1932

Abstract

Innate immune responses depend on timely recognition of pathogenic or danger signals by multiple cell surface or cytoplasmic receptors and transmission of signals for proper counteractions through adaptor and effector molecules. At the forefront of innate immunity are four major signaling pathways, including those elicited by Toll-like receptors, RIG-I-like receptors, inflammasomes, or cGAS, each with its own cellular localization, ligand specificity, and signal relay mechanism. They collectively engage a number of overlapping signaling outcomes, such as NF-κB activation, interferon response, cytokine maturation, and cell death. Several proteins often assemble into a supramolecular complex to enable signal transduction and amplification. In this article, we review the recent progress in mechanistic delineation of proteins in these pathways, their structural features, modes of ligand recognition, conformational changes, and homo- and hetero-oligomeric interactions within the supramolecular complexes. Regardless of seemingly distinct interactions and mechanisms, the recurring themes appear to consist of autoinhibited resting-state receptors, ligand-induced conformational changes, and higher-order assemblies of activated receptors, adaptors, and signaling enzymes through conserved protein-protein interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032414-112258
2015-03-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/immunol/33/1/annurev-immunol-032414-112258.html?itemId=/content/journals/10.1146/annurev-immunol-032414-112258&mimeType=html&fmt=ahah

Literature Cited

  1. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. 1.  1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–97 [Google Scholar]
  2. Poltorak A, Smirnova I, He X, Liu MY. Huffel C. 2. , Van et al. 1998. Genetic and physical mapping of the Lps locus: identification of the Toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol. Dis. 24:340–55 [Google Scholar]
  3. Janeway CA. 3.  1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54:Part 11–13 [Google Scholar]
  4. O'Neill LA, Bowie AG. 4.  2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7:353–64 [Google Scholar]
  5. O'Neill LA. 5.  2008. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol. Rev. 226:10–18 [Google Scholar]
  6. Song DH, Lee JO. 6.  2012. Sensing of microbial molecular patterns by Toll-like receptors. Immunol. Rev. 250:216–29 [Google Scholar]
  7. Sims JE, Smith DE. 7.  2010. The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 10:89–102 [Google Scholar]
  8. Lang D, Knop J, Wesche H, Raffetseder U, Kurrle R. 8.  et al. 1998. The type II IL-1 receptor interacts with the IL-1 receptor accessory protein: a novel mechanism of regulation of IL-1 responsiveness. J. Immunol. 161:6871–77 [Google Scholar]
  9. Ferrao R, Wu H. 9.  2012. Helical assembly in the death domain (DD) superfamily. Curr. Opin. Struct. Biol. 22:241–47 [Google Scholar]
  10. Napetschnig J, Wu H. 10.  2013. Molecular basis of NF-κB signaling. Annu. Rev. Biophys. 42:443–68 [Google Scholar]
  11. Ferrao R, Li J, Bergamin E, Wu H. 11.  2012. Structural insights into the assembly of large oligomeric signalosomes in the Toll-like receptor–interleukin-1 receptor superfamily. Sci. Signal. 5:re3 [Google Scholar]
  12. Kobe B, Kajava AV. 12.  2001. The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11:725–32 [Google Scholar]
  13. Bell JK, Botos I, Hall PR, Askins J, Shiloach J. 13.  et al. 2006. The molecular structure of the TLR3 extracellular domain. J. Endotoxin Res. 12:375–78 [Google Scholar]
  14. Choe J, Kelker MS, Wilson IA. 14.  2005. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science 309:581–85 [Google Scholar]
  15. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM. 15.  et al. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071–82 [Google Scholar]
  16. Kim HM, Park BS, Kim JI, Kim SE, Lee J. 16.  et al. 2007. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130:906–17 [Google Scholar]
  17. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J. 17.  et al. 2008. Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320:379–81 [Google Scholar]
