1932

Abstract

The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including , , , and . We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032414-112032
2015-03-21
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/immunol/33/1/annurev-immunol-032414-112032.html?itemId=/content/journals/10.1146/annurev-immunol-032414-112032&mimeType=html&fmt=ahah

Literature Cited

  1. Spits H, Cupedo T. 1.  2012. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30:647–75 [Google Scholar]
  2. Lanier LL. 2.  2013. Shades of grey—the blurring view of innate and adaptive immunity. Nat. Rev. Immunol. 13:273–74 [Google Scholar]
  3. Bezman NA, Kim CC, Sun JC, Min-Oo G, Hendricks DW. 3.  et al. 2012. Molecular definition of the identity and activation of natural killer cells. Nat. Immunol. 13:101000–9 [Google Scholar]
  4. Guo P, Hirano M, Herrin BR, Li J, Yu C. 4.  et al. 2009. Dual nature of the adaptive immune system in lampreys. Nature 459:7248796–801 [Google Scholar]
  5. Hirano M, Guo P, McCurley N, Schorpp M, Das S. 5.  et al. 2013. Evolutionary implications of a third lymphocyte lineage in lampreys. Nature 501:7467435–38 [Google Scholar]
  6. Spangrude GJ, Heimfeld S, Weissman IL. 6.  1998. Purification and characterization of mouse hematopoietic stem cells. Science 241:486158–62 [Google Scholar]
  7. Morrison SJ, Weissman IL. 7.  1994. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1:8661–73 [Google Scholar]
  8. Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL. 8.  1995. The purification and characterization of fetal liver hematopoietic stem cells. PNAS 92:2210302–6 [Google Scholar]
  9. Forsberg EC, Prohaska SS, Katzman S, Heffner GC, Stuart JM, Weissman IL. 9.  2005. Differential expression of potential regulators in hematopoietic stem cells. PLOS Genet. 1:3e28 [Google Scholar]
  10. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. 10.  2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:71109–21 [Google Scholar]
  11. Christensen JL, Weissman IL. 11.  2001. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. PNAS 98:2514541–46 [Google Scholar]
  12. Adolfsson J, Borge OJ, Bryder D, Theilgaard-Mönch K, Astrand-Grundström I. 12.  et al. 2001. Upregulation of Flt3 expression within the bone marrow LinSca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15:4659–69 [Google Scholar]
  13. Kondo M, Weissman IL, Akashi K. 13.  1997. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:5661–72 [Google Scholar]
  14. Akashi K, Traver D, Miyamoto T, Weissman IL. 14.  2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:6774193–97 [Google Scholar]
  15. Adolfsson J, Månsson R, Buza-Vidas N, Hultquist A, Liuba K. 15.  et al. 2005. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 121:2295–306 [Google Scholar]
  16. Lu M, Kawamoto H, Katsube Y, Ikawa T, Katsura Y. 16.  2002. The common myelolymphoid progenitor: a key intermediate stage in hemopoiesis generating T and B cells. J. Immunol. 169:73519–25 [Google Scholar]
  17. Arinobu Y, Mizuno S, Chong Y, Shigematsu H, Iino T. 17.  et al. 2007. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1:4416–27 [Google Scholar]
  18. Ding L, Morrison SJ. 18.  2013. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:7440231–35 [Google Scholar]
  19. Igarashi H, Gregory SC, Yokota T, Sakaguchi N, Kincade PW. 19.  2002. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17:2117–30 [Google Scholar]
  20. Lai AY, Kondo M. 20.  2007. Identification of a bone marrow precursor of the earliest thymocytes in adult mouse. PNAS 104:156311–16 [Google Scholar]
  21. Böiers C, Carrelha J, Lutteropp M, Luc S, Green JCA. 21.  et al. 2013. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13:5535–48 [Google Scholar]
  22. De Obaldia ME, Bell JJ, Bhandoola A. 22.  2013. Early T-cell progenitors are the major granulocyte precursors in the adult mouse thymus. Blood 121:164–71 [Google Scholar]
  23. Zhang SL, Wang X, Manna S, Zlotoff DA, Bryson JL. 23.  et al. 2014. Chemokine treatment rescues profound T-lineage progenitor homing defect after bone marrow transplant conditioning in mice. Blood 124:2296–304 [Google Scholar]
  24. Inlay MA, Bhattacharya D, Sahoo D, Serwold T, Seita J. 24.  et al. 2009. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev. 23:202376–81 [Google Scholar]
  25. Manz MG, Traver D, Miyamoto T, Weissman IL, Akashi K. 25.  2001. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97:113333–41 [Google Scholar]
  26. Schlenner SM, Madan V, Busch K, Tietz A, Läufle C. 26.  et al. 2010. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32:3426–36 [Google Scholar]
  27. Dias S, Månsson R, Gurbuxani S, Sigvardsson M, Kee BL. 27.  2008. E2A proteins promote development of lymphoid-primed multipotent progenitors. Immunity 29:2217–27 [Google Scholar]
  28. Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P. 28.  et al. 1994. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79:1143–56 [Google Scholar]
  29. Liu P, Keller JR, Ortiz M, Tessarollo L, Rachel RA. 29.  et al. 2003. Bcl11a is essential for normal lymphoid development. Nat. Immunol. 4:6525–32 [Google Scholar]
  30. Scott EW, Simon MC, Anastasi J, Singh H. 30.  1994. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265:51781573–77 [Google Scholar]
  31. Gwin KA, Shapiro MB, Dolence JJ, Huang ZL, Medina KL. 31.  2013. Hoxa9 and Flt3 signaling synergistically regulate an early checkpoint in lymphopoiesis. J. Immunol. 191:2745–54 [Google Scholar]
  32. Zohren F, Souroullas GP, Luo M, Gerdemann U, Imperato MR. 32.  et al. 2012. The transcription factor Lyl-1 regulates lymphoid specification and the maintenance of early T lineage progenitors. Nat. Immunol. 13:8761–69 [Google Scholar]
  33. Yao Z, Cui Y, Watford WT, Bream JH, Yamaoka K. 33.  et al. 2006. Stat5a/b are essential for normal lymphoid development and differentiation. PNAS 103:41000–5 [Google Scholar]
  34. Satoh Y, Yokota T, Sudo T, Kondo M, Lai A. 34.  et al. 2013. The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. Immunity 38:61105–15 [Google Scholar]
  35. Dias S, Xu W, McGregor S, Kee B. 35.  2008. Transcriptional regulation of lymphocyte development. Curr. Opin. Genet. Dev. 18:5441–48 [Google Scholar]
  36. Ng SY-M, Yoshida T, Zhang J, Georgopoulos K. 36.  2009. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 30:4493–507 [Google Scholar]
  37. Borghesi L, Aites J, Nelson S, Lefterov P, James P, Gerstein R. 37.  2005. E47 is required for V(D)J recombinase activity in common lymphoid progenitors. J. Exp. Med. 202:121669–77 [Google Scholar]
  38. Yang Q, Kardava L, St. Leger A, Martincic K, Varnum-Finney B. 38.  et al. 2008. E47 controls the developmental integrity and cell cycle quiescence of multipotential hematopoietic progenitors. J. Immunol. 181:95885–94 [Google Scholar]
  39. De Obaldia ME, Bell JJ, Wang X, Harly C, Yashiro-Ohtani Y. 39.  et al. 2013. T cell development requires constraint of the myeloid regulator C/EBP-α by the Notch target and transcriptional repressor Hes1. Nat. Immunol. 14:121277–84 [Google Scholar]
