1932

Abstract

Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular phylum the most deadly of which, , prevails in Africa. Malaria imposes a huge health burden on the world's most vulnerable populations, claiming the lives of nearly one million children and pregnant women each year. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite's complex life cycle with a view toward developing the tools that will contribute to the prevention of disease and death and, ultimately, to the goal of malaria eradication. In so doing, we hope to inspire immunologists to participate in defeating this devastating disease.

[Erratum, Closure]

An erratum has been published for this article:
Malaria Immunity in Man and Mosquito: Insights into Unsolved Mysteries of a Deadly Infectious Disease
Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032713-120220
2014-03-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/immunol/32/1/annurev-immunol-032713-120220.html?itemId=/content/journals/10.1146/annurev-immunol-032713-120220&mimeType=html&fmt=ahah

Literature Cited

  1. Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ. 1.  et al. 2012. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379:413–31 [Google Scholar]
  2. Langhorne J, Ndungu FM, Sponaas AM, Marsh K. 2.  2008. Immunity to malaria: more questions than answers. Nat. Immunol. 9:725–32 [Google Scholar]
  3. Marsh K, Kinyanjui S. 3.  2006. Immune effector mechanisms in malaria. Parasite Immunol. 28:51–60 [Google Scholar]
  4. Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. 4.  2013. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. Adv. Parasitol. 81:77–131 [Google Scholar]
  5. Riley EM, Stewart VA. 5.  2013. Immune mechanisms in malaria: new insights in vaccine development. Nat. Med. 19:168–78 [Google Scholar]
  6. Miller LH, Ackerman HC, Su XZ, Wellems TE. 6.  2013. Malaria biology and disease pathogenesis: insights for new treatments. Nat. Med. 19:156–67 [Google Scholar]
  7. Miller LH, Pierce SK. 7.  2009. Perspective on malaria eradication: Is eradication possible without modifying the mosquito?. J. Infect. Dis. 200:1644–45 [Google Scholar]
  8. Roberts L, Enserink M. 8.  2007. Malaria. Did they really say eradication?. Science 318:1544–45 [Google Scholar]
  9. 9. The RTS,S Clinical Trials Partnership 2012. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N. Engl. J. Med. 367:2284–95 [Google Scholar]
  10. Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE. 10.  2012. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog. 8:e1002588 [Google Scholar]
  11. Molineaux L, Gramiccia G. 11.  1980. The Garki Project: Research on the Epidemiology and Control of Malaria in the Sudan Savanna of West Africa Geneva: World Health Organization311
  12. Sharma VP. 12.  1996. Re-emergence of malaria in India. Indian J. Med. Res. 103:26–45 [Google Scholar]
  13. Macdonald G. 13.  1957. The Epidemiology and Control of Malaria Oxford, UK: Oxford Univ. Press
  14. Mu J, Duan J, Makova KD, Joy DA, Huynh CQ. 14.  et al. 2002. Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature 418:323–26 [Google Scholar]
  15. Kwiatkowski DP. 15.  2005. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77:171–92 [Google Scholar]
  16. Molineaux L. 16.  1985. The impact of parasitic diseases and their control on mortality, with emphasis on malaria and Africa. Health Policy, Social Policy, and Mortality Prospects J Vallin, A Lopez 13–44 Liege: Ordina Ed. [Google Scholar]
  17. Gardner MJ, Hall N, Fung E, White O, Berriman M. 17.  et al. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511 [Google Scholar]
  18. Gueirard P, Tavares J, Thiberge S, Bernex F, Ishino T. 18.  et al. 2010. Development of the malaria parasite in the skin of the mammalian host. Proc. Natl. Acad. Sci. USA 107:18640–45 [Google Scholar]
  19. Mota MM, Pradel G, Vanderberg JP, Hafalla JC, Frevert U. 19.  et al. 2001. Migration of Plasmodium sporozoites through cells before infection. Science 291:141–44 [Google Scholar]
  20. Sturm A, Amino R, van de Sand C, Regen T, Retzlaff S. 20.  et al. 2006. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313:1287–90 [Google Scholar]
  21. Miller LH, Baruch DI, Marsh K, Doumbo OK. 21.  2002. The pathogenic basis of malaria. Nature 415:673–79 [Google Scholar]
  22. Wykes MN, Good MF. 22.  2009. What have we learnt from mouse models for the study of malaria?. Eur. J. Immunol. 39:2004–7 [Google Scholar]
  23. Sauerwein RW, Roestenberg M, Moorthy VS. 23.  2011. Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat. Rev. Immunol. 11:57–64 [Google Scholar]
