1932

Abstract

In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell–cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-020711-075049
2015-03-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/immunol/33/1/annurev-immunol-020711-075049.html?itemId=/content/journals/10.1146/annurev-immunol-020711-075049&mimeType=html&fmt=ahah

Literature Cited

  1. Burnet FM. 1.  1957. A modification of Jerne's theory of antibody production using the concept of clonal selection. Aust. J. Sci. 20:67–68 [Google Scholar]
  2. Talmage DW. 2.  1957. Allergy and immunology. Annu. Rev. Med. 8:239–56 [Google Scholar]
  3. Nossal GJ, Lederberg J. 3.  1958. Antibody production by single cells. Nature 181:1419–20 [Google Scholar]
  4. Tonegawa S. 4.  1983. Somatic generation of antibody diversity. Nature 302:575–81 [Google Scholar]
  5. Metchnikoff E. 5.  1893 [1968]. Lectures on the Comparative Pathology of Inflammation Delivered at the Pasteur Institute in 1891 transl. FA Starling, EH Starling New York: Dover. Reprint ed.
  6. Nossal GJV, Ada GL, Austin CM. 6.  1963. Behaviour of active bacterial antigens during the induction of the immune response. II. Cellular distribution of flagellar antigens labelled with iodine-131. Nature 199:1259–62 [Google Scholar]
  7. Askonas BA, Rhodes JM. 7.  1965. Immunogenicity of antigen-containing ribonucleic acid preparations from macrophages. Nature 205:470–74 [Google Scholar]
  8. Cosenza H, Leserman LD, Rowley DA. 8.  1971. The third cell type required for the immune response of spleen cells in vitro. J. Immunol. 107:414–21 [Google Scholar]
  9. Mosier DE, Coppleson LW. 9.  1968. A three-cell interaction required for the induction of the primary immune response in vitro. PNAS 61:542–47 [Google Scholar]
  10. Steinman RM, Cohn ZA. 10.  1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137:1142–62 [Google Scholar]
  11. Nobel Media. 11.  2011. The 2011 Nobel Prize in Physiology or Medicine News release. Oct. 3. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2011/press.html
  12. Zhu J, Paul WE. 12.  2008. CD4 T cells: fates, functions, and faults. Blood 112:1557–69 [Google Scholar]
  13. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. 13.  1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136:2348–57 [Google Scholar]
  14. Mosmann TR, Coffman RL. 14.  1989. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7:145–73 [Google Scholar]
  15. Zhu J, Yamane H, Paul WE. 15.  2010. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28:445–89 [Google Scholar]
  16. Paul WE, Zhu J. 16.  2010. How are TH2-type immune responses initiated and amplified?. Nat. Rev. Immunol. 10:225–35 [Google Scholar]
  17. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T. 17.  et al. 2003. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198:1951–57 [Google Scholar]
  18. Zuniga LA, Jain R, Haines C, Cua DJ. 18.  2013. Th17 cell development: from the cradle to the grave. Immunol. Rev. 252:78–88 [Google Scholar]
  19. Josefowicz SZ, Lu LF, Rudensky AY. 19.  2012. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30:531–64 [Google Scholar]
  20. Ohkura N, Kitagawa Y, Sakaguchi S. 20.  2013. Development and maintenance of regulatory T cells. Immunity 38:414–23 [Google Scholar]
  21. Crotty S. 21.  2014. T follicular helper cell differentiation, function, and roles in disease. Immunity 41:529–42 [Google Scholar]
  22. Janeway CA Jr. 22.  1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54:Pt. 11–13 [Google Scholar]
  23. Beutler B, Jiang Z, Georgel P, Crozat K, Croker B. 23.  et al. 2006. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24:353–89 [Google Scholar]
  24. Medzhitov R. 24.  2007. Recognition of microorganisms and activation of the immune response. Nature 449:819–26 [Google Scholar]
  25. Kawai T, Akira S. 25.  2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–50 [Google Scholar]
  26. Pulendran B, Palucka K, Banchereau J. 26.  2001. Sensing pathogens and tuning immune responses. Science 293:253–56 [Google Scholar]
  27. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S. 27.  et al. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18:767–811 [Google Scholar]
  28. Ravindran R, Khan N, Nakaya HI, Li S, Loebbermann J. 28.  et al. 2014. Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. Science 343:313–17 [Google Scholar]
  29. Osorio F, Tavernier SJ, Hoffmann E, Saeys Y, Martens L. 29.  et al. 2014. The unfolded-protein-response sensor IRE-1α regulates the function of CD8α+ dendritic cells. Nat. Immunol. 15:248–57 [Google Scholar]
  30. Janssens S, Pulendran B, Lambrecht BN. 30.  2014. Emerging functions of the unfolded protein response in immunity. Nat. Immunol. 15:910–19 [Google Scholar]
  31. Everts B, Pearce EJ. 31.  2014. Metabolic control of dendritic cell activation and function: recent advances and clinical implications. Front. Immunol. 5:203 [Google Scholar]
  32. Palucka K, Banchereau J. 32.  2013. Human dendritic cell subsets in vaccination. Curr. Opin. Immunol. 25:396–402 [Google Scholar]
  33. Klechevsky E, Banchereau J. 33.  2013. Human dendritic cells subsets as targets and vectors for therapy. Ann. N.Y. Acad. Sci. 1284:24–30 [Google Scholar]
  34. Banchereau J, Steinman RM. 34.  1998. Dendritic cells and the control of immunity. Nature 392:245–52 [Google Scholar]
  35. Shortman K, Liu YJ. 35.  2002. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2:151–61 [Google Scholar]
  36. Pulendran B. 36.  2004. Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol. Rev. 199:227–50 [Google Scholar]
  37. Merad M, Sathe P, Helft J, Miller J, Mortha A. 37.  2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563–604 [Google Scholar]
  38. Hammer GE, Ma A. 38.  2013. Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annu. Rev. Immunol. 31:743–91 [Google Scholar]
  39. Satpathy AT, Wu X, Albring JC, Murphy KM. 39.  2012. Re(de)fining the dendritic cell lineage. Nat. Immunol. 13:1145–54 [Google Scholar]
  40. Iwasaki A, Medzhitov R. 40.  2010. Regulation of adaptive immunity by the innate immune system. Science 327:291–95 [Google Scholar]
  41. Steinman RM, Hawiger D, Nussenzweig MC. 41.  2003. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21:685–711 [Google Scholar]
  42. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I. 42.  et al. 1999. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33 [Google Scholar]
  43. Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI. 43.  et al. 2010. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat. Immunol. 11:608–17 [Google Scholar]
  44. Gao Y, Nish SA, Jiang R, Hou L, Licona-Limon P. 44.  et al. 2013. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 39:722–32 [Google Scholar]
