiak S, Kingswood JC, Sampson JR, Thiele EA. 61.  et al. 2016. Tuberous sclerosis complex. Nat. Rev. Dis. Prim. 2:16035 [Google Scholar]
  62. Hsiao K, Harony-Nicolas H, Buxbaum JD, Bozdagi-Gunal O, Benson DL. 62.  2016. Cyfip1 regulates presynaptic activity during development. J. Neurosci. 36:1564–76 [Google Scholar]
  63. Huber KM, Gallagher SM, Warren ST, Bear MF. 63.  2002. Altered synaptic plasticity in a mouse model of fragile X mental retardation. PNAS 99:7746–50 [Google Scholar]
  64. Huynh TN, Shah M, Koo SY, Faraud KS, Santini E, Klann E. 64.  2015. eIF4E/Fmr1 double mutant mice display cognitive impairment in addition to ASD-like behaviors. Neurobiol. Dis. 83:67–74 [Google Scholar]
  65. Inoue S-I, Moriya M, Watanabe Y, Miyagawa-Tomita S, Niihori T. 65.  et al. 2014. New BRAF knockin mice provide a pathogenetic mechanism of developmental defects and a therapeutic approach in cardio-facio-cutaneous syndrome. Hum. Mol. Genet. 23:6553–66 [Google Scholar]
  66. Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA. 66.  et al. 2001. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am. J. Med. Genet 98161–67 [Google Scholar]
  67. Jacquemont S, Curie A, des Portes V, Torrioli MG, Berry-Kravis EM. 67.  et al. 2011. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci. Transl. Med. 3:64ra1 [Google Scholar]
  68. Jeste SS, Varcin KJ, Hellemann GS, Gulsrud AC, Bhatt R. 68.  et al. 2016. Symptom profiles of autism spectrum disorder in tuberous sclerosis complex. Neurology 87:766–72 [Google Scholar]
  69. Joshi G, Wozniak J, Faraone SV, Fried R, Chan J. 69.  et al. 2016. A prospective open-label trial of memantine hydrochloride for the treatment of social deficits in intellectually capable adults with autism spectrum disorder. J. Clin. Psychopharmacol. 36:262–71 [Google Scholar]
  70. Jousma E, Rizvi TA, Wu J, Janhofer D, Dombi E. 70.  et al. 2015. Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of neurofibromatosis type 1. Pediatr. Blood Cancer 62:1709–16 [Google Scholar]
  71. Jurado S, Benoist M, Lario A, Knafo S, Petrok CN. 71.  et al. 2010. PTEN is recruited to the postsynaptic terminal for NMDA receptor-dependent long-term depression. EMBO J 29:2827–40 [Google Scholar]
  72. Kilincaslan A, Kok BE, Tekturk P, Yalcinkaya C, Ozkara C, Yapici Z. 72.  2017. Beneficial effects of everolimus on autism and attention-deficit/hyperactivity disorder symptoms in a group of patients with tuberous sclerosis complex. J. Child Adolesc. Psychopharmacol. 27:383–88 [Google Scholar]
  73. Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P. 73.  et al. 2002. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J. Neurosci. 22:9721–32 [Google Scholar]
  74. Krab LC, de Goede-Bolder A, Aarsen FK, Pluijm SMF, Bouman MJ. 74.  et al. 2008. Effect of simvastatin on cognitive functioning in children with neurofibromatosis type 1: a randomized controlled trial. JAMA 300:287–94 [Google Scholar]
  75. Krab LC, Goorden SMI, Elgersma Y. 75.  2008. Oncogenes on my mind: ERK and MTOR signaling in cognitive diseases. Trends Genet 24:498–510 [Google Scholar]
  76. Kratz CP, Franke L, Peters H, Kohlschmidt N, Kazmierczak B. 76.  et al. 2015. Cancer spectrum and frequency among children with Noonan, Costello, and cardio-facio-cutaneous syndromes. Br. J. Cancer 112:1392–97 [Google Scholar]
  77. Krueger DD, Osterweil EK, Chen SP, Tye LD, Bear MF. 77.  2011. Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome. PNAS 108:2587–92 [Google Scholar]
  78. Kusakari S, Saitow F, Ago Y, Shibasaki K, Sato-Hashimoto M. 78.  et al. 2015. Shp2 in forebrain neurons regulates synaptic plasticity, locomotion, and memory formation in mice. Mol. Cell. Biol. 35:1557–72 [Google Scholar]
  79. Kushner SA, Elgersma Y, Murphy GG, Jaarsma D, van Woerden GM. 79.  et al. 2005. Modulation of presynaptic plasticity and learning by the H-ras/extracellular signal-regulated kinase/synapsin I signaling pathway. J. Neurosci. 25:9721–34 [Google Scholar]