  24. Engwerda CR, Minigo G, Amante FH, McCarthy JS. 24.  2012. Experimentally induced blood stage malaria infection as a tool for clinical research. Trends Parasitol. 28:515–21 [Google Scholar]
  25. Tran TM, Samal B, Kirkness E, Crompton PD. 25.  2012. Systems immunology of human malaria. Trends Parasitol. 28:248–57 [Google Scholar]
  26. Offeddu V, Thathy V, Marsh K, Matuschewski K. 26.  2012. Naturally acquired immune responses against Plasmodium falciparum sporozoites and liver infection. Int. J. Parasitol. 42:535–48 [Google Scholar]
  27. Tran TM, Li S, Doumbo S, Doumtabe D, Huang CY. 27.  et al. 2013. An intensive longitudinal cohort study of Malian children and adults reveals no evidence of acquired immunity to Plasmodium falciparum infection. Clin. Infect. Dis. 57:40–47 [Google Scholar]
  28. Honda T, Miyachi Y, Kabashima K. 28.  2011. Regulatory T cells in cutaneous immune responses. J. Dermatol. Sci. 63:75–82 [Google Scholar]
  29. Crispe IN. 29.  2009. The liver as a lymphoid organ. Annu. Rev. Immunol. 27:147–63 [Google Scholar]
  30. Guilbride DL, Gawlinski P, Guilbride PD. 30.  2010. Why functional pre-erythrocytic and bloodstage malaria vaccines fail: a meta-analysis of fully protective immunizations and novel immunological model. PLoS ONE 5:e10685 [Google Scholar]
  31. da Silva HB, Caetano SS, Monteiro I, Gomez-Conde I, Hanson K. 31.  et al. 2012. Early skin immunological disturbance after Plasmodium-infected mosquito bites. Cell. Immunol. 277:22–32 [Google Scholar]
  32. Good MF, Doolan DL. 32.  2010. Malaria vaccine design: immunological considerations. Immunity 33:555–66 [Google Scholar]
  33. Usynin I, Klotz C, Frevert U. 33.  2007. Malaria circumsporozoite protein inhibits the respiratory burst in Kupffer cells. Cell. Microbiol. 9:2610–28 [Google Scholar]
  34. Nussenzweig RS, Vanderberg J, Most H, Orton C. 34.  1967. Protective immunity produced by the injection of X-irradiated sporozoites of Plasmodium berghei. Nature 216:160–62 [Google Scholar]
  35. Gwadz RW, Cochrane AH, Nussenzweig V, Nussenzweig RS. 35.  1979. Preliminary studies on vaccination of rhesus monkeys with irradiated sporozoites of Plasmodium knowlesi and characterization of surface antigens of these parasites. Bull. World Health Organ. 57:Suppl. 1165–73 [Google Scholar]
  36. Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP. 36.  et al. 2002. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J. Infect. Dis. 185:1155–64 [Google Scholar]
  37. Vaughan AM, Wang R, Kappe SH. 37.  2010. Genetically engineered, attenuated whole-cell vaccine approaches for malaria. Hum. Vaccine 6:107–13 [Google Scholar]
  38. Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ. 38.  et al. 2009. Protection against a malaria challenge by sporozoite inoculation. N. Engl. J. Med. 361:468–77 [Google Scholar]
  39. Epstein JE, Tewari K, Lyke KE, Sim BK, Billingsley PF. 39.  et al. 2011. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334:475–80 [Google Scholar]
  40. Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN. 40.  et al. 2013. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341:1359–65 [Google Scholar]
  41. Barry AE, Schultz L, Buckee CO, Reeder JC. 41.  2009. Contrasting population structures of the genes encoding ten leading vaccine-candidate antigens of the human malaria parasite, Plasmodium falciparum. PLoS ONE 4:e8497 [Google Scholar]
  42. Trieu A, Kayala MA, Burk C, Molina DM, Freilich DA. 42.  et al. 2011. Sterile protective immunity to malaria is associated with a panel of novel P. falciparum antigens. Mol. Cell. Proteomics 10:M111.007948 [Google Scholar]
  43. Krzych U, Lyon JA, Jareed T, Schneider I, Hollingdale MR. 43.  et al. 1995. T lymphocytes from volunteers immunized with irradiated Plasmodium falciparum sporozoites recognize liver and blood stage malaria antigens. J. Immunol. 155:4072–77 [Google Scholar]
  44. Doolan DL, Southwood S, Freilich DA, Sidney J, Graber NL. 44.  et al. 2003. Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data. Proc. Natl. Acad. Sci. USA 100:9952–57 [Google Scholar]
  45. Roestenberg M, Teirlinck AC, McCall MB, Teelen K, Makamdop KN. 45.  et al. 2011. Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet 377:1770–76 [Google Scholar]
  46. Bijker EM, Bastiaens GJ, Teirlinck AC, van Gemert GJ, Graumans W. 46.  et al. 2013. Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proc. Natl. Acad. Sci. USA 110:7862–67 [Google Scholar]
  47. Sinnis P, Zavala F. 47.  2012. The skin: where malaria infection and the host immune response begin. Semin. Immunopathol. 34:787–92 [Google Scholar]