  45. Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. 45.  2013. CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39:733–43 [Google Scholar]
  46. Allan RS, Smith CM, Belz GT, van Lint AL, Wakim LM. 46.  et al. 2003. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301:1925–28 [Google Scholar]
  47. Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E. 47.  et al. 2003. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19:47–57 [Google Scholar]
  48. Huang FP, Platt N, Wykes M, Major JR, Powell TJ. 48.  et al. 2000. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191:435–44 [Google Scholar]
  49. Verbovetski I, Bychkov H, Trahtemberg U, Shapira I, Hareuveni M. 49.  et al. 2002. Opsonization of apoptotic cells by autologous iC3b facilitates clearance by immature dendritic cells, down-regulates DR and CD86, and up-regulates CC chemokine receptor 7. J. Exp. Med. 196:1553–61 [Google Scholar]
  50. Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z. 50.  et al. 2004. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21:279–88 [Google Scholar]
  51. Miller JF, Mitchell GF. 51.  1968. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J. Exp. Med. 128:801–20 [Google Scholar]
  52. Miller JF. 52.  2005. A scientific odyssey: unravelling the secrets of the thymus. Med. J. Aust. 183:582–84 [Google Scholar]
  53. Witmer-Pack MD, Swiggard WJ, Mirza A, Inaba K, Steinman RM. 53.  1995. Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145. II. Expression in situ in lymphoid and nonlymphoid tissues. Cell. Immunol. 163:157–62 [Google Scholar]
  54. Vremec D, Zorbas M, Scollay R, Saunders DJ, Ardavin CF. 54.  et al. 1992. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med. 176:47–58 [Google Scholar]
  55. Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, de Saint-Vis B. 55.  et al. 1996. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNFα.. J. Exp. Med. 184:695–706 [Google Scholar]
  56. Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D. 56.  et al. 1999. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. PNAS 96:1036–41 [Google Scholar]
  57. Maldonado-Lopez R, De Smedt T, Michel P, Godfroid J, Pajak B. 57.  et al. 1999. CD8α+ and CD8α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189:587–92 [Google Scholar]
  58. Reizis B. 58.  2012. Classical dendritic cells as a unique immune cell lineage. J. Exp. Med. 209:1053–56 [Google Scholar]
  59. Pulendran B, Tang H, Manicassamy S. 59.  2010. Programming dendritic cells to induce TH2 and tolerogenic responses. Nat. Immunol. 11:647–55 [Google Scholar]
  60. Pulendran B, Artis D. 60.  2012. New paradigms in type 2 immunity. Science 337:431–35 [Google Scholar]
  61. Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA. 61.  et al. 2010. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J. Exp. Med. 207:1283–92 [Google Scholar]
  62. Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L. 62.  et al. 2010. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med. 207:1261–71 [Google Scholar]
  63. Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M. 63.  et al. 2010. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207:1273–81 [Google Scholar]
  64. Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ. 64.  1997. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185:1101–11 [Google Scholar]
  65. Traver D, Akashi K, Manz M, Merad M, Miyamoto T. 65.  et al. 2000. Development of CD8α-positive dendritic cells from a common myeloid progenitor. Science 290:2152–54 [Google Scholar]
  66. D'Amico A, Wu L. 66.  2003. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med. 198:293–303 [Google Scholar]
  67. Karsunky H, Merad M, Cozzio A, Weissman IL, Manz MG. 67.  2003. Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J. Exp. Med. 198:305–13 [Google Scholar]
  68. Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P. 68.  et al. 2006. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83–87 [Google Scholar]
  69. Sathe P, Metcalf D, Vremec D, Naik SH, Langdon WY. 69.  et al. 2014. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage-dendritic cell-restricted progenitor. Immunity 41:104–15 [Google Scholar]
  70. Onai N, Obata-Onai A, Schmid MA, Ohteki T, Jarrossay D, Manz MG. 70.  2007. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 8:1207–16 [Google Scholar]
  71. Naik SH, Sathe P, Park HY, Metcalf D, Proietto AI. 71.  et al. 2007. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8:1217–26 [Google Scholar]
  72. Cisse B, Caton ML, Lehner M, Maeda T, Scheu S. 72.  et al. 2008. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135:37–48 [Google Scholar]
  73. Metlay JP, Witmer-Pack MD, Agger R, Crowley MT, Lawless D, Steinman RM. 73.  1990. The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies. J. Exp. Med. 171:1753–71 [Google Scholar]
  74. Pulendran B, Lingappa J, Kennedy MK, Smith J, Teepe M. 74.  et al. 1997. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J. Immunol. 159:2222–31 [Google Scholar]
  75. Reis e Sousa C, Hieny S, Scharton-Kersten T, Jankovic D, Charest H. 75.  et al. 1997. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186:1819–29 [Google Scholar]
  76. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H. 76.  et al. 2008. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322:1097–100 [Google Scholar]
  77. Aliberti J, Schulz O, Pennington DJ, Tsujimura H, Reis e Sousa C. 77.  et al. 2003. Essential role for ICSBP in the in vivo development of murine CD8α+ dendritic cells. Blood 101:305–10 [Google Scholar]
  78. Suzuki S, Honma K, Matsuyama T, Suzuki K, Toriyama K. 78.  et al. 2004. Critical roles of interferon regulatory factor 4 in CD11bhighCD8α dendritic cell development. PNAS 101:8981–86 [Google Scholar]
  79. Tamura T, Tailor P, Yamaoka K, Kong HJ, Tsujimura H. 79.  et al. 2005. IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J. Immunol. 174:2573–81 [Google Scholar]
  80. Guerriero A, Langmuir PB, Spain LM, Scott EW. 80.  2000. PU.1 is required for myeloid-derived but not lymphoid-derived dendritic cells. Blood 95:879–85 [Google Scholar]
  81. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD. 81.  et al. 1996. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184:1953–62 [Google Scholar]
  82. Lewis KL, Caton ML, Bogunovic M, Greter M, Grajkowska LT. 82.  et al. 2011. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35:780–91 [Google Scholar]
  83. Satpathy AT, Briseno CG, Lee JS, Ng D, Manieri NA. 83.  et al. 2013. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14:937–48 [Google Scholar]
  84. Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS. 84.  et al. 1995. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol. 154:5071–79 [Google Scholar]
  85. Dillon S, Agrawal A, Van Dyke T, Landreth G, McCauley L. 85.  et al. 2004. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J. Immunol. 172:4733–43 [Google Scholar]