  40. Yang Q, Monticelli LA, Saenz SA, Chi AW-S, Sonnenberg GF. 40.  et al. 2013. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38:4694–704 [Google Scholar]
  41. Laiosa CV, Stadtfeld M, Xie H, de Andres-Aguayo L, Graf T. 41.  2006. Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU.1 transcription factors. Immunity 25:5731–44 [Google Scholar]
  42. Xie H, Ye M, Feng R, Graf T. 42.  2004. Stepwise reprogramming of B cells into macrophages. Cell 117:5663–76 [Google Scholar]
  43. Yang Q, Saenz SA, Zlotoff DA, Artis D, Bhandoola A. 43.  2011. Cutting edge: Natural helper cells derive from lymphoid progenitors. J. Immunol. 187:115505–9 [Google Scholar]
  44. Possot C, Schmutz S, Chea S, Boucontet L, Louise A. 44.  et al. 2011. Notch signaling is necessary for adult, but not fetal, development of RORγt+ innate lymphoid cells. Nat. Immunol. 12:10949–58 [Google Scholar]
  45. Spencer SP, Wilhelm C, Yang Q, Hall JA, Bouladoux N. 45.  et al. 2014. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343:6169432–37 [Google Scholar]
  46. Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E. 46.  et al. 2012. Transcription factor RORα is critical for nuocyte development. Nat. Immunol. 13:3229–36 [Google Scholar]
  47. von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R. 47.  1995. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181:41519–26 [Google Scholar]
  48. Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA. 48.  et al. 2010. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33:5736–51 [Google Scholar]
  49. Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH. 49.  et al. 1996. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5:6537–49 [Google Scholar]
  50. Welner RS, Esplin BL, Garrett KP, Pelayo R, Luche H. 50.  et al. 2009. Asynchronous RAG-1 expression during B lymphopoiesis. J. Immunol. 183:127768–77 [Google Scholar]
  51. Karo JM, Schatz DG, Sun JC. 51.  2014. The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell 159:94–107 [Google Scholar]
  52. Kuo TC, Schlissel MS. 52.  2009. Mechanisms controlling expression of the RAG locus during lymphocyte development. Curr. Opin. Immunol. 21:2173–78 [Google Scholar]
  53. Treiber T, Mandel EM, Pott S, Györy I, Firner S. 53.  et al. 2010. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription-independent poising of chromatin. Immunity 32:5714–25 [Google Scholar]
  54. Nechanitzky R, Akbas D, Scherer S, Györy I, Hoyler T. 54.  et al. 2013. Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells. Nat. Immunol. 14:8867–75 [Google Scholar]
  55. Banerjee A, Northrup D, Boukarabila H, Jacobsen SEW, Allman D. 55.  2013. Transcriptional repression of Gata3 is essential for early B cell commitment. Immunity 38:5930–42 [Google Scholar]
  56. Souabni A, Cobaleda C, Schebesta M, Busslinger M. 56.  2002. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity 17:6781–93 [Google Scholar]
  57. Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CGK. 57.  et al. 2011. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12:111045–54 [Google Scholar]
  58. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T. 58.  et al. 2010. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463:7280540–44 [Google Scholar]
  59. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S. 59.  et al. 1999. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:6721702–6 [Google Scholar]
  60. Eberl G, Marmon S, Sunshine M-J, Rennert PD, Choi Y, Littman DR. 60.  2004. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5:164–73 [Google Scholar]
  61. Boos MD, Yokota Y, Eberl G, Kee BL. 61.  2007. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med. 204:51119–30 [Google Scholar]
  62. Carotta S, Pang SHM, Nutt SL, Belz GT. 62.  2011. Identification of the earliest NK-cell precursor in the mouse BM. Blood 117:205449–52 [Google Scholar]
  63. Kee BL. 63.  2009. E and ID proteins branch out. Nat. Rev. Immunol. 9:3175–84 [Google Scholar]
  64. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. 64.  2014. A committed precursor to innate lymphoid cells. Nature 508:7496397–401 [Google Scholar]
  65. Yoshida H, Kawamoto H, Santee SM, Hashi H, Honda K. 65.  et al. 2001. Expression of α4β7 integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J. Immunol. 167:52511–21 [Google Scholar]
  66. Mebius RE, Streeter PR, Michie S, Butcher EC, Weissman IL. 66.  1996. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+CD3 cells to colonize lymph nodes. PNAS 93:2011019–24 [Google Scholar]
  67. Mebius RE, Rennert P, Weissman IL. 67.  1997. Developing lymph nodes collect CD4+CD3 LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7:4493–504 [Google Scholar]
  68. Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ. 68.  et al. 2010. Lineage relationship analysis of RORγ+ innate lymphoid cells. Science 330:6004665–69 [Google Scholar]
  69. Yu X, Wang Y, Deng M, Li Y. 69.  et al. 2014. The basic leucine zipper transcription factor NFIL3 directs the development of common innate lymphoid cell precursors. eLife 3:e04406 [Google Scholar]
  70. Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W. 70.  et al. 2008. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9:91055–64 [Google Scholar]
  71. Savage AK, Constantinides MG, Han J, Picard D, Martin E. 71.  et al. 2008. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29:3391–403 [Google Scholar]
  72. Raberger J, Schebesta A, Sakaguchi S, Boucheron N, Blomberg KEM. 72.  et al. 2008. The transcriptional regulator PLZF induces the development of CD44 high memory phenotype T cells. PNAS 105:4617919–24 [Google Scholar]
  73. Kovalovsky D, Alonzo ES, Uche OU, Eidson M, Nichols KE, Sant'Angelo DB. 73.  2010. PLZF induces the spontaneous acquisition of memory/effector functions in T cells independently of NKT cell-related signals. J. Immunol. 184:126746–55 [Google Scholar]
  74. Mielke LA, Groom JR, Rankin LC, Seillet C, Masson F. 74.  et al. 2013. TCF-1 controls ILC2 and NKp46+RORγt+ innate lymphocyte differentiation and protection in intestinal inflammation. J. Immunol. 191:84383–91 [Google Scholar]
  75. Bernink JH, Peters CP, Munneke M. Velde AA, Meijer SL. 75. , te et al. 2013. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues.. Nat. Immunol. 14:3221–29 [Google Scholar]
  76. Daussy C, Faure F, Mayol K, Viel S, Gasteiger G. 76.  et al. 2014. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 211:3563–77 [Google Scholar]
  77. Gordon SM, Chaix J, Rupp LJ, Wu J, Madera S. 77.  et al. 2012. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36:155–67 [Google Scholar]
  78. Takeda K, Cretney E, Hayakawa Y, Ota T, Akiba H. 78.  et al. 2005. TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105:52082–89 [Google Scholar]
  79. Kim S, Iizuka K, Kang HS, Dokun A, French AR. 79.  et al. 2002. In vivo developmental stages in murine natural killer cell maturation. Nat. Immunol. 3:6523–28 [Google Scholar]
  80. Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T. 80.  et al. 2014. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157:2340–56 [Google Scholar]