  18. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. 18.  2009. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:1191–95 [Google Scholar]
  19. Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV. 19.  et al. 2012. Structural basis of TLR5-flagellin recognition and signaling. Science 335:859–64 [Google Scholar]
  20. Tanji H, Ohto U, Shibata T, Miyake K, Shimizu T. 20.  2013. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science 339:1426–29 [Google Scholar]
  21. Jin MS, Lee JO. 21.  2008. Structures of TLR-ligand complexes. Curr. Opin. Immunol. 20:414–19 [Google Scholar]
  22. Jin MS, Lee JO. 22.  2008. Structures of the Toll-like receptor family and its ligand complexes. Immunity 29:182–91 [Google Scholar]
  23. Kang JY, Lee JO. 23.  2011. Structural biology of the Toll-like receptor family. Annu. Rev. Biochem. 80:917–41 [Google Scholar]
  24. Raetz CR, Whitfield C. 24.  2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635–700 [Google Scholar]
  25. Mulero JJ, Boyle BJ, Bradley S, Bright JM, Nelken ST. 25.  et al. 2002. Three new human members of the lipid transfer/lipopolysaccharide binding protein family (LT/LBP). Immunogenetics 54:293–300 [Google Scholar]
  26. Tobias PS, Soldau K, Gegner JA, Mintz D, Ulevitch RJ. 26.  1995. Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J. Biol. Chem. 270:10482–88 [Google Scholar]
  27. Eckert JK, Kim YJ, Kim JI, Gurtler K, Oh DY. 27.  et al. 2013. The crystal structure of lipopolysaccharide binding protein reveals the location of a frequent mutation that impairs innate immunity. Immunity 39:647–60 [Google Scholar]
  28. Kim JI, Lee CJ, Jin MS, Lee CH, Paik SG. 28.  et al. 2005. Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J. Biol. Chem. 280:11347–51 [Google Scholar]
  29. Erridge C, Bennett-Guerrero E, Poxton IR. 29.  2002. Structure and function of lipopolysaccharides. Microbes Infect. 4:837–51 [Google Scholar]
  30. Rietschel ET, Kirikae T, Schade FU, Ulmer AJ, Holst O. 30.  et al. 1993. The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology 187:169–90 [Google Scholar]
  31. Kojima S, Blair DF. 31.  2004. The bacterial flagellar motor: structure and function of a complex molecular machine. Int. Rev. Cytol. 233:93–134 [Google Scholar]
  32. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC. 32.  et al. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–103 [Google Scholar]
  33. Chuang TH, Ulevitch RJ. 33.  2000. Cloning and characterization of a sub-family of human Toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur. Cytokine Netw. 11:372–78 [Google Scholar]
  34. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK. 34.  et al. 2005. The evolution of vertebrate Toll-like receptors. PNAS 102:9577–82 [Google Scholar]
  35. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. 35.  2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–31 [Google Scholar]
  36. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C. 36.  et al. 2004. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303:1526–29 [Google Scholar]
  37. Asagiri M, Hirai T, Kunigami T, Kamano S, Gober HJ. 37.  et al. 2008. Cathepsin K-dependent Toll-like receptor 9 signaling revealed in experimental arthritis. Science 319:624–27 [Google Scholar]
  38. Sepulveda FE, Maschalidi S, Colisson R, Heslop L, Ghirelli C. 38.  et al. 2009. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity 31:737–48 [Google Scholar]
  39. Xu Y, Tao X, Shen B, Horng T, Medzhitov R. 39.  et al. 2000. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408:111–15 [Google Scholar]
  40. Wang D, Zhang S, Li L, Liu X, Mei K, Wang X. 40.  2010. Structural insights into the assembly and activation of IL-1β with its receptors. Nat. Immunol. 11:905–11 [Google Scholar]
  41. Thomas C, Bazan JF, Garcia KC. 41.  2012. Structure of the activating IL-1 receptor signaling complex. Nat. Struct. Mol. Biol. 19:455–57 [Google Scholar]
  42. Tsutsumi N, Kimura T, Arita K, Ariyoshi M, Ohnishi H. 42.  et al. 2014. . The structural basis for receptor recognition of human interleukin-18. Nat. Commun. 5:5340 [Google Scholar]