  86. Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL. 86.  et al. 2006. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Investig. 116:916–28 [Google Scholar]
  87. Soares H, Waechter H, Glaichenhaus N, Mougneau E, Yagita H. 87.  et al. 2007. A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12-independent but CD70-dependent mechanism in vivo. J. Exp. Med. 204:1095–106 [Google Scholar]
  88. Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A. 88.  et al. 2011. CD8α+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35:249–59 [Google Scholar]
  89. Tailor P, Tamura T, Morse HC 3rd, Ozato K. 89.  2008. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 111:1942–45 [Google Scholar]
  90. den Haan JM, Lehar SM, Bevan MJ. 90.  2000. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192:1685–96 [Google Scholar]
  91. Steinman RM, Turley S, Mellman I, Inaba K. 91.  2000. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191:411–16 [Google Scholar]
  92. Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C. 92.  et al. 2007. Differential antigen processing by dendritic cell subsets in vivo. Science 315:107–11 [Google Scholar]
  93. Torti N, Walton SM, Murphy KM, Oxenius A. 93.  2011. Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur. J. Immunol. 41:2612–18 [Google Scholar]
  94. den Haan JM, Bevan MJ. 94.  2002. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8+ and CD8 dendritic cells in vivo. J. Exp. Med. 196:817–27 [Google Scholar]
  95. Liu YJ. 95.  2005. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23:275–306 [Google Scholar]
  96. Colonna M, Trinchieri G, Liu YJ. 96.  2004. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5:1219–26 [Google Scholar]
  97. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. 97.  2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:59–70 [Google Scholar]
  98. Vremec D, Shortman K. 98.  1997. Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J. Immunol. 159:565–73 [Google Scholar]
  99. Henri S, Vremec D, Kamath A, Waithman J, Williams S. 99.  et al. 2001. The dendritic cell populations of mouse lymph nodes. J. Immunol. 167:741–48 [Google Scholar]
  100. Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. 100.  2012. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37:364–76 [Google Scholar]
  101. Kaplan DH. 101.  2010. In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 31:446–51 [Google Scholar]
  102. Malissen B, Tamoutounour S, Henri S. 102.  2014. The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 14:417–28 [Google Scholar]
  103. Langerhans P. 103.  1868. Über die Nerven der menschlichen Haut. Virchows. Arch Pathol. Anat. Physiol. 44:325–37 [Google Scholar]
  104. Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M. 104.  et al. 2000. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:71–81 [Google Scholar]
  105. Hoeffel G, Wang Y, Greter M, See P, Teo P. 105.  et al. 2012. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. J. Exp. Med. 209:1167–81 [Google Scholar]
  106. Merad M, Manz MG, Karsunky H, Wagers A, Peters W. 106.  et al. 2002. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3:1135–41 [Google Scholar]
  107. Chorro L, Sarde A, Li M, Woollard KJ, Chambon P. 107.  et al. 2009. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206:3089–100 [Google Scholar]
  108. Borkowski TA, Letterio JJ, Farr AG, Udey MC. 108.  1996. A role for endogenous transforming growth factor β1 in Langerhans cell biology: The skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184:2417–22 [Google Scholar]
  109. Zahner SP, Kel JM, Martina CA, Brouwers-Haspels I, van Roon MA, Clausen BE. 109.  2011. Conditional deletion of TGF-βR1 using Langerin-Cre mice results in Langerhans cell deficiency and reduced contact hypersensitivity. J. Immunol. 187:5069–76 [Google Scholar]
  110. Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M. 110.  et al. 2006. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 7:265–73 [Google Scholar]
  111. Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C. 111.  et al. 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13:753–60 [Google Scholar]
  112. Bajana S, Roach K, Turner S, Paul J, Kovats S. 112.  2012. IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J. Immunol. 189:3368–77 [Google Scholar]
  113. Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M. 113.  et al. 2010. CD207+CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 207:189–206 [Google Scholar]
  114. Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M. 114.  et al. 2007. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J. Exp. Med. 204:3133–46 [Google Scholar]
  115. Poulin LF, Henri S, de Bovis B, Devilard E, Kissenpfennig A, Malissen B. 115.  2007. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J. Exp. Med. 204:3119–31 [Google Scholar]
  116. Shklovskaya E, Roediger B, Fazekas de St Groth B. 116.  2008. Epidermal and dermal dendritic cells display differential activation and migratory behavior while sharing the ability to stimulate CD4+ T cell proliferation in vivo. J. Immunol. 181:418–30 [Google Scholar]
  117. Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M. 117.  et al. 2009. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206:3115–30 [Google Scholar]
  118. Edelson BT, Bradstreet TR, Wumesh KC, Hildner K, Herzog JW. 118.  et al. 2011. Batf3-dependent CD11blow/− peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLOS ONE 6:e25660 [Google Scholar]
  119. Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ. 119.  2005. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23:611–20 [Google Scholar]
  120. Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P. 120.  et al. 2005. Dynamics and function of Langerhans cells in vivo: Dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–54 [Google Scholar]
  121. Bennett CL, van Rijn E, Jung S, Inaba K, Steinman RM. 121.  et al. 2005. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol. 169:569–76 [Google Scholar]
  122. He Y, Zhang J, Donahue C, Falo LD Jr. 122.  2006. Skin-derived dendritic cells induce potent CD8+ T cell immunity in recombinant lentivector-mediated genetic immunization. Immunity 24:643–56 [Google Scholar]
  123. Williams JW, Tjota MY, Clay BS, Vander Lugt B, Bandukwala HS. 123.  et al. 2013. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. Nat. Commun. 4:2990 [Google Scholar]
  124. Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L. 124.  et al. 2009. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol. 10:488–95 [Google Scholar]
  125. Helft J, Manicassamy B, Guermonprez P, Hashimoto D, Silvin A. 125.  et al. 2012. Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. J. Clin. Investig. 122:4037–47 [Google Scholar]