  81. Verykokakis M, Krishnamoorthy V, Iavarone A, Lasorella A, Sigvardsson M, Kee BL. 81.  2013. Essential functions for ID proteins at multiple checkpoints in invariant NKT cell development. J. Immunol. 191:125973–83 [Google Scholar]
  82. Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S. 82.  et al. 2013. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38:4769–81 [Google Scholar]
  83. Gascoyne DM, Long E, Veiga-Fernandes H, de Boer J, Williams O. 83.  et al. 2009. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10:101118–24 [Google Scholar]
  84. Kamizono S, Duncan GS, Seidel MG, Morimoto A, Hamada K. 84.  et al. 2009. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med. 206:132977–86 [Google Scholar]
  85. Seillet C, Rankin LC, Groom JR, Mielke LA, Tellier J. 85.  et al. 2014. Nfil3 is required for the development of all innate lymphoid cell subsets. J. Exp. Med. 211:91733–40 [Google Scholar]
  86. Seillet C, Huntington ND, Gangatirkar P, Axelsson E, Minnich M. 86.  et al. 2014. Differential requirement for Nfil3 during NK cell development. J. Immunol. 192:62667–76 [Google Scholar]
  87. Geiger TL, Abt MC, Gasteiger G, Firth MA, O'Connor MH. 87.  et al. 2014. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211:91723–31 [Google Scholar]
  88. Crotta S, Gkioka A, Male V, Duarte JH, Davidson S. 88.  et al. 2014. The transcription factor E4BP4 is not required for extramedullary pathways of NK cell development. J. Immunol. 192:62677–88 [Google Scholar]
  89. Cortez VS, Fuchs A, Cella M, Gilfillan S, Colonna M. 89.  2014. Cutting edge: Salivary gland NK cells develop independently of Nfil3 in steady-state. J. Immunol. 192:104487–91 [Google Scholar]
  90. Firth MA, Madera S, Beaulieu AM, Gasteiger G, Castillo EF. 90.  et al. 2013. Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J. Exp. Med. 210:132981–90 [Google Scholar]
  91. Kashiwada M, Cassel SL, Colgan JD, Rothman PB. 91.  2011. NFIL3/E4BP4 controls type 2 T helper cell cytokine expression. EMBO J. 30:102071–82 [Google Scholar]
  92. Rothenberg EV. 92.  2014. Transcriptional control of early T and B cell developmental choices. Annu. Rev. Immunol. 32:283–321 [Google Scholar]
  93. Sambandam A, Maillard I, Zediak VP, Xu L, Gerstein RM. 93.  et al. 2005. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat. Immunol. 6:7663–70 [Google Scholar]
  94. Tan JB, Visan I, Yuan JS, Guidos CJ. 94.  2005. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat. Immunol. 6:7671–79 [Google Scholar]
  95. Georgescu C, Longabaugh WJR, Scripture-Adams DD, David-Fung E-S, Yui MA. 95.  et al. 2008. A gene regulatory network armature for T lymphocyte specification. PNAS 105:5120100–5 [Google Scholar]
  96. Maillard I, Tu L, Sambandam A, Yashiro-Ohtani Y, Millholland J. 96.  et al. 2006. The requirement for Notch signaling at the beta-selection checkpoint in vivo is absolute and independent of the pre-T cell receptor. J. Exp. Med. 203:102239–45 [Google Scholar]
  97. Reizis B, Leder P. 97.  2002. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev. 16:3295–300 [Google Scholar]
  98. Allman D, Sambandam A, Kim S, Miller JP, Pagan A. 98.  et al. 2003. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol. 4:2168–74 [Google Scholar]
  99. Wu L, Antica M, Johnson GR, Scollay R, Shortman K. 99.  1991. Developmental potential of the earliest precursor cells from the adult mouse thymus. J. Exp. Med. 174:61617–27 [Google Scholar]
  100. Wu L, Scollay R, Egerton M, Pearse M, Spangrude GJ, Shortman K. 100.  1991. CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature 349:630471–74 [Google Scholar]
  101. Masuda K, Kakugawa K, Nakayama T, Minato N, Katsura Y, Kawamoto H. 101.  2007. T cell lineage determination precedes the initiation of TCRβ gene rearrangement. J. Immunol. 179:63699–706 [Google Scholar]
  102. Taghon TN, David E-S, Zúñiga-Pflücker JC, Rothenberg EV. 102.  2005. Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev. 19:8965–78 [Google Scholar]
  103. Constantinides MG, Bendelac A. 103.  2013. Transcriptional regulation of the NKT cell lineage. Curr. Opin. Immunol. 25:2161–67 [Google Scholar]
  104. Bendelac A, Bonneville M, Kearney JF. 104.  2001. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 1:3177–86 [Google Scholar]
  105. Lantz O, Bendelac A. 105.  1994. An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I–specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180:31097–106 [Google Scholar]
  106. Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA. 106.  2013. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14:111146–54 [Google Scholar]
  107. Watarai H, Sekine-Kondo E, Shigeura T, Motomura Y, Yasuda T. 107.  et al. 2012. Development and function of invariant natural killer T cells producing TH2- and TH17-cytokines. PLOS Biol. 10:2e1001255 [Google Scholar]
  108. Zhu J, Yamane H, Paul WE. 108.  2010. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28:445–89 [Google Scholar]
  109. McDonald BD, Constantinides MG, Bendelac A. 109.  2013. Polarized effector programs for innate-like thymocytes. Nat. Immunol. 14:111110–11 [Google Scholar]
  110. Terashima A, Watarai H, Inoue S, Sekine E, Nakagawa R. 110.  et al. 2008. A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J. Exp. Med. 205:122727–33 [Google Scholar]
  111. Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA. 111.  et al. 2008. Diverse cytokine production by NKT cell subsets and identification of an IL-17–producing CD4NK1.1 NKT cell population. PNAS 105:3211287–92 [Google Scholar]
  112. Bezbradica JS, Hill T, Stanic AK, Van Kaer L, Joyce S. 112.  2005. Commitment toward the natural T (iNKT) cell lineage occurs at the CD4+8+ stage of thymic ontogeny. PNAS 102:145114–19 [Google Scholar]
  113. Guo J, Hawwari A, Li H, Sun Z, Mahanta SK. 113.  et al. 2002. Regulation of the TCRα repertoire by the survival window of CD4+CD8+ thymocytes. Nat. Immunol. 3:5469–76 [Google Scholar]
  114. Kim PJ, Pai S-Y, Brigl M, Besra GS, Gumperz J, Ho I-C. 114.  2006. GATA-3 regulates the development and function of invariant NKT cells. J. Immunol. 177:106650–59 [Google Scholar]
  115. Schild H, Mavaddat N, Litzenberger C, Ehrich EW, Davis MM. 115.  et al. 1994. The nature of major histocompatibility complex recognition by γδ T cells. Cell 76:129–37 [Google Scholar]
  116. Sciammas R, Bluestone JA. 116.  1998. HSV-1 glycoprotein I-reactive TCRγδ cells directly recognize the peptide backbone in a conformationally dependent manner. J. Immunol. 161:105187–92 [Google Scholar]
  117. Weintraub BC, Jackson MR, Hedrick SM. 117.  1994. Gamma delta T cells can recognize nonclassical MHC in the absence of conventional antigenic peptides. J. Immunol. 153:73051–58 [Google Scholar]
  118. Azuara V, Levraud JP, Lembezat MP, Pereira P. 118.  1997. A novel subset of adult γδ thymocytes that secretes a distinct pattern of cytokines and expresses a very restricted T cell receptor repertoire.. Eur. J. Immunol. 27:2544–53 [Google Scholar]
  119. Jensen KD, Su X, Shin S, Li L, Youssef S. 119.  et al. 2008. Thymic selection determines γδ T cell effector fate: Antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 29:190–100 [Google Scholar]