  43. Liu X, Hammel M, He Y, Tainer JA, Jeng U-S. 43.  et al. 2013. Structural insights into the interaction of IL-33 with its receptors. PNAS 110:14918–23 [Google Scholar]
  44. Nyman T, Stenmark P, Flodin S, Johansson I, Hammarstrom M, Nordlund P. 44.  2008. The crystal structure of the human Toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer. J. Biol. Chem. 283:11861–65 [Google Scholar]
  45. Khan JA, Brint EK, O'Neill LA, Tong L. 45.  2004. Crystal structure of the Toll/interleukin-1 receptor domain of human IL-1RAPL. J. Biol. Chem. 279:31664–70 [Google Scholar]
  46. Ohnishi H, Tochio H, Kato Z, Orii KE, Li A. 46.  et al. 2009. Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling. PNAS 106:10260–65 [Google Scholar]
  47. Valkov E, Stamp A, Dimaio F, Baker D, Verstak B. 47.  et al. 2011. Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection. PNAS 108:14879–84 [Google Scholar]
  48. Enokizono Y, Kumeta H, Funami K, Horiuchi M, Sarmiento J. 48.  et al. 2013. Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon signaling. PNAS 110:19908–13 [Google Scholar]
  49. Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF. 49.  et al. 2014. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344:299–303 [Google Scholar]
  50. Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B. 50.  2011. Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475:510–13 [Google Scholar]
  51. Lin SC, Lo YC, Wu H. 51.  2010. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465:885–90 [Google Scholar]
  52. Park HH, Logette E, Rauser S, Cuenin S, Walz T. 52.  et al. 2007. Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 128:533–46 [Google Scholar]
  53. Wang L, Yang JK, Kabaleeswaran V, Rice AJ, Cruz AC. 53.  et al. 2010. The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat. Struct. Mol. Biol. 17:1324–29 [Google Scholar]
  54. Ferrao R, Zhou H, Shan Y, Li Q, Shaw DE. 54.  et al. 2014. IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly. Mol. Cell 55:891–903 [Google Scholar]
  55. Loo YM, Gale M Jr. 55.  2011. Immune signaling by RIG-I-like receptors. Immunity 34:680–92 [Google Scholar]
  56. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M. 56.  et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–5 [Google Scholar]
  57. Myong S, Cui S, Cornish PV, Kirchhofer A, Gack MU. 57.  et al. 2009. Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA. Science 323:1070–74 [Google Scholar]
  58. Seth RB, Sun L, Ea CK, Chen ZJ. 58.  2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122:669–82 [Google Scholar]
  59. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB. 59.  2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol. Cell 19:727–40 [Google Scholar]
  60. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M. 60.  et al. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–72 [Google Scholar]
  61. Kawai T, Takahashi K, Sato S, Coban C, Kumar H. 61.  et al. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6:981–88 [Google Scholar]
  62. Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J. 62.  et al. 2011. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147:423–35 [Google Scholar]
  63. Jiang F, Ramanathan A, Miller MT, Tang GQ, Gale M Jr. 63.  et al. 2011. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479:423–27 [Google Scholar]
  64. Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM. 64.  2011. Structural insights into RNA recognition by RIG-I. Cell 147:409–22 [Google Scholar]
  65. Kohlway A, Luo D, Rawling DC, Ding SC, Pyle AM. 65.  2013. Defining the functional determinants for RNA surveillance by RIG-I. EMBO Rep. 14:772–79 [Google Scholar]
  66. Civril F, Bennett M, Moldt M, Deimling T, Witte G. 66.  et al. 2011. The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling. EMBO Rep. 12:1127–34 [Google Scholar]
  67. Cui S, Eisenacher K, Kirchhofer A, Brzozka K, Lammens A. 67.  et al. 2008. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol. Cell 29:169–79 [Google Scholar]
  68. Luo D, Kohlway A, Vela A, Pyle AM. 68.  2012. Visualizing the determinants of viral RNA recognition by innate immune sensor RIG-I. Structure 20:1983–88 [Google Scholar]