  126. Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E. 126.  et al. 2010. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell 143:416–29 [Google Scholar]
  127. Johansson C, Kelsall BL. 127.  2005. Phenotype and function of intestinal dendritic cells. Semin. Immunol. 17:284–94 [Google Scholar]
  128. Iwasaki A, Kelsall BL. 128.  1999. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190:229–39 [Google Scholar]
  129. Iwasaki A, Kelsall BL. 129.  2001. Unique functions of CD11b+, CD8α+, and double-negative Peyer's patch dendritic cells. J. Immunol. 166:4884–90 [Google Scholar]
  130. Contractor N, Louten J, Kim L, Biron CA, Kelsall BL. 130.  2007. Cutting edge: Peyer's patch plasmacytoid dendritic cells (pDCs) produce low levels of type I interferons: possible role for IL-10, TGFβ, and prostaglandin E2 in conditioning a unique mucosal pDC phenotype. J. Immunol. 179:2690–94 [Google Scholar]
  131. Denning TL, Norris BA, Medina-Contreras O, Manicassamy S, Geem D. 131.  et al. 2011. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J. Immunol. 187:733–47 [Google Scholar]
  132. Niess JH, Brand S, Gu X, Landsman L, Jung S. 132.  et al. 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–58 [Google Scholar]
  133. Johansson-Lindbom B, Svensson M, Pabst O, Palmqvist C, Marquez G. 133.  et al. 2005. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202:1063–73 [Google Scholar]
  134. Annacker O, Coombes JL, Malmstrom V, Uhlig HH, Bourne T. 134.  et al. 2005. Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J. Exp. Med. 202:1051–61 [Google Scholar]
  135. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M. 135.  et al. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204:1775–85 [Google Scholar]
  136. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM. 136.  et al. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204:1757–64 [Google Scholar]
  137. Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ. 137.  2007. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204:1765–74 [Google Scholar]
  138. Mucida D, Park Y, Kim G, Turovskaya O, Scott I. 138.  et al. 2007. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–60 [Google Scholar]
  139. Schulz O, Jaensson E, Persson EK, Liu X, Worbs T. 139.  et al. 2009. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206:3101–14 [Google Scholar]
  140. Edelson BT, Wumesh KC, Juang R, Kohyama M, Benoit LA. 140.  et al. 2010. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207:823–36 [Google Scholar]
  141. Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. 141.  2007. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8:1086–94 [Google Scholar]
  142. Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J. 142.  et al. 2007. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27:610–24 [Google Scholar]
  143. Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM. 143.  et al. 2010. Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329:849–53 [Google Scholar]
  144. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU. 144.  et al. 2013. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342:447–53 [Google Scholar]
  145. Hammer GE, Turer EE, Taylor KE, Fang CJ, Advincula R. 145.  et al. 2011. Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis. Nat. Immunol. 12:1184–93 [Google Scholar]
  146. Welty NE, Staley C, Ghilardi N, Sadowsky MJ, Igyarto BZ, Kaplan DH. 146.  2013. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J. Exp. Med. 210:2011–24 [Google Scholar]
  147. Persson EK, Uronen-Hansson H, Semmrich M, Rivollier A, Hagerbrand K. 147.  et al. 2013. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38:958–69 [Google Scholar]
  148. Uematsu S, Jang MH, Chevrier N, Guo Z, Kumagai Y. 148.  et al. 2006. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat. Immunol. 7:868–74 [Google Scholar]
  149. Laffont S, Siddiqui KR, Powrie F. 149.  2010. Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells. Eur. J. Immunol. 40:1877–83 [Google Scholar]
  150. Rivollier A, He J, Kole A, Valatas V, Kelsall BL. 150.  2012. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209:139–55 [Google Scholar]
  151. Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT. 151.  et al. 2012. Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37:1076–90 [Google Scholar]
  152. Platt AM, Bain CC, Bordon Y, Sester DP, Mowat AM. 152.  2010. An independent subset of TLR expressing CCR2-dependent macrophages promotes colonic inflammation. J. Immunol. 184:6843–54 [Google Scholar]
  153. Bain CC, Mowat AM. 153.  2011. Intestinal macrophages—specialised adaptation to a unique environment. Eur. J. Immunol. 41:2494–98 [Google Scholar]
  154. Lambrecht BN, Hammad H. 154.  2012. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu. Rev. Immunol. 30:243–70 [Google Scholar]
  155. Neyt K, Lambrecht BN. 155.  2013. The role of lung dendritic cell subsets in immunity to respiratory viruses. Immunol. Rev. 255:57–67 [Google Scholar]
  156. GeurtsvanKessel CH, Lambrecht BN. 156.  2008. Division of labor between dendritic cell subsets of the lung. Mucosal Immunol. 1:442–50 [Google Scholar]
  157. Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA. 157.  2001. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J. Exp. Med. 193:51–60 [Google Scholar]
  158. Stumbles PA, Thomas JA, Pimm CL, Lee PT, Venaille TJ. 158.  et al. 1998. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J. Exp. Med. 188:2019–31 [Google Scholar]
  159. Akbari O, DeKruyff RH, Umetsu DT. 159.  2001. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat. Immunol. 2:725–31 [Google Scholar]
  160. Akbari O, Freeman GJ, Meyer EH, Greenfield EA, Chang TT. 160.  et al. 2002. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. 8:1024–32 [Google Scholar]
  161. Hintzen G, Ohl L, del Rio ML, Rodriguez-Barbosa JI, Pabst O. 161.  et al. 2006. Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J. Immunol. 177:7346–54 [Google Scholar]
  162. Grayson MH, Cheung D, Rohlfing MM, Kitchens R, Spiegel DE. 162.  et al. 2007. Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia. J. Exp. Med. 204:2759–69 [Google Scholar]
  163. Hammad H, Plantinga M, Deswarte K, Pouliot P, Willart MA. 163.  et al. 2010. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J. Exp. Med. 207:2097–111 [Google Scholar]
  164. GeurtsvanKessel CH, Willart MA, van Rijt LS, Muskens F, Kool M. 164.  et al. 2008. Clearance of influenza virus from the lung depends on migratory langerin+CD11b but not plasmacytoid dendritic cells. J. Exp. Med. 205:1621–34 [Google Scholar]
  165. Ho AW, Prabhu N, Betts RJ, Ge MQ, Dai X. 165.  et al. 2011. Lung CD103+ dendritic cells efficiently transport influenza virus to the lymph node and load viral antigen onto MHC class I for presentation to CD8 T cells. J. Immunol. 187:6011–21 [Google Scholar]