  80. Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA. 80.  et al. 2006. Pten regulates neuronal arborization and social interaction in mice. Neuron 50:377–88 [Google Scholar]
  81. La Fata G, Gärtner A, Domínguez-Iturza N, Dresselaers T, Dawitz J. 81.  et al. 2014. FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry. Nat. Neurosci. 17:1693–700 [Google Scholar]
  82. Lachlan KL, Lucassen AM, Bunyan D, Temple IK. 82.  2007. Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome represent one condition with variable expression and age-related penetrance: results of a clinical study of PTEN mutation carriers. J. Med. Genet 44579–85 [Google Scholar]
  83. Lauterborn JC, Rex CS, Kramár E, Chen LY, Pandyarajan V. 83.  et al. 2007. Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J. Neurosci. 27:10685–94 [Google Scholar]
  84. Lee YS, Ehninger D, Zhou M, Oh JY, Kang M. 84.  et al. 2014. Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat. Neurosci. 17:1736–43 [Google Scholar]
  85. Lehtonen A, Howie E, Trump D, Huson SM. 85.  2013. Behaviour in children with neurofibromatosis type 1: cognition, executive function, attention, emotion, and social competence. Dev. Med. Child Neurol 55111–25 [Google Scholar]
  86. Leigh MJS, Nguyen DV, Mu Y, Winarni TI, Schneider A. 86.  et al. 2013. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile X syndrome. J. Dev. Behav. Pediatr. 34:147–55 [Google Scholar]
  87. Levenga J, Hayashi S, de Vrij FMS, Koekkoek SK, van der Linde HC. 87.  et al. 2011. AFQ056, a new mGluR5 antagonist for treatment of fragile X syndrome. Neurobiol. Dis. 42:311–17 [Google Scholar]
  88. Li W, Cui Y, Kushner SA, Brown RAM, Jentsch JD. 88.  et al. 2005. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr. Biol. 15:1961–67 [Google Scholar]
  89. Lion-François L, Gueyffier F, Mercier C, Gérard D, Herbillon V. 89.  et al. 2014. The effect of methylphenidate on neurofibromatosis type 1: a randomised, double-blind, placebo-controlled, crossover trial. Orphanet J. Rare Dis. 9:142 [Google Scholar]
  90. LoRusso PM, Krishnamurthi SS, Rinehart JJ, Nabell LM, Malburg L. 90.  et al. 2010. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin. Cancer Res. 16:1924–37 [Google Scholar]
  91. Mainberger F, Langer S, Mall V, Jung NH. 91.  2016. Impaired synaptic plasticity in rRASopathies: a mini-review. J. Neural Transm. 123:1133–38 [Google Scholar]
  92. Mans RA, McMahon LL, Li L. 92.  2012. Simvastatin-mediated enhancement of long-term potentiation is driven by farnesyl-pyrophosphate depletion and inhibition of farnesylation. Neuroscience 202:1–9 [Google Scholar]
  93. Michalon A, Bruns A, Risterucci C, Honer M, Ballard TM. 93.  et al. 2014. Chronic metabotropic glutamate receptor 5 inhibition corrects local alterations of brain activity and improves cognitive performance in fragile X mice. Biol. Psychiatry 75:189–97 [Google Scholar]
  94. Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W. 94.  et al. 2012. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74:49–56 [Google Scholar]
  95. Mignot C, von Stülpnagel C, Nava C, Ville D, Sanlaville D. 95.  et al. 2016. Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy. J. Med. Genet 53511–22 [Google Scholar]
  96. Mines MA, Yuskaitis CJ, King MK, Beurel E, Jope RS. 96.  et al. 2010. GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLOS ONE 5:e9706 [Google Scholar]
  97. Moriya M, Inoue S, Miyagawa-Tomita S, Nakashima Y, Oba D. 97.  et al. 2015. Adult mice expressing a Braf Q241R mutation on an ICR/CD-1 background exhibit a cardio-facio-cutaneous syndrome phenotype. Hum. Mol. Genet. 24:7349–60 [Google Scholar]