  69. Wu B, Peisley A, Richards C, Yao H, Zeng X. 69.  et al. 2013. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152:276–89 [Google Scholar]
  70. Wang Y, Ludwig J, Schuberth C, Goldeck M, Schlee M. 70.  et al. 2010. Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat. Struct. Mol. Biol. 17:781–87 [Google Scholar]
  71. Lu C, Xu H, Ranjith-Kumar CT, Brooks MT, Hou TY. 71.  et al. 2010. The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18:1032–43 [Google Scholar]
  72. Takahasi K, Kumeta H, Tsuduki N, Narita R, Shigemoto T. 72.  et al. 2009. Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors. J. Biol. Chem. 284:17465–74 [Google Scholar]
  73. Motz C, Schuhmann KM, Kirchhofer A, Moldt M, Witte G. 73.  et al. 2013. Paramyxovirus V proteins disrupt the fold of the RNA sensor MDA5 to inhibit antiviral signaling. Science 339:690–93 [Google Scholar]
  74. Peisley A, Lin C, Wu B, Orme-Johnson M, Liu M. 74.  et al. 2011. Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. PNAS 108:21010–15 [Google Scholar]
  75. Berke IC, Modis Y. 75.  2012. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J. 31:1714–26 [Google Scholar]
  76. Berke IC, Yu X, Modis Y, Egelman EH. 76.  2012. MDA5 assembles into a polar helical filament on dsRNA. PNAS 109:18437–41 [Google Scholar]
  77. Peisley A, Wu B, Yao H, Walz T, Hur S. 77.  2013. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol. Cell 51:573–83 [Google Scholar]
  78. Rawling DC, Pyle AM. 78.  2014. Parts, assembly and operation of the RIG-I family of motors. Curr. Opin. Struct. Biol. 25:25–33 [Google Scholar]
  79. Bruns AM, Leser GP, Lamb RA, Horvath CM. 79.  2014. The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly. Mol. Cell 55:771–81 [Google Scholar]
  80. Zeng W, Sun L, Jiang X, Chen X, Hou F. 80.  et al. 2010. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141:315–30 [Google Scholar]
  81. Gack MU, Shin YC, Joo CH, Urano T, Liang C. 81.  et al. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916–20 [Google Scholar]
  82. Peisley A, Wu B, Xu H, Chen ZJ, Hur S. 82.  2014. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 509:110–14 [Google Scholar]
  83. Wu B, Peisley A, Tetrault D, Li Z, Egelman EH. 83.  et al. 2014. Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol. Cell 55:511–23 [Google Scholar]
  84. Rathinam VA, Vanaja SK, Fitzgerald KA. 84.  2012. Regulation of inflammasome signaling. Nat. Immunol. 13:333–42 [Google Scholar]
  85. Lamkanfi M, Dixit VM. 85.  2014. Mechanisms and functions of inflammasomes. Cell 157:1013–22 [Google Scholar]
  86. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM. 86.  et al. 2009. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:1057–60 [Google Scholar]
  87. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. 87.  2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–13 [Google Scholar]
  88. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G. 88.  et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–18 [Google Scholar]
  89. Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G. 89.  et al. 2009. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10:266–72 [Google Scholar]
  90. Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM. 90.  et al. 2008. The NLR gene family: a standard nomenclature. Immunity 28:285–87 [Google Scholar]
  91. Vavere AL, Simon GG, George RT, Rochitte CE, Arai AE. 91.  et al. 2011. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography: design and implementation of the CORE320 multicenter, multinational diagnostic study. J. Cardiovasc. Comput. Tomogr. 5:370–81 [Google Scholar]
  92. Zhao Y, Yang J, Shi J, Gong YN, Lu Q. 92.  et al. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600 [Google Scholar]
  93. Choubey D, Panchanathan R. 93.  2008. Interferon-inducible Ifi200-family genes in systemic lupus erythematosus. Immunol. Lett. 119:32–41 [Google Scholar]
  94. Jin T, Perry A, Jiang J, Smith P, Curry JA. 94.  et al. 2012. Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36:561–71 [Google Scholar]