  166. Kim TS, Braciale TJ. 166.  2009. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. PLOS ONE 4:e4204 [Google Scholar]
  167. Kohlmeier JE, Cookenham T, Roberts AD, Miller SC, Woodland DL. 167.  2010. Type I interferons regulate cytolytic activity of memory CD8+ T cells in the lung airways during respiratory virus challenge. Immunity 33:96–105 [Google Scholar]
  168. Kim TS, Gorski SA, Hahn S, Murphy KM, Braciale TJ. 168.  2014. Distinct dendritic cell subsets dictate the fate decision between effector and memory CD8+ T cell differentiation by a CD24-dependent mechanism. Immunity 40:400–13 [Google Scholar]
  169. Meredith MM, Liu K, Darrasse-Jeze G, Kamphorst AO, Schreiber HA. 169.  et al. 2012. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209:1153–65 [Google Scholar]
  170. Ohnmacht C, Schwartz C, Panzer M, Schiedewitz I, Naumann R, Voehringer D. 170.  2010. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33:364–74 [Google Scholar]
  171. Ohnmacht C, Pullner A, King SB, Drexler I, Meier S. 171.  et al. 2009. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med. 206:549–59 [Google Scholar]
  172. Edelson BT, Bradstreet TR, Hildner K, Carrero JA, Frederick KE. 172.  et al. 2011. CD8α+ dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 35:236–48 [Google Scholar]
  173. Kapsenberg ML. 173.  2003. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 3:984–93 [Google Scholar]
  174. Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Banchereau J. 174.  2001. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J. Immunol. 167:5067–76 [Google Scholar]
  175. d'Ostiani CF, Del Sero G, Bacci A, Montagnoli C, Spreca A. 175.  et al. 2000. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191:1661–74 [Google Scholar]
  176. Lamhamedi-Cherradi SE, Martin RE, Ito T, Kheradmand F, Corry DB. 176.  et al. 2008. Fungal proteases induce Th2 polarization through limited dendritic cell maturation and reduced production of IL-12. J. Immunol. 180:6000–9 [Google Scholar]
  177. MacDonald AS, Straw AD, Bauman B, Pearce EJ. 177.  2001. CD8 dendritic cell activation status plays an integral role in influencing Th2 response development. J. Immunol. 167:1982–88 [Google Scholar]
  178. Everts B, Perona-Wright G, Smits HH, Hokke CH, van der Ham AJ. 178.  et al. 2009. Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. J. Exp. Med. 206:1673–80 [Google Scholar]
  179. Steinfelder S, Andersen JF, Cannons JL, Feng CG, Joshi M. 179.  et al. 2009. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J. Exp. Med. 206:1681–90 [Google Scholar]
  180. Whelan M, Harnett MM, Houston KM, Patel V, Harnett W, Rigley KP. 180.  2000. A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. J. Immunol. 164:6453–60 [Google Scholar]
  181. Braun MC, He J, Wu CY, Kelsall BL. 181.  1999. Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor β1 and β2 chain expression. J. Exp. Med. 189:541–52 [Google Scholar]
  182. Shreffler WG, Castro RR, Kucuk ZY, Charlop-Powers Z, Grishina G. 182.  et al. 2006. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J. Immunol. 177:3677–85 [Google Scholar]
  183. Kobayashi T, Iijima K, Radhakrishnan S, Mehta V, Vassallo R. 183.  et al. 2009. Asthma-related environmental fungus, Alternaria, activates dendritic cells and produces potent Th2 adjuvant activity. J. Immunol. 182:2502–10 [Google Scholar]
  184. Ghaemmaghami AM, Gough L, Sewell HF, Shakib F. 184.  2002. The proteolytic activity of the major dust mite allergen Der p 1 conditions dendritic cells to produce less interleukin-12: allergen-induced Th2 bias determined at the dendritic cell level. Clin. Exp. Allergy 32:1468–75 [Google Scholar]
  185. Traidl-Hoffmann C, Mariani V, Hochrein H, Karg K, Wagner H. 185.  et al. 2005. Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J. Exp. Med. 201:627–36 [Google Scholar]
  186. Kalinski P, Schuitemaker JH, Hilkens CM, Kapsenberg ML. 186.  1998. Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J. Immunol. 161:2804–9 [Google Scholar]
  187. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G. 187.  et al. 2002. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3:673–80 [Google Scholar]
  188. Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ. 188.  et al. 2005. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202:1213–23 [Google Scholar]
  189. Zhou B, Comeau MR, De Smedt T, Liggitt HD, Dahl ME. 189.  et al. 2005. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat. Immunol. 6:1047–53 [Google Scholar]
  190. Caron G, Delneste Y, Roelandts E, Duez C, Bonnefoy JY. 190.  et al. 2001. Histamine polarizes human dendritic cells into Th2 cell-promoting effector dendritic cells. J. Immunol. 167:3682–86 [Google Scholar]
  191. van Rijt LS, Jung S, Kleinjan A, Vos N, Willart M. 191.  et al. 2005. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med. 201:981–91 [Google Scholar]
  192. Kool M, Soullie T, van Nimwegen M, Willart MA, Muskens F. 192.  et al. 2008. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205:869–82 [Google Scholar]
  193. Trinchieri G. 193.  2003. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3:133–46 [Google Scholar]
  194. Edwards AD, Manickasingham SP, Sporri R, Diebold SS, Schulz O. 194.  et al. 2002. Microbial recognition via Toll-like receptor-dependent and -independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering. J. Immunol. 169:3652–60 [Google Scholar]
  195. Jacobson NG, Szabo SJ, Weber-Nordt RM, Zhong Z, Schreiber RD. 195.  et al. 1995. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J. Exp. Med. 181:1755–62 [Google Scholar]
  196. Bacon CM, Petricoin EF 3rd, Ortaldo JR, Rees RC, Larner AC. 196.  et al. 1995. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. PNAS 92:7307–11 [Google Scholar]
  197. Stoll S, Jonuleit H, Schmitt E, Muller G, Yamauchi H. 197.  et al. 1998. Production of functional IL-18 by different subtypes of murine and human dendritic cells (DC): DC-derived IL-18 enhances IL-12-dependent Th1 development. Eur. J. Immunol. 28:3231–39 [Google Scholar]
  198. Sugaya M, Nakamura K, Tamaki K. 198.  1999. Interleukins 18 and 12 synergistically upregulate interferon-γ production by murine dendritic epidermal T cells. J. Investig. Dermatol. 113:350–54 [Google Scholar]
  199. Pflanz S, Timans JC, Cheung J, Rosales R, Kanzler H. 199.  et al. 2002. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16:779–90 [Google Scholar]
  200. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. 200.  2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–69 [Google Scholar]