  98. Morris SM, Acosta MT, Garg S, Green J, Huson S. 98.  et al. 2016. Disease burden and symptom structure of autism in neurofibromatosis type 1: a study of the International NF1-ASD Consortium Team (INFACT). JAMA Psychiatry 73:1276–84 [Google Scholar]
  99. Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F. 99.  et al. 2008. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134:1042–54 [Google Scholar]
  100. Nelson SB, Valakh V. 100.  2015. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87:684–98 [Google Scholar]
  101. Oliveira AF, Yasuda R. 101.  2014. Neurofibromin is the major Ras inactivator in dendritic spines. J. Neurosci. 34:776–83 [Google Scholar]
  102. Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR. 102.  et al. 2015. HCN channels are a novel therapeutic target for cognitive dysfunction in Neurofibromatosis type 1. Mol. Psychiatry 20:1311–21 [Google Scholar]
  103. Osterweil EK, Chuang SC, Chubykin AA, Sidorov M, Bianchi R. 103.  et al. 2013. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron 77:243–50 [Google Scholar]
  104. Osterweil EK, Krueger DD, Reinhold K, Bear MF. 104.  2010. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J. Neurosci. 30:15616–27 [Google Scholar]
  105. Overwater IE, Rietman AB, Bindels-de Heus K, Looman CWN, Rizopoulos D. 105.  et al. 2016. Sirolimus for epilepsy in children with tuberous sclerosis complex: a randomized controlled trial. Neurology 87:1011–18 [Google Scholar]
  106. Ozkan ED, Creson TK, Kramár EA, Rojas C, Seese RR. 106.  et al. 2014. Reduced cognition in Syngap1 mutants is caused by isolated damage within developing forebrain excitatory neurons. Neuron 82:1317–33 [Google Scholar]
  107. Papale A, D'Isa R, Menna E, Cerovic M, Solari N. 107.  et al. 2016. Severe intellectual disability and enhanced gamma-aminobutyric acidergic synaptogenesis in a novel model of rare RASopathies. Biol. Psychiatry 81:179–92 [Google Scholar]
  108. Papale A, Morella IM, Indrigo MT, Bernardi RE, Marrone L. 108.  et al. 2016. Impairment of cocaine-mediated behaviours in mice by clinically relevant Ras-ERK inhibitors. eLife 5:135–63 [Google Scholar]
  109. Paradee W, Melikian HE, Rasmussen DL, Kenneson A, Conn PJ, Warren ST. 109.  1999. Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience 94:185–92 [Google Scholar]
  110. Pasciuto E, Bagni C. 110.  2014. SnapShot: FMRP interacting proteins. Cell 159:218–218.e1 [Google Scholar]
  111. Pathania M, Davenport EC, Muir J, Sheehan DF, López-Doménech G, Kittler JT. 111.  2014. The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines. Transl. Psychiatry 4:e374 [Google Scholar]
  112. Payne JM, Barton B, Ullrich NJ, Cantor A, Hearps SJC. 112.  et al. 2016. Randomized placebo-controlled study of lovastatin in children with neurofibromatosis type 1. Neurology 87:2575–84 [Google Scholar]
  113. Pierpont EI, Tworog-Dube E, Roberts AE. 113.  2015. Attention skills and executive functioning in children with Noonan syndrome and their unaffected siblings. Dev. Med. Child Neurol 57385–92 [Google Scholar]
  114. Pierpont MEM, Magoulas PL, Adi S, Kavamura MI, Neri G. 114.  et al. 2014. Cardio-facio-cutaneous syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 134:e1149–62 [Google Scholar]
  115. Plasschaert E, Descheemaeker M-J, Van Eylen L, Noens I, Steyaert J, Legius E. 115.  2015. Prevalence of Autism Spectrum Disorder symptoms in children with neurofibromatosis type 1. Am. J. Med. Genet. B 168B72–80 [Google Scholar]
  116. Plasschaert E, Van Eylen L, Descheemaeker M-J, Noens I, Legius E, Steyaert J. 116.  2016. Executive functioning deficits in children with neurofibromatosis type 1: the influence of intellectual and social functioning. Am. J. Med. Genet. B 171B348–62 [Google Scholar]
  117. Porta C, Paglino C, Mosca A. 117.  2014. Targeting PI3K/AKT/mTOR signaling in cancer. Front. Oncol. 4:64 [Google Scholar]