  48. Lindner SE, Miller JL, Kappe SH. 48.  2012. Malaria parasite pre-erythrocytic infection: preparation meets opportunity. Cell. Microbiol. 14:316–24 [Google Scholar]
  49. Chakravarty S, Cockburn IA, Kuk S, Overstreet MG, Sacci JB, Zavala F. 49.  2007. CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nat. Med. 13:1035–41 [Google Scholar]
  50. Hafalla JC, Silvie O, Matuschewski K. 50.  2011. Cell biology and immunology of malaria. Immunol. Rev. 240:297–316 [Google Scholar]
  51. Overstreet MG, Cockburn IA, Chen YC, Zavala F. 51.  2008. Protective CD8+ T cells against Plasmodium liver stages: immunobiology of an “unnatural” immune response. Immunol. Rev. 225:272–83 [Google Scholar]
  52. Cockburn IA, Tse SW, Radtke AJ, Srinivasan P, Chen YC. 52.  et al. 2011. Dendritic cells and hepatocytes use distinct pathways to process protective antigen from Plasmodium in vivo. PLoS Pathog. 7:e1001318 [Google Scholar]
  53. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K. 53.  et al. 2002. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–20 [Google Scholar]
  54. Hafalla JC, Bauza K, Friesen J, Gonzalez-Aseguinolaza G, Hill AV, Matuschewski K. 54.  2013. Identification of targets of CD8+ T cell responses to malaria liver stages by genome-wide epitope profiling. PLoS Pathog. 9:e1003303 [Google Scholar]
  55. Murphy SC, Kas A, Stone BC, Bevan MJ. 55.  2013. A T-cell response to a liver-stage Plasmodium antigen is not boosted by repeated sporozoite immunizations. Proc. Natl. Acad. Sci. USA 110:6055–60 [Google Scholar]
  56. Cockburn IA, Chen YC, Overstreet MG, Lees JR, van Rooijen N. 56.  et al. 2010. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites. PLoS Pathog. 6:e1000877 [Google Scholar]
  57. Kaech SM, Ahmed R. 57.  2001. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2:415–22 [Google Scholar]
  58. Schmidt NW, Butler NS, Badovinac VP, Harty JT. 58.  2010. Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites. PLoS Pathog. 6:e1000998 [Google Scholar]
  59. Webster DP, Dunachie S, Vuola JM, Berthoud T, Keating S. 59.  et al. 2005. Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc. Natl. Acad. Sci. USA 102:4836–41 [Google Scholar]
  60. Duffy PE, Sahu T, Akue A, Milman N, Anderson C. 60.  2012. Pre-erythrocytic malaria vaccines: identifying the targets. Expert Rev. Vaccines 11:1261–80 [Google Scholar]
  61. Vanderberg JP, Frevert U. 61.  2004. Intravital microscopy demonstrating antibody-mediated immobilisation of Plasmodium berghei sporozoites injected into skin by mosquitoes. Int. J. Parasitol. 34:991–96 [Google Scholar]
  62. Sinnis P, Coppi A. 62.  2007. A long and winding road: the Plasmodium sporozoite's journey in the mammalian host. Parasitol. Int. 56:171–78 [Google Scholar]
  63. Di Meglio P, Perera GK, Nestle FO. 63.  2011. The multitasking organ: recent insights into skin immune function. Immunity 35:857–69 [Google Scholar]
  64. Takebe T, Sekine K, Enomura M, Koike H, Kimura M. 64.  et al. 2013. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–84 [Google Scholar]
  65. Nussenzweig RS, Vanderberg J, Most H, Orton C. 65.  1967. Protective immunity produced by the injection of X-irradiated sporozoites of Plasmodium berghei. Nature 216:160–62 [Google Scholar]
  66. Casares S, Brumeanu TD, Richie TL. 66.  2010. The RTS,S malaria vaccine. Vaccine 28:4880–94 [Google Scholar]
  67. Moorthy VS, Ballou WR. 67.  2009. Immunological mechanisms underlying protection mediated by RTS,S: a review of the available data. Malar. J. 8:312 [Google Scholar]
  68. Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP. 68.  et al. 2011. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N. Engl. J. Med. 365:1863–75 [Google Scholar]
  69. Bejon P, Mwacharo J, Kai O, Mwangi T, Milligan P. 69.  et al. 2006. A phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS Clin. Trials 1:e29 [Google Scholar]
  70. Moorthy VS, Imoukhuede EB, Milligan P, Bojang K, Keating S. 70.  et al. 2004. A randomised, double-blind, controlled vaccine efficacy trial of DNA/MVA ME-TRAP against malaria infection in Gambian adults. PLoS Med. 1:e33 [Google Scholar]
  71. Zevering Y, Houghten RA, Frazer IH, Good MF. 71.  1990. Major population differences in T cell response to a malaria sporozoite vaccine candidate. Int. Immunol. 2:945–55 [Google Scholar]
  72. Hartgers FC, Yazdanbakhsh M. 72.  2006. Co-infection of helminths and malaria: modulation of the immune responses to malaria. Parasite Immunol. 28:497–506 [Google Scholar]