  201. Lugo-Villarino G, Maldonado-Lopez R, Possemato R, Penaranda C, Glimcher LH. 201.  2003. T-bet is required for optimal production of IFN-γ and antigen-specific T cell activation by dendritic cells. PNAS 100:7749–54 [Google Scholar]
  202. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA. 202.  2004. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117:515–26 [Google Scholar]
  203. Phythian-Adams AT, Cook PC, Lundie RJ, Jones LH, Smith KA. 203.  et al. 2010. CD11c depletion severely disrupts Th2 induction and development in vivo. J. Exp. Med. 207:2089–96 [Google Scholar]
  204. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F. 204.  et al. 1999. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283:1183–86 [Google Scholar]
  205. Klechevsky E, Morita R, Liu M, Cao Y, Coquery S. 205.  et al. 2008. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29:497–510 [Google Scholar]
  206. Sokol CL, Chu NQ, Yu S, Nish SA, Laufer TM, Medzhitov R. 206.  2009. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol. 10:713–20 [Google Scholar]
  207. Yoshimoto T, Yasuda K, Tanaka H, Nakahira M, Imai Y. 207.  et al. 2009. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat. Immunol. 10:706–12 [Google Scholar]
  208. Perrigoue JG, Saenz SA, Siracusa MC, Allenspach EJ, Taylor BC. 208.  et al. 2009. MHC class II-dependent basophil-CD4+ T cell interactions promote TH2 cytokine-dependent immunity. Nat. Immunol. 10:697–705 [Google Scholar]
  209. Voehringer D. 209.  2011. Basophils in allergic immune responses. Curr. Opin. Immunol. 23:789–93 [Google Scholar]
  210. Sullivan BM, Liang HE, Bando JK, Wu D, Cheng LE. 210.  et al. 2011. Genetic analysis of basophil function in vivo. Nat. Immunol. 12:527–35 [Google Scholar]
  211. Agrawal S, Agrawal A, Doughty B, Gerwitz A, Blenis J. 211.  et al. 2003. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J. Immunol. 171:4984–89 [Google Scholar]
  212. Karasuyama H, Mukai K, Obata K, Tsujimura Y, Wada T. 212.  2011. Nonredundant roles of basophils in immunity. Annu. Rev. Immunol. 29:45–69 [Google Scholar]
  213. Khodoun MV, Orekhova T, Potter C, Morris S, Finkelman FD. 213.  2004. Basophils initiate IL-4 production during a memory T-dependent response. J. Exp. Med. 200:857–70 [Google Scholar]
  214. Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB. 214.  et al. 2011. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477:229–33 [Google Scholar]
  215. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K. 215.  2002. Lipopolysaccharide-enhanced, Toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med. 196:1645–51 [Google Scholar]
  216. Piggott DA, Eisenbarth SC, Xu L, Constant SL, Huleatt JW. 216.  et al. 2005. MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J. Clin. Investig. 115:459–67 [Google Scholar]
  217. Magalhaes JG, Fritz JH, Le Bourhis L, Sellge G, Travassos LH. 217.  et al. 2008. Nod2-dependent Th2 polarization of antigen-specific immunity. J. Immunol. 181:7925–35 [Google Scholar]
  218. Fritz JH, Le Bourhis L, Sellge G, Magalhaes JG, Fsihi H. 218.  et al. 2007. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26:445–59 [Google Scholar]
  219. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. 219.  2009. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15:410–16 [Google Scholar]
  220. Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS. 220.  et al. 2009. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457:585–88 [Google Scholar]
  221. Schmidt M, Raghavan B, Muller V, Vogl T, Fejer G. 221.  et al. 2010. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat. Immunol. 11:814–19 [Google Scholar]
  222. Barrett NA, Rahman OM, Fernandez JM, Parsons MW, Xing W. 222.  et al. 2011. Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. J. Exp. Med. 208:593–604 [Google Scholar]
  223. Poulsen LK. 223.  2009. What makes an allergen more than an allergen?. Clin. Exp. Allergy 39:623–25 [Google Scholar]
  224. Kouzaki H, O'Grady SM, Lawrence CB, Kita H. 224.  2009. Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J. Immunol. 183:1427–34 [Google Scholar]
  225. Briot A, Deraison C, Lacroix M, Bonnart C, Robin A. 225.  et al. 2009. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J. Exp. Med. 206:1135–47 [Google Scholar]
  226. Kool M, Willart MA, van Nimwegen M, Bergen I, Pouliot P. 226.  et al. 2011. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 34:527–40 [Google Scholar]
  227. Yang D, Postnikov YV, Li Y, Tewary P, de la Rosa G. 227.  et al. 2012. High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses. J. Exp. Med. 209:157–71 [Google Scholar]
  228. Godefroy E, Manches O, Dreno B, Hochman T, Rolnitzky L. 228.  et al. 2011. Matrix metalloproteinase-2 conditions human dendritic cells to prime inflammatory TH2 cells via an IL-12- and OX40L-dependent pathway. Cancer Cell 19:333–46 [Google Scholar]
  229. Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C. 229.  et al. 2011. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med. 17:996–1002 [Google Scholar]
  230. Kaiser F, Cook D, Papoutsopoulou S, Rajsbaum R, Wu X. 230.  et al. 2009. TPL-2 negatively regulates interferon-β production in macrophages and myeloid dendritic cells. J. Exp. Med. 206:1863–71 [Google Scholar]
  231. Leon B, Ballesteros-Tato A, Lund FE. 231.  2014. Dendritic cells and B cells: unexpected partners in Th2 development. J. Immunol. 193:1531–37 [Google Scholar]
  232. Leon B, Ballesteros-Tato A, Browning JL, Dunn R, Randall TD, Lund FE. 232.  2012. Regulation of TH2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nat. Immunol. 13:681–90 [Google Scholar]
  233. Leyva-Castillo JM, Hener P, Michea P, Karasuyama H, Chan S. 233.  et al. 2013. Skin thymic stromal lymphopoietin initiates Th2 responses through an orchestrated immune cascade. Nat. Commun. 4:2847 [Google Scholar]
  234. Kinnebrew MA, Buffie CG, Diehl GE, Zenewicz LA, Leiner I. 234.  et al. 2012. Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36:276–87 [Google Scholar]
  235. Ivanov II, de Llanos Frutos R, Manel N, Yoshinaga K, Rifkin DB. 235.  et al. 2008. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–49 [Google Scholar]
  236. Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E. 236.  et al. 2009. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 206:2037–51 [Google Scholar]
  237. Manicassamy S, Pulendran B. 237.  2011. Dendritic cell control of tolerogenic responses. Immunol. Rev. 241:206–27 [Google Scholar]
  238. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K. 238.  et al. 2001. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194:769–79 [Google Scholar]
  239. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. 239.  2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196:1627–38 [Google Scholar]