  118. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N. 118.  et al. 2014. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506:185–90 [Google Scholar]
  119. Qin M, Huang T, Kader M, Krych L, Xia Z. 119.  et al. 2015. R-baclofen reverses a social behavior deficit and elevated protein synthesis in a mouse model of fragile X syndrome. Int. J. Neuropsychopharmacol. 18:pyv034 [Google Scholar]
  120. Qin M, Kang J, Burlin T V, Jiang C, Smith CB. 120.  2005. Postadolescent changes in regional cerebral protein synthesis: an in vivo study in the Fmr1 null mouse. J. Neurosci. 25:5087–95 [Google Scholar]
  121. Quiroz J, Wasef E, Wong CY, Kurian A, Deptula D. 121.  et al. 2016. Effect of two doses of basimglurant on behavioral symptoms in adolescent and adult patients with fragile X syndrome; results from Fragxis, a double-blind, placebo controlled study. Presented at Int. Meet. Autism Res., Salt Lake City, UT, May 13–16. https://imfar.confex.com/imfar/2015/webprogram/Paper19054.html
  122. Romano AA, Allanson JE, Dahlgren J, Gelb BD, Hall B. 122.  et al. 2010. Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 126:746–59 [Google Scholar]
  123. Rotschafer SE, Trujillo MS, Dansie LE, Ethell IM, Razak KA. 123.  2012. Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of Fragile X Syndrome. Brain Res 1439:7–14 [Google Scholar]
  124. Roy A, Skibo J, Kalume F, Ni J, Rankin S. 124.  et al. 2015. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. eLife 3:e12703 [Google Scholar]
  125. Santini E, Huynh TN, MacAskill AF, Carter AG, Pierre P. 125.  et al. 2013. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493:411–15 [Google Scholar]
  126. Sasongko TH, Ismail NFD, Zabidi-Hussin ZAMH. 126.  2016. Rapamycin and rapalogs for tuberous sclerosis complex. Cochrane Database Syst. Rev. 7:CD011272 [Google Scholar]
  127. Sato A, Kasai S, Kobayashi T, Takamatsu Y, Hino O. 127.  et al. 2012. Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nat. Commun. 3:1292 [Google Scholar]
  128. Scharf SH, Jaeschke G, Wettstein JG, Lindemann L. 128.  2015. Metabotropic glutamate receptor 5 as drug target for Fragile X syndrome. Curr. Opin. Pharmacol. 20:124–34 [Google Scholar]
  129. Selby L, Zhang C, Sun Q-Q. 129.  2007. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci. Lett. 412:227–32 [Google Scholar]
  130. Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M. 130.  et al. 2010. Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. PNAS 107:13141–46 [Google Scholar]
  131. Sperow M, Berry RB, Bayazitov IT, Zhu G, Baker SJ, Zakharenko SS. 131.  2012. Phosphatase and tensin homologue (PTEN) regulates synaptic plasticity independently of its effect on neuronal morphology and migration. J. Physiol. 590:777–92 [Google Scholar]
  132. Stowe IB, Mercado EL, Stowe TR, Bell EL, Oses-Prieto JA. 132.  et al. 2012. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1. Genes Dev 26:1421–26 [Google Scholar]
  133. Takeuchi K, Gertner MJ, Zhou J, Parada LF, Bennett MVL, Zukin RS. 133.  2013. Dysregulation of synaptic plasticity precedes appearance of morphological defects in a Pten conditional knockout mouse model of autism. PNAS 110:4738–43 [Google Scholar]
  134. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G. 134.  et al. 2014. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–43 [Google Scholar]
  135. Tidyman WE, Rauen KA. 135.  2016. Expansion of the RASopathies. Curr. Genet. Med. Rep 157–64 [Google Scholar]
  136. Tilot AK, Frazier TW II, Eng C. 136.  2015. Balancing proliferation and connectivity in PTEN-associated autism spectrum disorder. Neurotherapeutics 12:609–19 [Google Scholar]
  137. Toma C, Torrico B, Hervas A, Valdes-Mas R, Tristan-Noguero A. 137.  et al. 2014. Exome sequencing in multiplex autism families suggests a major role for heterozygous truncating mutations. Mol. Psychiatry 19:784–90 [Google Scholar]