  73. Schaible UE, Kaufmann SH. 73.  2007. Malnutrition and infection: complex mechanisms and global impacts. PLoS Med. 4:e115 [Google Scholar]
  74. Molloy MJ, Bouladoux N, Belkaid Y. 74.  2012. Intestinal microbiota: shaping local and systemic immune responses. Semin. Immunol. 24:58–66 [Google Scholar]
  75. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S. 75.  et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101 [Google Scholar]
  76. Kraemer SM, Smith JD. 76.  2006. A family affair: var genes, PfEMP1 binding, and malaria disease. Curr. Opin. Microbiol. 9:374–80 [Google Scholar]
  77. Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE. 77.  et al. 2013. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498:502–5 [Google Scholar]
  78. Clark IA, Alleva LM, Mills AC, Cowden WB. 78.  2004. Pathogenesis of malaria and clinically similar conditions. Clin. Microbiol. Rev. 17:509–39 [Google Scholar]
  79. Hunt NH, Grau GE. 79.  2003. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol. 24:491–99 [Google Scholar]
  80. White NJ, Turner GD, Day NP, Dondorp AM. 80.  2013. Lethal malaria: Marchiafava and Bignami were right. J. Infect. Dis. 208:192–98 [Google Scholar]
  81. Clark IA, Alleva LM. 81.  2009. Is human malarial coma caused, or merely deepened, by sequestration?. Trends Parasitol. 25:314–18 [Google Scholar]
  82. Collins WE, Jeffery GM. 82.  1999. A retrospective examination of secondary sporozoite- and trophozoite-induced infections with Plasmodium falciparum: development of parasitologic and clinical immunity following secondary infection. Am. J. Trop. Med. Hyg. 61:20–35 [Google Scholar]
  83. Day NP, Hien TT, Schollaardt T, Loc PP, Chuong LV. 83.  et al. 1999. The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. J. Infect. Dis. 180:1288–97 [Google Scholar]
  84. Lyke KE, Burges R, Cissoko Y, Sangare L, Dao M. 84.  et al. 2004. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1β), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect. Immun. 72:5630–37 [Google Scholar]
  85. Walther M, Woodruff J, Edele F, Jeffries D, Tongren JE. 85.  et al. 2006. Innate immune responses to human malaria: heterogeneous cytokine responses to blood-stage Plasmodium falciparum correlate with parasitological and clinical outcomes. J. Immunol. 177:5736–45 [Google Scholar]
  86. Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S. 86.  et al. 2005. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. Chem. 280:8606–16 [Google Scholar]
  87. Shio MT, Eisenbarth SC, Savaria M, Vinet AF, Bellemare MJ. 87.  et al. 2009. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog. 5:e1000559 [Google Scholar]
  88. Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG. 88.  et al. 2007. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc. Natl. Acad. Sci. USA 104:1919–24 [Google Scholar]
  89. Sharma S, DeOliveira RB, Kalantari P, Parroche P, Goutagny N. 89.  et al. 2011. Innate immune recognition of an AT-rich stem-loop DNA motif in the Plasmodium falciparum genome. Immunity 35:194–207 [Google Scholar]
  90. Claessens A, Adams Y, Ghumra A, Lindergard G, Buchan CC. 90.  et al. 2012. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc. Natl. Acad. Sci. USA 109:E1772–81 [Google Scholar]
  91. Avril M, Tripathi AK, Brazier AJ, Andisi C, Janes JH. 91.  et al. 2012. A restricted subset of var genes mediates adherence of Plasmodium falciparum-infected erythrocytes to brain endothelial cells. Proc. Natl. Acad. Sci. USA 109:10158–59 [Google Scholar]
  92. Lavstsen T, Turner L, Saguti F, Magistrado P, Rask TS. 92.  et al. 2012. Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children. Proc. Natl. Acad. Sci. USA 109:E1791–800 [Google Scholar]
  93. Waisberg M, Cerqueira GC, Yager SB, Francischetti IM, Lu J. 93.  et al. 2012. Plasmodium falciparum merozoite surface protein 1 blocks the proinflammatory protein S100P. Proc. Natl. Acad. Sci. USA 109:5429–34 [Google Scholar]
  94. Stevenson MM, Riley EM. 94.  2004. Innate immunity to malaria. Nat. Rev. Immunol. 4:169–80 [Google Scholar]
  95. Urban BC, Ing R, Stevenson MM. 95.  2005. Early interactions between blood-stage Plasmodium parasites and the immune system. Curr. Top. Microbiol. Immunol. 297:25–70 [Google Scholar]
  96. Guermonprez P, Helft J, Claser C, Deroubaix S, Karanje H. 96.  et al. 2013. Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat. Med. 19:730–38 [Google Scholar]
  97. Porcherie A, Mathieu C, Peronet R, Schneider E, Claver J. 97.  et al. 2011. Critical role of the neutrophil-associated high-affinity receptor for IgE in the pathogenesis of experimental cerebral malaria. J. Exp. Med. 208:2225–36 [Google Scholar]