  95. Yin Q, Sester DP, Tian Y, Hsiao YS, Lu A. 95.  et al. 2013. Molecular mechanism for p202-mediated specific inhibition of AIM2 inflammasome activation. Cell Rep. 4:327–39 [Google Scholar]
  96. Ru H, Ni X, Zhao L, Crowley C, Ding W. 96.  et al. 2013. Structural basis for termination of AIM2-mediated signaling by p202. Cell Res. 23:855–58 [Google Scholar]
  97. Sung MW, Watts T, Li P. 97.  2012. Crystallographic characterization of mouse AIM2 HIN-200 domain bound to a 15 bp and an 18 bp double-stranded DNA. Acta Crystallogr. Sect. F 68:1081–84 [Google Scholar]
  98. Yang H, Jeffrey PD, Miller J, Kinnucan E, Sun Y. 98.  et al. 2002. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science 297:1837–48 [Google Scholar]
  99. Morrone SR, Wang T, Constantoulakis LM, Hooy RM, Delannoy MJ, Sohn J. 99.  2014. Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. PNAS 111:E62–71 [Google Scholar]
  100. Jin T, Perry A, Smith P, Jiang J, Xiao TS. 100.  2013. Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. J. Biol. Chem. 288:13225–35 [Google Scholar]
  101. Lu A, Kabaleeswaran V, Fu T, Magupalli VG, Wu H. 101.  2014. Crystal structure of the F27G AIM2 PYD mutant and similarities of its self-association to DED/DED interactions. J. Mol. Biol. 426:1420–27 [Google Scholar]
  102. Hu Z, Yan C, Liu P, Huang Z, Ma R. 102.  et al. 2013. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341:172–75 [Google Scholar]
  103. Halff EF, Diebolder CA, Versteeg M, Schouten A, Brondijk TH, Huizinga EG. 103.  2012. Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin. J. Biol. Chem. 287:38460–72 [Google Scholar]
  104. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK. 104.  et al. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–206 [Google Scholar]
  105. Wu J, Fernandes-Alnemri T, Alnemri ES. 105.  2010. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J. Clin. Immunol. 30:693–702 [Google Scholar]
  106. de Alba E. 106.  2009. Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC). J. Biol. Chem. 284:32932–41 [Google Scholar]
  107. Liepinsh E, Barbals R, Dahl E, Sharipo A, Staub E, Otting G. 107.  2003. The death-domain fold of the ASC PYRIN domain, presenting a basis for PYRIN/PYRIN recognition. J. Mol. Biol. 332:1155–63 [Google Scholar]
  108. Moriya M, Taniguchi S, Wu P, Liepinsh E, Otting G, Sagara J. 108.  2005. Role of charged and hydrophobic residues in the oligomerization of the PYRIN domain of ASC. Biochemistry 44:575–83 [Google Scholar]
  109. Ishikawa H, Barber GN. 109.  2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–78 [Google Scholar]
  110. Ishikawa H, Ma Z, Barber GN. 110.  2009. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–92 [Google Scholar]
  111. Zhong B, Yang Y, Li S, Wang YY, Li Y. 111.  et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:538–50 [Google Scholar]
  112. Jin L, Waterman PM, Jonscher KR, Short CM, Reisdorph NA, Cambier JC. 112.  2008. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol. Cell. Biol. 28:5014–26 [Google Scholar]
  113. Sun W, Li Y, Chen L, Chen H, You F. 113.  et al. 2009. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. PNAS 106:8653–58 [Google Scholar]
  114. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B. 114.  et al. 2011. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–18 [Google Scholar]
  115. Wu J, Sun L, Chen X, Du F, Shi H. 115.  et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–30 [Google Scholar]
  116. Sun L, Wu J, Du F, Chen X, Chen ZJ. 116.  2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–91 [Google Scholar]
  117. Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL. 117.  et al. 2013. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153:1094–107 [Google Scholar]
  118. Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA. 118.  et al. 2013. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 3:1355–61 [Google Scholar]
  119. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G. 119.  et al. 2013. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498:380–84 [Google Scholar]