  138. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR. 138.  et al. 2012. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–51 [Google Scholar]
  139. van der Vaart T, Plasschaert E, Rietman AB, Renard M, Oostenbrink R. 139.  et al. 2013. Simvastatin for cognitive deficits and behavioural problems in patients with neurofibromatosis type 1 (NF1-SIMCODA): a randomised, placebo-controlled trial. Lancet Neurol 12:1076–83 [Google Scholar]
  140. van der Vaart T, Rietman AB, Plasschaert E, Legius E, Elgersma Y. 140.  et al. 2016. Behavioral and cognitive outcomes for clinical trials in children with neurofibromatosis type 1. Neurology 86:154–60 [Google Scholar]
  141. Van Der Vaart T, Rietman AB, Plasschaert E, Legius E, Elgersma Y, Moll HA. 141.  2016. Behavioral and cognitive outcomes for clinical trials in children with neurofibromatosis type 1. Neurology 86:154–60 [Google Scholar]
  142. Veenstra-VanderWeele J, Cook EH, King BH, Zarevics P, Cherubini M. 142.  et al. 2017. Arbaclofen in children and adolescents with autism spectrum disorder: a randomized, controlled, phase 2 trial. Neuropsychopharmacology 42:1390–98 [Google Scholar]
  143. Ventura R, Pascucci T, Catania M V, Musumeci SA, Puglisi-Allegra S. 143.  2004. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behav. Pharmacol. 15:433–42 [Google Scholar]
  144. Viosca J, Schuhmacher AJ, Guerra C, Barco A. 144.  2009. Germline expression of H-RasG12V causes neurological deficits associated to Costello syndrome. Genes Brain Behav 8:60–71 [Google Scholar]
  145. Waltes R, Gfesser J, Haslinger D, Schneider-Momm K, Biscaldi M. 145.  et al. 2014. Common EIF4E variants modulate risk for autism spectrum disorders in the high-functioning range. J. Neural Transm. 121:1107–16 [Google Scholar]
  146. Wang HF, Shih YT, Chen CY, Chao HW, Lee MJ, Hsueh YP. 146.  2011. Valosin-containing protein and neurofibromin interact to regulate dendritic spine density. J. Clin. Investig. 121:4820–37 [Google Scholar]
  147. Wang Y, Cheng A, Mattson MP. 147.  2006. The PTEN phosphatase is essential for long-term depression of hippocampal synapses. Neuromol. Med. 8:329–36 [Google Scholar]
  148. Wilson BM, Cox CL. 148.  2007. Absence of metabotropic glutamate receptor-mediated plasticity in the neocortex of fragile X mice. PNAS 104:2454–59 [Google Scholar]
  149. Young DM, Schenk AK, Yang S-B, Jan YN, Jan LY. 149.  2010. Altered ultrasonic vocalizations in a tuberous sclerosis mouse model of autism. PNAS 107:11074–79 [Google Scholar]
  150. Yuen RKC, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B. 149a.  2017. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20:602–11 [Google Scholar]
  151. Zeng L-H, Ouyang Y, Gazit V, Cirrito JR, Jansen LA. 150.  et al. 2007. Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. Neurobiol. Dis. 28:184–96 [Google Scholar]
  152. Zhao M-G, Toyoda H, Ko SW, Ding H-K, Wu L-J. 151.  et al. 2005. Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J. Neurosci. 25:7385–92 [Google Scholar]
  153. Zhao Y, Adjei AA. 152.  2014. The clinical development of MEK inhibitors. Nat. Rev. Clin. Oncol. 11:385–400 [Google Scholar]
  154. Zhou J, Blundell J, Ogawa S, Kwon C-H, Zhang W. 153.  et al. 2009. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J. Neurosci. 29:1773–83 [Google Scholar]
  155. Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R. 154.  2002. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110:443–55 [Google Scholar]
  156. Zimerman M, Wessel MJ, Timmermann JE, Granström S, Gerloff C. 155.  et al. 2015. Impairment of procedural learning and motor intracortical inhibition in neurofibromatosis type 1 patients. EBioMedicine 2:1430–37 [Google Scholar]
/content/journals/10.1146/annurev-genom-091416-035332
Loading
/content/journals/10.1146/annurev-genom-091416-035332
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error