  240. Boscardin SB, Hafalla JC, Masilamani RF, Kamphorst AO, Zebroski HA. 240.  et al. 2006. Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. J. Exp. Med. 203:599–606 [Google Scholar]
  241. Morelli AE, Thomson AW. 241.  2007. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat. Rev. Immunol. 7:610–21 [Google Scholar]
  242. Manicassamy S, Ravindran R, Deng J, Oluoch H, Denning TL. 242.  et al. 2009. Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nat. Med. 15:401–9 [Google Scholar]
  243. Karumuthil-Melethil S, Perez N, Li R, Vasu C. 243.  2008. Induction of innate immune response through TLR2 and dectin 1 prevents type 1 diabetes. J. Immunol. 181:8323–34 [Google Scholar]
  244. McKimmie CS, Moore M, Fraser AR, Jamieson T, Xu D. 244.  et al. 2009. A TLR2 ligand suppresses inflammation by modulation of chemokine receptors and redirection of leukocyte migration. Blood 113:4224–31 [Google Scholar]
  245. Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF. 245.  et al. 2008. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Investig. 118:205–16 [Google Scholar]
  246. Nichols JR, Aldrich AL, Mariani MM, Vidlak D, Esen N, Kielian T. 246.  2009. TLR2 deficiency leads to increased Th17 infiltrates in experimental brain abscesses. J. Immunol. 182:7119–30 [Google Scholar]
  247. Chau TA, McCully ML, Brintnell W, An G, Kasper KJ. 247.  et al. 2009. Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome. Nat. Med. 15:641–48 [Google Scholar]
  248. Depaolo RW, Tang F, Kim I, Han M, Levin N. 248.  et al. 2008. Toll-like receptor 6 drives differentiation of tolerogenic dendritic cells and contributes to LcrV-mediated plague pathogenesis. Cell Host Microbe 4:350–61 [Google Scholar]
  249. Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM. 249.  et al. 2003. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197:7–17 [Google Scholar]
  250. Bergman MP, Engering A, Smits HH, van Vliet SJ, van Bodegraven AA. 250.  et al. 2004. Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J. Exp. Med. 200:979–90 [Google Scholar]
  251. Caparros E, Munoz P, Sierra-Filardi E, Serrano-Gomez D, Puig-Kroger A. 251.  et al. 2006. DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood 107:3950–58 [Google Scholar]
  252. Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK. 252.  et al. 2008. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. PNAS 105:19474–79 [Google Scholar]
  253. Steeghs L, van Vliet SJ, Uronen-Hansson H, van Mourik A, Engering A. 253.  et al. 2006. Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function. Cell. Microbiol. 8:316–25 [Google Scholar]
  254. Manicassamy S, Pulendran B. 254.  2009. Retinoic acid-dependent regulation of immune responses by dendritic cells and macrophages. Semin. Immunol. 21:22–27 [Google Scholar]
  255. Staal FJ, Luis TC, Tiemessen MM. 255.  2008. WNT signalling in the immune system: WNT is spreading its wings. Nat. Rev. Immunol. 8:581–93 [Google Scholar]
  256. Clevers H. 256.  2006. Wnt/β-catenin signaling in development and disease. Cell 127:469–80 [Google Scholar]
  257. Reuter S, Martin H, Beckert H, Bros M, Montermann E. 257.  et al. 2014. The Wnt/β-catenin pathway attenuates experimental allergic airway disease. J. Immunol. 193:485–95 [Google Scholar]
  258. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K. 258.  et al. 2002. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–20 [Google Scholar]
  259. Zammit DJ, Cauley LS, Pham QM, Lefrancois L. 259.  2005. Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22:561–70 [Google Scholar]
  260. Pooley JL, Heath WR, Shortman K. 260.  2001. Cutting edge: Intravenous soluble antigen is presented to CD4 T cells by CD8 dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J. Immunol. 166:5327–30 [Google Scholar]
  261. Schulz O, Reis e Sousa C. 261.  2002. Cross-presentation of cell-associated antigens by CD8α+ dendritic cells is attributable to their ability to internalize dead cells. Immunology 107:183–89 [Google Scholar]
  262. Belz GT, Shortman K, Bevan MJ, Heath WR. 262.  2005. CD8α+ dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. J. Immunol. 175:196–200 [Google Scholar]
  263. Lundie RJ, de Koning-Ward TF, Davey GM, Nie CQ, Hansen DS. 263.  et al. 2008. Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8α+ dendritic cells. PNAS 105:14509–14 [Google Scholar]
  264. Belz GT, Smith CM, Eichner D, Shortman K, Karupiah G. 264.  et al. 2004. Cutting edge: Conventional CD8α+ dendritic cells are generally involved in priming CTL immunity to viruses. J. Immunol. 172:1996–2000 [Google Scholar]
  265. Mouries J, Moron G, Schlecht G, Escriou N, Dadaglio G, Leclerc C. 265.  2008. Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation. Blood 112:3713–22 [Google Scholar]
  266. Datta SK, Redecke V, Prilliman KR, Takabayashi K, Corr M. 266.  et al. 2003. A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J. Immunol. 170:4102–10 [Google Scholar]
  267. Schmidt CS, Mescher MF. 267.  1999. Adjuvant effect of IL-12: conversion of peptide antigen administration from tolerizing to immunizing for CD8+ T cells in vivo. J. Immunol. 163:2561–67 [Google Scholar]
  268. Hinnebusch AG. 268.  1994. The eIF-2α kinases: regulators of protein synthesis in starvation and stress. Semin. Cell Biol. 5:417–26 [Google Scholar]
  269. Wek RC, Jiang HY, Anthony TG. 269.  2006. Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34:7–11 [Google Scholar]
  270. Anderson P, Kedersha N. 270.  2002. Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones 7:213–21 [Google Scholar]
  271. Donnelly N, Gorman AM, Gupta S, Samali A. 271.  2013. The eIF2α kinases: their structures and functions. Cell. Mol. Life Sci. 70:3493–511 [Google Scholar]
  272. Tsalikis J, Croitoru DO, Philpott DJ, Girardin SE. 272.  2013. Nutrient sensing and metabolic stress pathways in innate immunity. Cell. Microbiol. 15:1632–41 [Google Scholar]
  273. Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E. 273.  2014. Keeping the eIF2α kinase Gcn2 in check. Biochim. Biophys. Acta 1843:1948–68 [Google Scholar]
  274. Hinnebusch AG. 274.  1993. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol. Microbiol. 10:215–23 [Google Scholar]
  275. Kedersha N, Ivanov P, Anderson P. 275.  2013. Stress granules and cell signaling: more than just a passing phase?. Trends Biochem. Sci. 38:494–506 [Google Scholar]
  276. Pulendran B. 276.  2009. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat. Rev. Immunol. 9:741–47 [Google Scholar]
  277. Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI. 277.  et al. 2009. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10:116–25 [Google Scholar]
  278. Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F. 278.  et al. 2012. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11:563–75 [Google Scholar]