  120. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V. 120.  et al. 2009. CD27 is a thymic determinant of the balance between interferon-γ- and interleukin 17-producing γδ T cell subsets. Nat. Immunol. 10:4427–36 [Google Scholar]
  121. Narayan K, Sylvia KE, Malhotra N, Yin CC, Martens G. 121.  et al. 2012. Intrathymic programming of effector fates in three molecularly distinct γδ T cell subtypes. Nat. Immunol. 13:5511–18 [Google Scholar]
  122. Malhotra N, Narayan K, Cho OH, Sylvia KE, Yin C. 122.  et al. 2013. A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity 38:4681–93 [Google Scholar]
  123. Ardavin C, Wu L, Li CL, Shortman K. 123.  1993. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362:6422761–63 [Google Scholar]
  124. Cherrier M, Sawa S, Eberl G. 124.  2012. Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J. Exp. Med. 209:4729–40 [Google Scholar]
  125. Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T. 125.  et al. 2008. Adult T-cell progenitors retain myeloid potential. Nature 452:7188768–72 [Google Scholar]
  126. Bell JJ, Bhandoola A. 126.  2008. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 452:7188764–67 [Google Scholar]
  127. Benz C, Bleul CC. 127.  2005. A multipotent precursor in the thymus maps to the branching point of the T versus B lineage decision. J. Exp. Med. 202:121–31 [Google Scholar]
  128. Luc S, Luis TC, Boukarabila H, Macaulay IC, Buza-Vidas N. 128.  et al. 2012. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat. Immunol. 13:4412–19 [Google Scholar]
  129. Schmitt TM, Ciofani M, Petrie HT, Zúñiga-Pflücker JC. 129.  2004. Maintenance of T cell specification and differentiation requires recurrent Notch receptor–ligand interactions. J. Exp. Med. 200:4469–79 [Google Scholar]
  130. García-Ojeda ME, Klein Wolterink RGJ, Lemaître F, Richard-Le Goff O, Hasan M. 130.  et al. 2013. GATA-3 promotes T-cell specification by repressing B-cell potential in pro-T cells in mice. Blood 121:101749–59 [Google Scholar]
  131. Weber BN, Chi AW-S, Chavez A, Yashiro-Ohtani Y, Yang Q. 131.  et al. 2011. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476:735863–68 [Google Scholar]
  132. Feyerabend TB, Terszowski G, Tietz A, Blum C, Luche H. 132.  et al. 2009. Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms. Immunity 30:167–79 [Google Scholar]
  133. Wilson A, MacDonald HR, Radtke F. 133.  2001. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J. Exp. Med. 194:71003–12 [Google Scholar]
  134. Rothenberg EV, Zhang J, Li L. 134.  2010. Multilayered specification of the T-cell lineage fate. Immunol. Rev. 238:1150–68 [Google Scholar]
  135. Yui MA, Rothenberg EV. 135.  2014. Developmental gene networks: a triathlon on the course to T cell identity. Nat. Rev. Immunol. 14:8529–45 [Google Scholar]
  136. Ikawa T, Hirose S, Masuda K, Kakugawa K, Satoh R. 136.  et al. 2010. An essential developmental checkpoint for production of the T cell lineage. Science 329:598793–96 [Google Scholar]
  137. Li P, Burke S, Wang J, Chen X, Ortiz M. 137.  et al. 2010. Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 329:598785–89 [Google Scholar]
  138. Li J, Park J, Foss D, Goldschneider I. 138.  2009. Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. J. Exp. Med. 206:3607–22 [Google Scholar]
  139. Ramond C, Berthault C, Burlen-Defranoux O, de Sousa AP, Guy-Grand D. 139.  et al. 2014. Two waves of distinct hematopoietic progenitor cells colonize the fetal thymus. Nat. Immunol. 15:127–35 [Google Scholar]
  140. Lu M, Tayu R, Ikawa T, Masuda K, Matsumoto I. 140.  et al. 2005. The earliest thymic progenitors in adults are restricted to T, NK, and dendritic cell lineage and have a potential to form more diverse TCRβ chains than fetal progenitors. J. Immunol. 175:95848–56 [Google Scholar]
  141. Porritt HE, Rumfelt LL, Tabrizifard S, Schmitt TM, Zúñiga-Pflücker JC, Petrie HT. 141.  2004. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20:6735–45 [Google Scholar]
  142. Li L, Leid M, Rothenberg EV. 142.  2010. An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 329:598789–93 [Google Scholar]
  143. Di Santo JP. 143.  2006. Natural killer cell developmental pathways: a question of balance. Annu. Rev. Immunol. 24:257–86 [Google Scholar]
  144. Di Santo JP, Vosshenrich CA. 144.  2006. Bone marrow versus thymic pathways of natural killer cell development. Immunol. Rev. 214:35–46 [Google Scholar]
  145. Vosshenrich CAJ, García-Ojeda ME, Samson-Villéger SI, Pasqualetto V, Enault L. 145.  et al. 2006. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat. Immunol. 7:111217–24 [Google Scholar]
  146. Hansson M, Kärre K, Kiessling R, Roder J, Andersson B, Häyry P. 146.  1979. Natural NK-cell targets in the mouse thymus: characteristics of the sensitive cell population. J. Immunol. 123:2765–71 [Google Scholar]
  147. Schott E, Bonasio R, Ploegh HL. 147.  2003. Elimination in vivo of developing T cells by natural killer cells. J. Exp. Med. 198:81213–24 [Google Scholar]
  148. Koch U, Fiorini E, Benedito R, Besseyrias V, Schuster-Gossler K. 148.  et al. 2008. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J. Exp. Med. 205:112515–23 [Google Scholar]
  149. Fiorini E, Ferrero I, Merck E, Favre S, Pierres M. 149.  et al. 2008. Cutting edge: Thymic crosstalk regulates delta-like 4 expression on cortical epithelial cells. J. Immunol. 181:128199–203 [Google Scholar]
  150. Rossi SW, Kim M-Y, Leibbrandt A, Parnell SM, Jenkinson WE. 150.  et al. 2007. RANK signals from CD4+3 inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J. Exp. Med. 204:61267–72 [Google Scholar]
  151. Dudakov JA, Hanash AM, Jenq RR, Young LF, Ghosh A. 151.  et al. 2012. Interleukin-22 drives endogenous thymic regeneration in mice. Science 336:607791–95 [Google Scholar]
  152. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J. 152.  et al. 1999. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10:5547–58 [Google Scholar]
  153. Maillard I, Weng AP, Carpenter AC, Rodriguez CG, Sai H. 153.  et al. 2004. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104:61696–702 [Google Scholar]
  154. Lehar SM, Dooley J, Farr AG, Bevan MJ. 154.  2005. Notch ligands Delta1 and Jagged1 transmit distinct signals to T-cell precursors. Blood 105:41440–47 [Google Scholar]
  155. Ikawa T, Kawamoto H, Goldrath AW, Murre C. 155.  2006. E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. J. Exp. Med. 203:51329–42 [Google Scholar]
  156. Hozumi K, Mailhos C, Negishi N, Hirano K, Yahata T. 156.  et al. 2008. Delta-like 4 is indispensable in thymic environment specific for T cell development. J. Exp. Med. 205:112507–13 [Google Scholar]
  157. Besseyrias V, Fiorini E, Strobl LJ, Zimber-Strobl U, Dumortier A. 157.  et al. 2007. Hierarchy of Notch-Delta interactions promoting T cell lineage commitment and maturation. J. Exp. Med. 204:2331–43 [Google Scholar]
  158. Yashiro-Ohtani Y, He Y, Ohtani T, Jones ME, Shestova O. 158.  et al. 2009. Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A. Genes Dev. 23:141665–76 [Google Scholar]