  98. Hansen DS, D'Ombrain MC, Schofield L. 98.  2007. The role of leukocytes bearing natural killer complex receptors and killer immunoglobulin-like receptors in the immunology of malaria. Curr. Opin. Immunol. 19:416–23 [Google Scholar]
  99. Horowitz A, Newman KC, Evans JH, Korbel DS, Davis DM, Riley EM. 99.  2010. Cross-talk between T cells and NK cells generates rapid effector responses to Plasmodium falciparum-infected erythrocytes. J. Immunol. 184:6043–52 [Google Scholar]
  100. Schofield L, Mueller I. 100.  2006. Clinical immunity to malaria. Curr. Mol. Med. 6:205–21 [Google Scholar]
  101. Grau GE, Taylor TE, Molyneux ME, Wirima JJ, Vassalli P. 101.  et al. 1989. Tumor necrosis factor and disease severity in children with falciparum malaria. N. Engl. J. Med. 320:1586–91 [Google Scholar]
  102. Sinton JA. 102.  1938. Immunity or tolerance in malarial infections. Proc. R. Soc. Med. 31:1298–302 [Google Scholar]
  103. Rubenstein M, Mulholland JH, Jeffery GM, Wolff SM. 103.  1965. Malaria induced endotoxin tolerance. Proc. Soc. Exp. Biol. Med. 118:283–87 [Google Scholar]
  104. Omer FM, Riley EM. 104.  1998. Transforming growth factor β production is inversely correlated with severity of murine malaria infection. J. Exp. Med. 188:39–48 [Google Scholar]
  105. Li C, Corraliza I, Langhorne J. 105.  1999. A defect in interleukin-10 leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice. Infect. Immun. 67:4435–42 [Google Scholar]
  106. Dodoo D, Omer FM, Todd J, Akanmori BD, Koram KA, Riley EM. 106.  2002. Absolute levels and ratios of proinflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. J. Infect. Dis. 185:971–79 [Google Scholar]
  107. Walther M, Jeffries D, Finney OC, Njie M, Ebonyi A. 107.  et al. 2009. Distinct roles for FOXP3 and FOXP3 CD4 T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathog. 5:e1000364 [Google Scholar]
  108. Riley EM, Wahl S, Perkins DJ, Schofield L. 108.  2006. Regulating immunity to malaria. Parasite Immunol. 28:35–49 [Google Scholar]
  109. Finney OC, Riley EM, Walther M. 109.  2010. Regulatory T cells in malaria—friend or foe?. Trends Immunol. 31:63–70 [Google Scholar]
  110. Spence PJ, Langhorne J. 110.  2012. T cell control of malaria pathogenesis. Curr. Opin. Immunol. 24:444–48 [Google Scholar]
  111. 111.  Deleted in proof
  112. Baliraine FN, Afrane YA, Amenya DA, Bonizzoni M, Menge DM. 112.  et al. 2009. High prevalence of asymptomatic Plasmodium falciparum infections in a highland area of western Kenya: a cohort study. J. Infect. Dis. 200:66–74 [Google Scholar]
  113. Bottius E, Guanzirolli A, Trape JF, Rogier C, Konate L, Druilhe P. 113.  1996. Malaria: even more chronic in nature than previously thought; evidence for subpatent parasitaemia detectable by the polymerase chain reaction. Trans. R. Soc. Trop. Med. Hyg. 90:15–19 [Google Scholar]
  114. O'Garra A, Vieira P. 114.  2007. TH1 cells control themselves by producing interleukin-10. Nat. Rev. Immunol. 7:425–28 [Google Scholar]
  115. Gerosa F, Nisii C, Righetti S, Micciolo R, Marchesini M. 115.  et al. 1999. CD4+ T cell clones producing both interferon-γ and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients. Clin. Immunol. 92:224–34 [Google Scholar]
  116. Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, Sacks D. 116.  2007. Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J. Exp. Med. 204:805–17 [Google Scholar]
  117. Anderson CF, Oukka M, Kuchroo VJ, Sacks D. 117.  2007. CD4+CD25Foxp3 Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J. Exp. Med. 204:285–97 [Google Scholar]
  118. Jankovic D, Kullberg MC, Feng CG, Goldszmid RS, Collazo CM. 118.  et al. 2007. Conventional T-bet+Foxp3 Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J. Exp. Med. 204:273–83 [Google Scholar]
  119. Portugal S, Pierce SK, Crompton PD. 119.  2013. Young lives lost as B cells falter: what we are learning about antibody responses in malaria. J. Immunol. 190:3039–46 [Google Scholar]
  120. Cohen S, McGregor IA, Carrington S. 120.  1961. Gamma-globulin and acquired immunity to human malaria. Nature 192:733–37 [Google Scholar]
  121. Crompton PD, Pierce SK, Miller LH. 121.  2010. Advances and challenges in malaria vaccine development. J. Clin. Investig. 120:4168–78 [Google Scholar]
  122. Takala SL, Plowe CV. 122.  2009. Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming “vaccine resistant malaria.”. Parasite Immunol. 31:560–73 [Google Scholar]