  279. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y. 279.  et al. 2005. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–42 [Google Scholar]
  280. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR. 280.  et al. 2006. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor ζ-chain and induce a regulatory phenotype in naive T cells. J. Immunol. 176:6752–61 [Google Scholar]
  281. Laplante M, Sabatini DM. 281.  2012. mTOR signaling in growth control and disease. Cell 149:274–93 [Google Scholar]
  282. Carroll B, Korolchuk VI, Sarkar S. 282.  2014. Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis. Amino Acids In press. doi: 10.1007/s00726-014-1775-2
  283. Jewell JL, Russell RC, Guan KL. 283.  2013. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 14:133–39 [Google Scholar]
  284. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. 284.  2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303 [Google Scholar]
  285. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC. 285.  et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–501 [Google Scholar]
  286. Lamb CA, Yoshimori T, Tooze SA. 286.  2013. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14:759–74 [Google Scholar]
  287. Sarkar S. 287.  2013. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem. Soc. Trans. 41:1103–30 [Google Scholar]
  288. Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N. 288.  1998. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 12:502–13 [Google Scholar]
  289. Weichhart T, Costantino G, Poglitsch M, Rosner M, Zeyda M. 289.  et al. 2008. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29:565–77 [Google Scholar]
  290. Haidinger M, Poglitsch M, Geyeregger R, Kasturi S, Zeyda M. 290.  et al. 2010. A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. J. Immunol. 185:3919–31 [Google Scholar]
  291. Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A. 291.  et al. 2008. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI3K-mTOR-p70S6K pathway. Nat. Immunol. 9:1157–64 [Google Scholar]
  292. Araki K, Nagata K. 292.  2012. Protein folding and quality control in the ER. Cold Spring Harb. Perspect. Biol. 4:a015438 [Google Scholar]
  293. Smith MH, Ploegh HL, Weissman JS. 293.  2011. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–90 [Google Scholar]
  294. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. 294.  2009. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J. Cell Biol. 186:323–31 [Google Scholar]
  295. Hollien J, Weissman JS. 295.  2006. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313:104–7 [Google Scholar]
  296. Tebbi K, Rubin S, Cowan DH, McCulloch EA. 296.  1976. A comparison of granulopoiesis in culture from blood and marrow cells of nonleukemic individuals and patients with acute leukemia. Blood 48:235–43 [Google Scholar]
  297. Schuck S, Prinz WA, Thorn KS, Voss C, Walter P. 297.  2009. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 187:525–36 [Google Scholar]
  298. Cox JS, Shamu CE, Walter P. 298.  1993. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197–206 [Google Scholar]
  299. Hetz C. 299.  2012. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13:89–102 [Google Scholar]
  300. Ron D, Walter P. 300.  2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8:519–29 [Google Scholar]
  301. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E. 301.  et al. 2010. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115:4742–49 [Google Scholar]
  302. Jantsch J, Chakravortty D, Turza N, Prechtel AT, Buchholz B. 302.  et al. 2008. Hypoxia and hypoxia-inducible factor-1 α modulate lipopolysaccharide-induced dendritic cell activation and function. J. Immunol. 180:4697–705 [Google Scholar]
  303. Everts B, Amiel E, van der Windt GJ, Freitas TC, Chott R. 303.  et al. 2012. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120:1422–31 [Google Scholar]
  304. Pantel A, Teixeira A, Haddad E, Wood EG, Steinman RM, Longhi MP. 304.  2014. Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation. PLOS Biol. 12:e1001759 [Google Scholar]
  305. Everts B, Amiel E, Huang SC, Smith AM, Chang CH. 305.  et al. 2014. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15:323–32 [Google Scholar]
  306. Amiel E, Everts B, Fritz D, Beauchamp S, Ge B. 306.  et al. 2014. Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function. J. Immunol. 193:2821–30 [Google Scholar]
  307. Amiel E, Everts B, Freitas TC, King IL, Curtis JD. 307.  et al. 2012. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J. Immunol. 189:2151–58 [Google Scholar]
  308. Wang Y, Huang G, Zeng H, Yang K, Lamb RF, Chi H. 308.  2013. Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells. PNAS 110:E4894–903 [Google Scholar]
  309. Bakan I, Laplante M. 309.  2012. Connecting mTORC1 signaling to SREBP-1 activation. Curr. Opin. Lipidol. 23:226–34 [Google Scholar]
  310. Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA. 310.  et al. 2011. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 13:540–49 [Google Scholar]
  311. Land SC, Tee AR. 311.  2007. Hypoxia-inducible factor 1α is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J. Biol. Chem. 282:20534–43 [Google Scholar]
  312. Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R. 312.  et al. 2003. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112:645–57 [Google Scholar]
  313. Wobben R, Husecken Y, Lodewick C, Gibbert K, Fandrey J, Winning S. 313.  2013. Role of hypoxia inducible factor-1α for interferon synthesis in mouse dendritic cells. Biol. Chem. 394:495–505 [Google Scholar]
  314. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF. 314.  et al. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:238–42 [Google Scholar]
  315. Pawlus MR, Hu CJ. 315.  2013. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response. Cell. Signal. 25:1895–903 [Google Scholar]
  316. Zak DE, Tam VC, Aderem A. 316.  2014. Systems-level analysis of innate immunity. Annu. Rev. Immunol. 32:547–77 [Google Scholar]
  317. Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D. 317.  et al. 2014. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:363–69 [Google Scholar]
  318. Lee MN, Ye C, Villani AC, Raj T, Li W. 318.  et al. 2014. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343:1246980 [Google Scholar]
  319. Kalisky T, Blainey P, Quake SR. 319.  2011. Genomic analysis at the single-cell level. Annu. Rev. Genet. 45:431–45 [Google Scholar]
  320. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT. 320.  et al. 2013. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–40 [Google Scholar]
/content/journals/10.1146/annurev-immunol-020711-075049
Loading
/content/journals/10.1146/annurev-immunol-020711-075049
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error