  159. Yu S, Xue H-H. 159.  2013. TCF-1 mediates repression of Notch pathway in T lineage-committed early thymocytes. Blood 121:194008–9 [Google Scholar]
  160. Han W, Ye Q, Moore MA. 160.  2000. A soluble form of human Delta-like-1 inhibits differentiation of hematopoietic progenitor cells. Blood 95:51616–25 [Google Scholar]
  161. Jones P, May G, Healy L, Brown J, Hoyne G. 161.  et al. 1998. Stromal expression of Jagged 1 promotes colony formation by fetal hematopoietic progenitor cells. Blood 92:51505–11 [Google Scholar]
  162. Radtke F, Wilson A, Mancini SJC, MacDonald HR. 162.  2004. Notch regulation of lymphocyte development and function. Nat. Immunol. 5:3247–53 [Google Scholar]
  163. Schmitt TM, Zúñiga-Pflücker JC. 163.  2002. Induction of T cell development from hematopoietic progenitor cells by Delta-like-1 in vitro. Immunity 17:6749–56 [Google Scholar]
  164. Harman BC, Jenkinson WE, Parnell SM, Rossi SW, Jenkinson EJ, Anderson G. 164.  2005. T/B lineage choice occurs prior to intrathymic Notch signaling. Blood 106:3886–92 [Google Scholar]
  165. Yamaguchi E, Chiba S, Kumano K, Kunisato A, Takahashi T. 165.  et al. 2002. Expression of Notch ligands, Jagged1, 2 and Delta1 in antigen presenting cells in mice. Immunol. Lett. 81:159–64 [Google Scholar]
  166. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA. 166.  2004. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117:4515–26 [Google Scholar]
  167. Tanigaki K, Han H, Yamamoto N, Tashiro K, Ikegawa M. 167.  et al. 2002. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat. Immunol. 3:5443–50 [Google Scholar]
  168. Tan JB, Xu K, Cretegny K, Visan I, Yuan JS. 168.  et al. 2009. Lunatic and Manic Fringe cooperatively enhance marginal zone B cell precursor competition for Delta-like 1 in splenic endothelial niches. Immunity 30:2254–63 [Google Scholar]
  169. Schröder N, Gossler A. 169.  2002. Expression of Notch pathway components in fetal and adult mouse small intestine. Gene Expr. Patterns 2:3–4247–50 [Google Scholar]
  170. Hoyler T, Klose CSN, Souabni A, Turqueti-Neves A, Pfeifer D. 170.  et al. 2012. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37:4634–48 [Google Scholar]
  171. Lee K, Nam KT, Cho SH, Gudapati P, Hwang Y. 171.  et al. 2012. Vital roles of mTOR complex 2 in Notch-driven thymocyte differentiation and leukemia. J. Exp. Med. 209:4713–28 [Google Scholar]
  172. Perumalsamy LR, Marcel N, Kulkarni S, Radtke F, Sarin A. 172.  2012. Distinct spatial and molecular features of Notch pathway assembly in regulatory T cells. Sci. Signal. 5:234ra53 [Google Scholar]
  173. Perumalsamy LR, Nagala M, Banerjee P, Sarin A. 173.  2009. A hierarchical cascade activated by non-canonical Notch signaling and the mTOR-Rictor complex regulates neglect-induced death in mammalian cells. Cell Death Differ. 16:6879–89 [Google Scholar]
  174. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD. 174.  et al. 2012. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13:2144–51 [Google Scholar]
  175. Rankin LC, Groom JR, Chopin M, Herold MJ, Walker JA. 175.  et al. 2013. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat. Immunol. 14:4389–95 [Google Scholar]
  176. Sciumé G, Hirahara K, Takahashi H, Laurence A, Villarino AV. 176.  et al. 2012. Distinct requirements for T-bet in gut innate lymphoid cells. J. Exp. Med. 209:132331–38 [Google Scholar]
  177. Izon DJ, Aster JC, He Y, Weng A, Karnell FG. 177.  et al. 2002. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity 16:2231–43 [Google Scholar]
  178. Yun TJ, Bevan MJ. 178.  2003. Notch-regulated ankyrin-repeat protein inhibits Notch1 signaling: multiple Notch1 signaling pathways involved in T cell development. J. Immunol. 170:125834–41 [Google Scholar]
  179. Germar K, Dose M, Konstantinou T, Zhang J, Wang H. 179.  et al. 2011. T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. PNAS 108:5020060–65 [Google Scholar]
  180. Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R. 180.  1998. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8:111–20 [Google Scholar]
  181. Verbeek S, Izon D, Hofhuis F, Robanus-Maandag E, te Riele H. 181.  et al. 1995. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374:651770–74 [Google Scholar]
  182. Goux D, Coudert JD, Maurice D, Scarpellino L, Jeannet G. 182.  et al. 2005. Cooperating pre-T-cell receptor and TCF-1-dependent signals ensure thymocyte survival. Blood 106:51726–33 [Google Scholar]
  183. Schilham MW, Wilson A, Moerer P, Benaissa-Trouw BJ, Cumano A, Clevers HC. 183.  1998. Critical involvement of Tcf-1 in expansion of thymocytes. J. Immunol. 161:83984–91 [Google Scholar]
  184. Yu S, Zhou X, Steinke FC, Liu C, Chen S-C. 184.  et al. 2012. The TCF-1 and LEF-1 transcription factors have cooperative and opposing roles in T cell development and malignancy. Immunity 37:5813–26 [Google Scholar]
  185. Steinke FC, Xue H-H. 185.  2014. From inception to output, Tcf1 and Lef1 safeguard development of T cells and innate immune cells. Immunol. Res. 59:1–345–55 [Google Scholar]
  186. Del Real MM, Rothenberg EV. 186.  2013. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. Development 140:61207–19 [Google Scholar]
  187. Taghon T, Yui MA, Rothenberg EV. 187.  2007. Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nat. Immunol. 8:8845–55 [Google Scholar]
  188. Giese K, Pagel J, Grosschedl R. 188.  1997. Functional analysis of DNA bending and unwinding by the high mobility group domain of LEF-1. PNAS 94:2412845–50 [Google Scholar]
  189. Gounari F, Aifantis I, Martin C, Fehling H-J, Hoeflinger S. 189.  et al. 2002. Tracing lymphopoiesis with the aid of a pTα-controlled reporter gene. Nat. Immunol. 3:5489–96 [Google Scholar]
  190. Cobas M, Wilson A, Ernst B, Mancini SJC, MacDonald HR. 190.  et al. 2004. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J. Exp. Med. 199:2221–29 [Google Scholar]
  191. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N. 191.  et al. 2008. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 111:1142–49 [Google Scholar]
  192. Koch U, Wilson A, Cobas M, Kemler R, MacDonald HR, Radtke F. 192.  2008. Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 111:1160–64 [Google Scholar]
  193. Ohteki T, Wilson A, Verbeek S, MacDonald HR, Clevers H. 193.  1996. Selectively impaired development of intestinal T cell receptor γδ+ cells and liver CD4+ NK1+ T cell receptor αβ+ cells in T cell factor-1-deficient mice. Eur. J. Immunol. 26:2351–55 [Google Scholar]
  194. Yu Q, Sharma A, Oh SY, Moon H-G, Hossain MZ. 194.  et al. 2009. T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-gamma. Nat. Immunol. 10:9992–99 [Google Scholar]
  195. Stock P, Lombardi V, Kohlrautz V, Akbari O. 195.  2009. Induction of airway hyperreactivity by IL-25 is dependent on a subset of invariant NKT cells expressing IL-17RB. J. Immunol. 182:85116–22 [Google Scholar]
  196. Held W, Clevers H, Grosschedl R. 196.  2003. Redundant functions of TCF-1 and LEF-1 during T and NK cell development, but unique role of TCF-1 for Ly49 NK cell receptor acquisition. Eur. J. Immunol. 33:51393–98 [Google Scholar]