  123. Scherf A, Lopez-Rubio JJ, Riviere L. 123.  2008. Antigenic variation in Plasmodium falciparum. Annu. Rev. Microbiol. 62:445–70 [Google Scholar]
  124. Thera MA, Doumbo OK, Coulibaly D, Laurens MB, Ouattara A. 124.  et al. 2011. A field trial to assess a blood-stage malaria vaccine. N. Engl. J. Med. 365:1004–13 [Google Scholar]
  125. Hayton K, Gaur D, Liu A, Takahashi J, Henschen B. 125.  et al. 2008. Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. Cell Host Microbe 4:40–51 [Google Scholar]
  126. Baum J, Chen L, Healer J, Lopaticki S, Boyle M. 126.  et al. 2009. Reticulocyte-binding protein homologue 5—an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int. J. Parasitol. 39:371–80 [Google Scholar]
  127. Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M. 127.  et al. 2011. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480:534–37 [Google Scholar]
  128. Douglas AD, Williams AR, Illingworth JJ, Kamuyu G, Biswas S. 128.  et al. 2011. The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat. Commun. 2:601 [Google Scholar]
  129. Tran TM, Ongoiba A, Coursen J, Crosnier C, Diouf A. 129.  et al. 2013. Naturally acquired antibodies specific for Plasmodium falciparum RH5 inhibit parasite growth and predict protection from malaria. J. Infect. Dis. In press. doi: 10.1093/infdis/jit553
  130. Williams AR, Douglas AD, Miura K, Illingworth JJ, Choudhary P. 130.  et al. 2012. Enhancing blockade of Plasmodium falciparum erythrocyte invasion: assessing combinations of antibodies against PfRH5 and other merozoite antigens. PLoS Pathog. 8:e1002991 [Google Scholar]
  131. Richards JS, Arumugam TU, Reiling L, Healer J, Hodder AN. 131.  et al. 2013. Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. J. Immunol. 191:795–809 [Google Scholar]
  132. Patel SD, Ahouidi AD, Bei AK, Dieye TN, Mboup S. 132.  et al. 2013. Plasmodium falciparum merozoite surface antigen, PfRH5, elicits detectable levels of invasion-inhibiting antibodies in humans. J. Infect. Dis. 208:1679–87 [Google Scholar]
  133. Chan JA, Howell KB, Reiling L, Ataide R, Mackintosh CL. 133.  et al. 2012. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J. Clin. Investig. 122:3227–38 [Google Scholar]
  134. Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold CI, Marsh K. 134.  1998. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat. Med. 4:358–60 [Google Scholar]
  135. Jiang L, Mu J, Zhang Q, Ni T, Srinivasan P. 135.  et al. 2013. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. Nature 499:223–27 [Google Scholar]
  136. McCarthy JS, Good MF. 136.  2010. Whole parasite blood stage malaria vaccines: a convergence of evidence. Hum. Vaccine 6:114–23 [Google Scholar]
  137. Pinzon-Charry A, McPhun V, Kienzle V, Hirunpetcharat C, Engwerda C. 137.  et al. 2010. Low doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice. J. Clin. Investig. 120:2967–78 [Google Scholar]
  138. Tarlinton D, Good-Jacobson K. 138.  2013. Diversity among memory B cells: origin, consequences, and utility. Science 341:1205–11 [Google Scholar]
  139. Amanna IJ, Carlson NE, Slifka MK. 139.  2007. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357:1903–15 [Google Scholar]
  140. Crompton PD, Kayala MA, Traore B, Kayentao K, Ongoiba A. 140.  et al. 2010. A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc. Natl. Acad. Sci. USA 107:6958–63 [Google Scholar]
  141. Kinyanjui SM, Conway DJ, Lanar DE, Marsh K. 141.  2007. IgG antibody responses to Plasmodium falciparum merozoite antigens in Kenyan children have a short half-life. Malar. J. 6:82 [Google Scholar]
  142. Fonjungo PN, Elhassan IM, Cavanagh DR, Theander TG, Hviid L. 142.  et al. 1999. A longitudinal study of human antibody responses to Plasmodium falciparum rhoptry-associated protein 1 in a region of seasonal and unstable malaria transmission. Infect. Immun. 67:2975–85 [Google Scholar]
  143. Dorfman JR, Bejon P, Ndungu FM, Langhorne J, Kortok MM. 143.  et al. 2005. B cell memory to 3 Plasmodium falciparum blood-stage antigens in a malaria-endemic area. J. Infect. Dis. 191:1623–30 [Google Scholar]
  144. Nogaro SI, Hafalla JC, Walther B, Remarque EJ, Tetteh KK. 144.  et al. 2011. The breadth, but not the magnitude, of circulating memory B cell responses to P. falciparum increases with age/exposure in an area of low transmission. PLoS ONE 6:e25582 [Google Scholar]
  145. Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH. 145.  et al. 2010. Long-lived antibody and B cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. PLoS Pathog. 6:e1000770 [Google Scholar]