  120. Kranzusch PJ, Lee AS, Berger JM, Doudna JA. 120.  2013. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3:1362–68 [Google Scholar]
  121. Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M. 121.  et al. 2013. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498:332–37 [Google Scholar]
  122. Kato K, Ishii R, Goto E, Ishitani R, Tokunaga F, Nureki O. 122.  2013. Structural and functional analyses of DNA-sensing and immune activation by human cGAS. PLOS ONE 8:e76983 [Google Scholar]
  123. Li X, Shu C, Yi G, Chaton CT, Shelton CL. 123.  et al. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39:1019–31 [Google Scholar]
  124. Zhang X, Wu J, Du F, Xu H, Sun L. 124.  et al. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 6:421–30 [Google Scholar]
  125. Donovan J, Dufner M, Korennykh A. 125.  2013. Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1. PNAS 110:1652–57 [Google Scholar]
  126. Han Y, Donovan J, Rath S, Whitney G, Chitrakar A, Korennykh A. 126.  2014. Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response. Science 343:1244–48 [Google Scholar]
  127. Huang H, Zeqiraj E, Dong B, Jha BK, Duffy NM. 127.  et al. 2014. Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon-induced antiviral activity. Mol. Cell 53:221–34 [Google Scholar]
  128. Ouyang S, Song X, Wang Y, Ru H, Shaw N. 128.  et al. 2012. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 36:1073–86 [Google Scholar]
  129. Yin Q, Tian Y, Kabaleeswaran V, Jiang X, Tu D. 129.  et al. 2012. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol. Cell 46:735–45 [Google Scholar]
  130. Shu C, Yi G, Watts T, Kao CC, Li P. 130.  2012. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat. Struct. Mol. Biol. 19:722–24 [Google Scholar]
  131. Shang G, Zhu D, Li N, Zhang J, Zhu C. 131.  et al. 2012. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat. Struct. Mol. Biol. 19:725–27 [Google Scholar]
  132. Huang YH, Liu XY, Du XX, Jiang ZF, Su XD. 132.  2012. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat. Struct. Mol. Biol. 19:728–30 [Google Scholar]
  133. Zhang X, Shi H, Wu J, Zhang X, Sun L. 133.  et al. 2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51:226–35 [Google Scholar]
  134. Gao P, Ascano M, Zillinger T, Wang W, Dai P. 134.  et al. 2013. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154:748–62 [Google Scholar]
  135. Chin KH, Tu ZL, Su YC, Yu YJ, Chen HC. 135.  et al. 2013. Novel c-di-GMP recognition modes of the mouse innate immune adaptor protein STING. Acta Crystallogr. D 69:352–66 [Google Scholar]
  136. Cavlar T, Deimling T, Ablasser A, Hopfner KP, Hornung V. 136.  2013. Species-specific detection of the antiviral small-molecule compound CMA by STING. EMBO J. 32:1440–50 [Google Scholar]
  137. Kim S, Li L, Maliga Z, Yin Q, Wu H, Mitchison TJ. 137.  2013. Anticancer flavonoids are mouse-selective STING agonists. ACS Chem. Biol. 8:1396–401 [Google Scholar]
  138. Paul S, Kashyap AK, Jia W, He YW, Schaefer BC. 138.  2012. Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-κB. Immunity 36:947–58 [Google Scholar]
  139. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG. 139.  et al. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456:264–68 [Google Scholar]
  140. Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ. 140.  2011. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146:448–61 [Google Scholar]
  141. Cai X, Chen J, Xu H, Liu S, Jiang QX. 141.  et al. 2014. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156:1207–22 [Google Scholar]
  142. Baroja-Mazo A, Martin-Sanchez F, Gomez AI, Martinez CM, Amores-Iniesta J. 142.  et al. 2014. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 15:738–48 [Google Scholar]
  143. Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A. 143.  et al. 2014. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 15:727–37 [Google Scholar]
  144. Wu H. 144.  2013. Higher-order assemblies in a new paradigm of signal transduction. Cell 153:287–92 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032414-112258
Loading
/content/journals/10.1146/annurev-immunol-032414-112258
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error