  197. Held W, Kunz B, Lowin-Kropf B, van de Wetering M, Clevers H. 197.  1999. Clonal acquisition of the Ly49A NK cell receptor is dependent on the trans-acting factor TCF-1. Immunity 11:4433–42 [Google Scholar]
  198. Hosoya T, Kuroha T, Moriguchi T, Cummings D, Maillard I. 198.  et al. 2009. GATA-3 is required for early T lineage progenitor development. J. Exp. Med. 206:132987–3000 [Google Scholar]
  199. Hozumi K, Negishi N, Tsuchiya I, Abe N, Hirano K. 199.  et al. 2008. Notch signaling is necessary for GATA3 function in the initiation of T cell development. Eur. J. Immunol. 38:4977–85 [Google Scholar]
  200. Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E. 200.  et al. 1995. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat. Genet. 11:140–44 [Google Scholar]
  201. Ting CN, Olson MC, Barton KP, Leiden JM. 201.  1996. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384:6608474–78 [Google Scholar]
  202. Pai S-Y, Truitt ML, Ting C-N, Leiden JM, Glimcher LH, Ho I-C. 202.  2003. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19:6863–75 [Google Scholar]
  203. Henderson AJ, McDougall S, Leiden J, Calame KL. 203.  1994. GATA elements are necessary for the activity and tissue specificity of the T-cell receptor beta-chain transcriptional enhancer. Mol. Cell. Biol. 14:64286–94 [Google Scholar]
  204. Joulin V, Bories D, Eléouet JF, Labastie MC, Chrétien S. 204.  et al. 1991. A T-cell specific TCR delta DNA binding protein is a member of the human GATA family. EMBO J. 10:71809–16 [Google Scholar]
  205. Ko LJ, Yamamoto M, Leonard MW, George KM, Ting P, Engel JD. 205.  1991. Murine and human T-lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol. Cell. Biol. 11:52778–84 [Google Scholar]
  206. Marine J, Winoto A. 206.  1991. The human enhancer-binding protein Gata3 binds to several T-cell receptor regulatory elements. PNAS 88:167284–88 [Google Scholar]
  207. Wei G, Abraham BJ, Yagi R, Jothi R, Cui K. 207.  et al. 2011. Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. Immunity 35:2299–311 [Google Scholar]
  208. Zhang JA, Mortazavi A, Williams BA, Wold BJ, Rothenberg EV. 208.  2012. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell 149:2467–82 [Google Scholar]
  209. Hernández-Hoyos G, Anderson MK, Wang C, Rothenberg EV, Alberola-Ila J. 209.  2003. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19:183–94 [Google Scholar]
  210. Wang L, Wildt KF, Zhu J, Zhang X, Feigenbaum L. 210.  et al. 2008. Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4+ T cells. Nat. Immunol. 9:101122–30 [Google Scholar]
  211. Xu W, Carr T, Ramirez K, McGregor S, Sigvardsson M, Kee BL. 211.  2013. E2A transcription factors limit expression of Gata3 to facilitate T lymphocyte lineage commitment. Blood 121:91534–42 [Google Scholar]
  212. Pai S-Y, Truitt ML, Ho I-C. 212.  2004. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. PNAS 101:71993–98 [Google Scholar]
  213. Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg A. 213.  et al. 2004. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nat. Immunol. 5:111157–65 [Google Scholar]
  214. Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N. 214.  et al. 2014. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 40:3378–88 [Google Scholar]
  215. Wang Y, Misumi I, Gu A-D, Curtis TA, Su L. 215.  et al. 2013. GATA-3 controls the maintenance and proliferation of T cells downstream of TCR and cytokine signaling. Nat. Immunol. 14:7714–22 [Google Scholar]
  216. Furusawa J, Moro K, Motomura Y, Okamoto K, Zhu J. 216.  et al. 2013. Critical role of p38 and GATA3 in natural helper cell function. J. Immunol. 191:41818–26 [Google Scholar]
  217. Liang H-E, Reinhardt RL, Bando JK, Sullivan BM, Ho I-C, Locksley RM. 217.  2012. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat. Immunol. 13:158–66 [Google Scholar]
  218. Mjösberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM. 218.  et al. 2011. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 12:111055–62 [Google Scholar]
  219. Serafini N, Klein Wolterink RGJ, Satoh-Takayama N, Xu W, Vosshenrich CAJ. 219.  et al. 2014. Gata3 drives development of RORγt+ group 3 innate lymphoid cells. J. Exp. Med. 211:2199–208 [Google Scholar]
  220. Hock H, Orkin SH. 220.  2006. Zinc-finger transcription factor Gfi-1: versatile regulator of lymphocytes, neutrophils and hematopoietic stem cells. Curr. Opin. Hematol. 13:11–6 [Google Scholar]
  221. Zeng H, Yücel R, Kosan C, Klein-Hitpass L, Möröy T. 221.  2004. Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J. 23:204116–25 [Google Scholar]
  222. Hock H, Hamblen MJ, Rooke HM, Traver D, Bronson RT. 222.  et al. 2003. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18:1109–20 [Google Scholar]
  223. Yücel R, Karsunky H, Klein-Hitpass L, Möröy T. 223.  2003. The transcriptional repressor Gfi1 affects development of early, uncommitted c-Kit+ T cell progenitors and CD4/CD8 lineage decision in the thymus. J. Exp. Med. 197:7831–44 [Google Scholar]
  224. Yücel R, Kosan C, Heyd F, Möröy T. 224.  2004. Gfi1:green fluorescent protein knock-in mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development. J. Biol. Chem. 279:3940906–17 [Google Scholar]
  225. Gilks CB, Bear SE, Grimes HL, Tsichlis PN. 225.  1993. Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein. Mol. Cell. Biol. 13:31759–68 [Google Scholar]
  226. Zhu J, Guo L, Min B, Watson CJ, Hu-Li J. 226.  et al. 2002. Growth factor independent-1 induced by IL-4 regulates Th2 cell proliferation. Immunity 16:5733–44 [Google Scholar]
  227. Pargmann D, Yücel R, Kosan C, Saba I, Klein-Hitpass L. 227.  et al. 2007. Differential impact of the transcriptional repressor Gfi1 on mature CD4+ and CD8+ T lymphocyte function. Eur. J. Immunol. 37:123551–63 [Google Scholar]
  228. Zhu J, Davidson TS, Wei G, Jankovic D, Cui K. 228.  et al. 2009. Down-regulation of Gfi-1 expression by TGF-β is important for differentiation of Th17 and CD103+ inducible regulatory T cells. J. Exp. Med. 206:2329–41 [Google Scholar]
  229. Zhu J, Jankovic D, Grinberg A, Guo L, Paul WE. 229.  2006. Gfi-1 plays an important role in IL-2-mediated Th2 cell expansion. PNAS 103:4818214–19 [Google Scholar]
  230. Shinnakasu R, Yamashita M, Kuwahara M, Hosokawa H, Hasegawa A. 230.  et al. 2008. Gfi1-mediated stabilization of GATA3 protein is required for Th2 cell differentiation. J. Biol. Chem. 283:4228216–25 [Google Scholar]
  231. Spooner CJ, Lesch J, Yan D, Khan AA, Abbas A. 231.  et al. 2013. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat. Immunol. 14:121229–36 [Google Scholar]
  232. Marks BR, Nowyhed HN, Choi J-Y, Poholek AC, Odegard JM. 232.  et al. 2009. Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation. Nat. Immunol. 10:101125–32 [Google Scholar]
  233. Tanaka S, Yoshimoto T, Naka T, Nakae S, Iwakura Y-I. 233.  et al. 2009. Natural occurring IL-17 producing T cells regulate the initial phase of neutrophil mediated airway responses. J. Immunol. 183:117523–30 [Google Scholar]
  234. Bain G, Engel I, Robanus Maandag EC, te Riele HP, Voland JR. 234.  et al. 1997. E2A deficiency leads to abnormalities in αβ T-cell development and to rapid development of T-cell lymphomas. Mol. Cell. Biol. 17:84782–91 [Google Scholar]