  146. Ndungu FM, Lundblom K, Rono J, Illingworth J, Eriksson S, Farnert A. 146.  2013. Long-lived Plasmodium falciparum specific memory B cells in naturally exposed Swedish travelers. Eur. J. Immunol. 43:2919–29 [Google Scholar]
  147. Weiss GE, Traore B, Kayentao K, Ongoiba A, Doumbo S. 147.  et al. 2010. The Plasmodium falciparum-specific human memory B cell compartment expands gradually with repeated malaria infections. PLoS Pathog. 6:e1000912 [Google Scholar]
  148. Ndungu FM, Olotu A, Mwacharo J, Nyonda M, Apfeld J. 148.  et al. 2012. Memory B cells are a more reliable archive for historical antimalarial responses than plasma antibodies in no-longer exposed children. Proc. Natl. Acad. Sci. USA 109:8247–52 [Google Scholar]
  149. Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R. 149.  2003. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J. Immunol. 171:4969–73 [Google Scholar]
  150. Moir S, Ho J, Malaspina A, Wang W, DiPoto AC. 150.  et al. 2008. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 205:1797–805 [Google Scholar]
  151. Charles ED, Green RM, Marukian S, Talal AH, Lake-Bakaar GV. 151.  et al. 2008. Clonal expansion of immunoglobulin M+CD27+ B cells in HCV-associated mixed cryoglobulinemia. Blood 111:1344–56 [Google Scholar]
  152. Weiss GE, Crompton PD, Li S, Walsh LA, Moir S. 152.  et al. 2009. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J. Immunol. 183:2176–82 [Google Scholar]
  153. Illingworth J, Butler NS, Roetynck S, Mwacharo J, Pierce SK. 153.  et al. 2013. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J. Immunol. 190:1038–47 [Google Scholar]
  154. Muellenbeck MF, Ueberheide B, Amulic B, Epp A, Fenyo D. 154.  et al. 2013. Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies. J. Exp. Med. 210:389–99 [Google Scholar]
  155. Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK. 155.  et al. 2012. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat. Immunol. 13:188–95 [Google Scholar]
  156. Donati D, Mok B, Chene A, Xu H, Thangarajh M. 156.  et al. 2006. Increased B cell survival and preferential activation of the memory compartment by a malaria polyclonal B cell activator. J. Immunol. 177:3035–44 [Google Scholar]
  157. Nduati E, Gwela A, Karanja H, Mugyenyi C, Langhorne J. 157.  et al. 2011. The plasma concentration of the B cell activating factor is increased in children with acute malaria. J. Infect. Dis. 204:962–70 [Google Scholar]
  158. Scholzen A, Sauerwein RW. 158.  2013. How malaria modulates memory: activation and dysregulation of B cells in Plasmodium infection. Trends Parasitol. 29:252–62 [Google Scholar]
  159. Crompton PD, Mircetic M, Weiss G, Baughman A, Huang CY. 159.  et al. 2009. The TLR9 ligand CpG promotes the acquisition of Plasmodium falciparum-specific memory B cells in malaria-naive individuals. J. Immunol. 182:3318–26 [Google Scholar]
  160. Traore B, Kone Y, Doumbo S, Doumtabe D, Traore A. 160.  et al. 2009. The TLR9 agonist CpG fails to enhance the acquisition of Plasmodium falciparum-specific memory B cells in semi-immune adults in Mali. Vaccine 27:7299–303 [Google Scholar]
  161. Rogerson SJ, Hviid L, Duffy PE, Leke RF, Taylor DW. 161.  2007. Malaria in pregnancy: pathogenesis and immunity. Lancet Infect. Dis. 7:105–17 [Google Scholar]
  162. Marsh K, Forster D, Waruiru C, Mwangi I, Winstanley M. 162.  et al. 1995. Indicators of life-threatening malaria in African children. N. Engl. J. Med. 332:1399–404 [Google Scholar]
  163. Grau GE, Craig AG. 163.  2012. Cerebral malaria pathogenesis: revisiting parasite and host contributions. Future Microbiol. 7:291–302 [Google Scholar]
  164. Shikani HJ, Freeman BD, Lisanti MP, Weiss LM, Tanowitz HB, Desruisseaux MS. 164.  2012. Cerebral malaria: We have come a long way. Am. J. Pathol. 181:1484–92 [Google Scholar]
  165. Lundblom K, Murungi L, Nyaga V, Olsson D, Rono J. 165.  et al. 2013. Plasmodium falciparum infection patterns since birth and risk of severe malaria: a nested case-control study in children on the coast of Kenya. PLoS ONE 8:e56032 [Google Scholar]
  166. Lackritz EM, Campbell CC, Ruebush TK 2nd, Hightower AW, Wakube W. 166.  et al. 1992. Effect of blood transfusion on survival among children in a Kenyan hospital. Lancet 340:524–28 [Google Scholar]
  167. Gupta S, Snow RW, Donnelly CA, Marsh K, Newbold C. 167.  1999. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat. Med. 5:340–43 [Google Scholar]
  168. Alcais A, Quintana-Murci L, Thaler DS, Schurr E, Abel L, Casanova JL. 168.  2010. Life-threatening infectious diseases of childhood: single-gene inborn errors of immunity?. Ann. N.Y. Acad. Sci. 1214:18–33 [Google Scholar]