  235. Yan W, Young AZ, Soares VC, Kelley R, Benezra R, Zhuang Y. 235.  1997. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol. Cell. Biol. 17:127317–27 [Google Scholar]
  236. Bain G, Cravatt CB, Loomans C, Alberola-Ila J, Hedrick SM, Murre C. 236.  2001. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nat. Immunol. 2:2165–71 [Google Scholar]
  237. Engel I, Johns C, Bain G, Rivera RR, Murre C. 237.  2001. Early thymocyte development is regulated by modulation of E2A protein activity. J. Exp. Med. 194:6733–45 [Google Scholar]
  238. Jones-Mason ME, Zhao X, Kappes D, Lasorella A, Iavarone A, Zhuang Y. 238.  2012. E protein transcription factors are required for the development of CD4+ lineage T cells. Immunity 36:3348–61 [Google Scholar]
  239. Barndt R, Dai MF, Zhuang Y. 239.  1999. A novel role for HEB downstream or parallel to the pre-TCR signaling pathway during αβ thymopoiesis. J. Immunol. 163:63331–43 [Google Scholar]
  240. Wojciechowski J, Lai A, Kondo M, Zhuang Y. 240.  2007. E2A and HEB are required to block thymocyte proliferation prior to pre-TCR expression. J. Immunol. 178:95717–26 [Google Scholar]
  241. Braunstein M, Anderson MK. 241.  2010. Developmental progression of fetal HEB−/− precursors to the pre-T-cell stage is restored by HEBAlt. Eur. J. Immunol. 40:113173–82 [Google Scholar]
  242. Braunstein M, Anderson MK. 242.  2012. HEB in the spotlight: transcriptional regulation of T-cell specification, commitment, and developmental plasticity. Clin. Dev. Immunol. 2012:678705 [Google Scholar]
  243. Morrow MA, Mayer EW, Perez CA, Adlam M, Siu G. 243.  1999. Overexpression of the Helix–Loop–Helix protein Id2 blocks T cell development at multiple stages. Mol. Immunol. 36:8491–503 [Google Scholar]
  244. Kastner P, Chan S, Vogel WK, Zhang L-J, Topark-Ngarm A. 244.  et al. 2010. Bcl11b represses a mature T-cell gene expression program in immature CD4+CD8+ thymocytes. Eur. J. Immunol. 40:82143–54 [Google Scholar]
  245. Zhang B, Lin Y-Y, Dai M, Zhuang Y. 245.  2014. Id3 and Id2 act as a dual safety mechanism in regulating the development and population size of innate-like γδ T cells. J. Immunol. 192:31055–63 [Google Scholar]
  246. Cannarile MA, Lind NA, Rivera R, Sheridan AD, Camfield KA. 246.  et al. 2006. Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nat. Immunol. 7:121317–25 [Google Scholar]
  247. Yang CY, Best JA, Knell J, Yang E, Sheridan AD. 247.  et al. 2011. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat. Immunol. 12:121221–29 [Google Scholar]
  248. Kreslavsky T, Savage AK, Hobbs R, Gounari F, Bronson R. 248.  et al. 2009. TCR-inducible PLZF transcription factor required for innate phenotype of a subset of γδ T cells with restricted TCR diversity. PNAS 106:3012453–58 [Google Scholar]
  249. Aliahmad P, de la Torre B, Kaye J. 249.  2010. Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat. Immunol. 11:10945–52 [Google Scholar]
  250. Male V, Nisoli I, Kostrzewski T, Allan DSJ, Carlyle JR. 250.  et al. 2014. The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J. Exp. Med. 211:4635–42 [Google Scholar]
  251. Yu X, Rollins D, Ruhn KA, Stubblefield JJ, Green CB. 251.  et al. 2013. TH17 cell differentiation is regulated by the circadian clock. Science 342:6159727–30 [Google Scholar]
  252. Zhang W, Zhang J, Kornuc M, Kwan K, Frank R, Nimer SD. 252.  1995. Molecular cloning and characterization of NF-IL3A, a transcriptional activator of the human interleukin-3 promoter. Mol. Cell. Biol. 15:116055–63 [Google Scholar]
  253. Motomura Y, Kitamura H, Hijikata A, Matsunaga Y, Matsumoto K. 253.  et al. 2011. The transcription factor E4BP4 regulates the production of IL-10 and IL-13 in CD4+ T cells. Nat. Immunol. 12:5450–59 [Google Scholar]
  254. Liu P, Li P, Burke S. 254.  2010. Critical roles of Bcl11b in T-cell development and maintenance of T-cell identity. Immunol. Rev. 238:1138–49 [Google Scholar]
  255. Wakabayashi Y, Watanabe H, Inoue J, Takeda N, Sakata J. 255.  et al. 2003. Bcl11b is required for differentiation and survival of αβ T lymphocytes. Nat. Immunol. 4:6533–39 [Google Scholar]
  256. Albu DI, Feng D, Bhattacharya D, Jenkins NA, Copeland NG. 256.  et al. 2007. BCL11B is required for positive selection and survival of double-positive thymocytes. J. Exp. Med. 204:123003–15 [Google Scholar]
  257. Giguère V. 257.  1999. Orphan nuclear receptors: from gene to function. Endocr. Rev. 20:5689–725 [Google Scholar]
  258. Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song S-Y. 258.  2004. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21:4527–38 [Google Scholar]
  259. Mora JR, Iwata M, Eksteen B, Song S-Y, Junt T. 259.  et al. 2006. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314:58021157–60 [Google Scholar]
  260. Hall JA, Cannons JL, Grainger JR, Dos Santos LM, Hand TW. 260.  et al. 2011. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha. Immunity 34:3435–47 [Google Scholar]
  261. Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV, Hall J, Sun C-M. 261.  et al. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. J. Exp. Med. 204:81757–64 [Google Scholar]
  262. Denning TL, Wang Y, Patel SR, Williams IR, Pulendran B. 262.  2007. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8:101086–94 [Google Scholar]
  263. Sun C-M, Hall JA, Blank RB, Bouladoux N, Oukka M. 263.  et al. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204:81775–85 [Google Scholar]
  264. Elias KM, Laurence A, Davidson TS, Stephens G, Kanno Y. 264.  et al. 2008. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 111:31013–20 [Google Scholar]
  265. Hill JA, Hall JA, Sun C-M, Cai Q, Ghyselinck N. 265.  et al. 2008. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity 29:5758–70 [Google Scholar]
  266. He YW, Beers C, Deftos ML, Ojala EW, Forbush KA, Bevan MJ. 266.  2000. Down-regulation of the orphan nuclear receptor RORγt is essential for T lymphocyte maturation. J. Immunol. 164:115668–74 [Google Scholar]
  267. Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A. 267.  et al. 2000. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288:54752369–73 [Google Scholar]
  268. Kurebayashi S, Ueda E, Sakaue M, Patel DD, Medvedev A. 268.  et al. 2000. Retinoid-related orphan receptor γ (RORγ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. PNAS 97:1810132–37 [Google Scholar]
  269. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A. 269.  et al. 2006. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:61121–33 [Google Scholar]
  270. Mucida D, Park Y, Kim G, Turovskaya O, Scott I. 270.  et al. 2007. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:5835256–60 [Google Scholar]
  271. Sundrud MS, Rao A. 271.  2008. Regulation of T helper 17 differentiation by orphan nuclear receptors: It's not just RORγt anymore. Immunity 28:15–7 [Google Scholar]
  272. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS. 272.  et al. 2008. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28:129–39 [Google Scholar]
  273. Mielke LA, Jones SA, Raverdeau M, Higgs R, Stefanska A. 273.  et al. 2013. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210:61117–24 [Google Scholar]
  274. Van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R. 274.  et al. 2014. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508:7494123–27 [Google Scholar]
  275. Halim TYF, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F. 275.  2012. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37:3463–74 [Google Scholar]
  276. Sanos SL, Bui VL, Mortha A, Oberle K, Heners C. 276.  et al. 2009. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10:183–91 [Google Scholar]
  277. Luci C, Reynders A, Ivanov II, Cognet C, Chiche L. 277.  et al. 2009. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10:175–82 [Google Scholar]
  278. Eberl G, Littman DR. 278.  2003. The role of the nuclear hormone receptor RORγt in the development of lymph nodes and Peyer's patches. Immunol. Rev. 195:81–90 [Google Scholar]
  279. Lee YK, Turner H, Maynard CL, Oliver JR, Chen D. 279.  et al. 2009. Late developmental plasticity in the T helper 17 lineage. Immunity 30:192–107 [Google Scholar]
  280. Satoh-Takayama N, Vosshenrich CAJ, Lesjean-Pottier S, Sawa S, Lochner M. 280.  et al. 2008. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:6958–70 [Google Scholar]
  281. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD. 281.  et al. 2011. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:734543–49 [Google Scholar]
  282. Bulger M, Groudine M. 282.  2011. Functional and mechanistic diversity of distal transcription enhancers. Cell 144:3327–39 [Google Scholar]
  283. Kieffer-Kwon K-R, Tang Z, Mathe E, Qian J, Sung M-H. 283.  et al. 2013. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell 155:71507–20 [Google Scholar]
  284. Natoli G. 284.  2010. Maintaining cell identity through global control of genomic organization. Immunity 33:112–24 [Google Scholar]
  285. ENCODE Project Consortium, Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R. 285.  et al. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:7146799–816 [Google Scholar]
  286. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW. 286.  et al. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39:3311–18 [Google Scholar]
  287. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A. 287.  et al. 2009. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:7243108–12 [Google Scholar]
  288. Blow MJ, McCulley DJ, Li Z, Zhang T, Akiyama JA. 288.  et al. 2010. ChIP-Seq identification of weakly conserved heart enhancers. Nat. Genet. 42:9806–10 [Google Scholar]
  289. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW. 289.  et al. 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. PNAS 107:5021931–36 [Google Scholar]
  290. Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F. 290.  et al. 2010. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32:3317–28 [Google Scholar]
  291. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. 291.  2011. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:7333279–83 [Google Scholar]
  292. Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA. 292.  et al. 2009. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:7231854–58 [Google Scholar]
  293. Wang D, Garcia-Bassets I, Benner C, Li W, Su X. 293.  et al. 2011. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474:7351390–94 [Google Scholar]
  294. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA. 294.  et al. 2014. Chromatin state dynamics during blood formation. Science 345:6199943–49 [Google Scholar]
  295. Ciofani M, Madar A, Galan C, Sellars M, Mace K. 295.  et al. 2012. A validated regulatory network for Th17 cell specification. Cell 151:2289–303 [Google Scholar]
  296. Vahedi G, Takahashi H, Nakayamada S, Sun H-W, Sartorelli V. 296.  et al. 2012. STATs shape the active enhancer landscape of T cell populations. Cell 151:5981–93 [Google Scholar]
  297. Samstein RM, Arvey A, Josefowicz SZ, Peng X, Reynolds A. 297.  et al. 2012. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151:1153–66 [Google Scholar]
  298. Ouyang W, Liao W, Luo CT, Yin N, Huse M. 298.  et al. 2012. Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature 491:7425554–59 [Google Scholar]
  299. Kawamoto H, Ikawa T, Masuda K, Wada H, Katsura Y. 299.  2010. A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol. Rev. 238:123–36 [Google Scholar]
  300. Kärre K, Ljunggren HG, Piontek G, Kiessling R. 300.  1986. Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 391:675–78 [Google Scholar]
  301. Hepworth MR, Sonnenberg GF. 301.  2014. Regulation of the adaptive immune system by innate lymphoid cells. Curr. Opin. Immunol. 27:75–82 [Google Scholar]
  302. Fort MM, Cheung J, Yen D, Li J, Zurawski SM. 302.  et al. 2001. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15:6985–95 [Google Scholar]
  303. Hurst SD, Muchamuel T, Gorman DM, Gilbert JM, Clifford T. 303.  et al. 2002. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol. 169:1443–53 [Google Scholar]
  304. Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A. 304.  et al. 2006. Identification of an interleukin (IL)-25–dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. 203:41105–16 [Google Scholar]
  305. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M. 305.  et al. 2010. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:72931367–70 [Google Scholar]
  306. Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ. 306.  et al. 2010. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. PNAS 107:2511489–94 [Google Scholar]
  307. Tachibana M, Tenno M, Tezuka C, Sugiyama M, Yoshida H, Taniuchi I. 307.  2011. Runx1/Cbfβ2 complexes are required for lymphoid tissue inducer cell differentiation at two developmental stages. J. Immunol. 186:31450–57 [Google Scholar]
  308. Kim MY, Rossi S, Withers D, McConnell F, Toellner KM. 308.  et al. 2008. Heterogeneity of lymphoid tissue inducer cell populations present in embryonic and adult mouse lymphoid tissues. Immunology 124:2166–74 [Google Scholar]
  309. Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G. 309.  et al. 2009. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206:135–41 [Google Scholar]
  310. Satoh-Takayama N, Lesjean-Pottier S, Vieira P, Sawa S, Eberl G. 310.  et al. 2010. IL-7 and IL-15 independently program the differentiation of intestinal CD3NKp46+ cell subsets from Id2-dependent precursors. J Exp Med. 207:2273–80 [Google Scholar]
  311. Sonnenberg GF, Monticelli LA, Elloso MM, Fouser LA, Artis D. 311.  2011. CD4+ lymphoid tissue inducer cells promote innate immunity in the gut. Immunity 34:1122–34 [Google Scholar]
  312. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR. 312.  et al. 2010. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464:72931371–75 [Google Scholar]
  313. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K. 313.  et al. 2009. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:7230722–25 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032414-112032
Loading
/content/journals/10.1146/annurev-immunol-032414-112032
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error