  169. Jallow M, Teo YY, Small KS, Rockett KA, Deloukas P. 169.  et al. 2009. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat. Genet. 41:657–65 [Google Scholar]
  170. Timmann C, Thye T, Vens M, Evans J, May J. 170.  et al. 2012. Genome-wide association study indicates two novel resistance loci for severe malaria. Nature 489:443–46 [Google Scholar]
  171. Fox LL, Taylor TE, Pensulo P, Liomba A, Mpakiza A. 171.  et al. 2013. Histidine-rich protein 2 plasma levels predict progression to cerebral malaria in Malawian children with Plasmodium falciparum infection. J. Infect. Dis. 208:500–503 [Google Scholar]
  172. Fried M, Duffy PE. 172.  1996. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272:1502–4 [Google Scholar]
  173. Avril M, Tripathi AK, Brazier AJ, Andisi C, Janes JH. 173.  et al. 2012. A restricted subset of var genes mediates adherence of Plasmodium falciparum-infected erythrocytes to brain endothelial cells. Proc. Natl. Acad. Sci. USA 109:E1782–90 [Google Scholar]
  174. Lavstsen T, Turner L, Saguti F, Magistrado P, Rask TS. 174.  et al. 2012. Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children. Proc. Natl. Acad. Sci. USA 109:E1791–800 [Google Scholar]
  175. Craig AG, Grau GE, Janse C, Kazura JW, Milner D. 175.  et al. 2012. The role of animal models for research on severe malaria. PLoS Pathog. 8:e1002401 [Google Scholar]
  176. Milner DA Jr. 176.  2010. Rethinking cerebral malaria pathology. Curr. Opin. Infect. Dis. 23:456–63 [Google Scholar]
  177. Belnoue E, Kayibanda M, Vigario AM, Deschemin JC, van Rooijen N. 177.  et al. 2002. On the pathogenic role of brain-sequestered αβ CD8+ T cells in experimental cerebral malaria. J. Immunol. 169:6369–75 [Google Scholar]
  178. Chen L, Zhang Z, Sendo F. 178.  2000. Neutrophils play a critical role in the pathogenesis of experimental cerebral malaria. Clin. Exp. Immunol. 120:125–33 [Google Scholar]
  179. Howland SW, Poh CM, Gun SY, Claser C, Malleret B. 179.  et al. 2013. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria. EMBO Mol. Med. 5:984–99 [Google Scholar]
  180. Pais TF, Chatterjee S. 180.  2005. Brain macrophage activation in murine cerebral malaria precedes accumulation of leukocytes and CD8+ T cell proliferation. J. Neuroimmunol. 163:73–83 [Google Scholar]
  181. Waisberg M, Tarasenko T, Vickers BK, Scott BL, Willcocks LC. 181.  et al. 2011. Genetic susceptibility to systemic lupus erythematosus protects against cerebral malaria in mice. Proc. Natl. Acad. Sci. USA 108:1122–27 [Google Scholar]
  182. Togbe D, Schofield L, Grau GE, Schnyder B, Boissay V. 182.  et al. 2007. Murine cerebral malaria development is independent of Toll-like receptor signaling. Am. J. Pathol. 170:1640–48 [Google Scholar]
  183. Coban C, Ishii KJ, Uematsu S, Arisue N, Sato S. 183.  et al. 2007. Pathological role of Toll-like receptor signaling in cerebral malaria. Int. Immunol. 19:67–79 [Google Scholar]
  184. Rudin W, Favre N, Bordmann G, Ryffel B. 184.  1997. Interferon-γ is essential for the development of cerebral malaria. Eur. J. Immunol. 27:810–15 [Google Scholar]
  185. Engwerda CR, Mynott TL, Sawhney S, DeSouza JB, Bickle QD, Kaye PM. 185.  2002. Locally up-regulated lymphotoxin α, not systemic tumor necrosis factor α, is the principle mediator of murine cerebral malaria. J. Exp. Med. 195:1371–77 [Google Scholar]
  186. Favre N, Da Laperousaz C, Ryffel B, Weiss NA, Imhof BA. 186.  et al. 1999. Role of ICAM-1 (CD54) in the development of murine cerebral malaria. Microbes Infect. 1:961–68 [Google Scholar]
  187. Molokhia M, McKeigue P. 187.  2006. Systemic lupus erythematosus: genes versus environment in high risk populations. Lupus 15:827–32 [Google Scholar]
  188. Bolland S, Ravetch JV. 188.  2000. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 13:277–85 [Google Scholar]
  189. Deane JA, Pisitkun P, Barrett RS, Feigenbaum L, Town T. 189.  et al. 2007. Control of Toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27:801–10 [Google Scholar]
  190. Clatworthy MR, Willcocks L, Urban B, Langhorne J, Williams TN. 190.  et al. 2007. Systemic lupus erythematosus-associated defects in the inhibitory receptor FcγRIIb reduce susceptibility to malaria. Proc. Natl. Acad. Sci. USA 104:7169–74 [Google Scholar]
  191. Willcocks LC, Carr EJ, Niederer HA, Rayner TF, Williams TN. 191.  et al. 2010. A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 107:7881–85 [Google Scholar]
  192. Niederer HA, Willcocks LC, Rayner TF, Yang W, Lau YL. 192.  et al. 2010. Copy number, linkage disequilibrium and disease association in the FCGR locus. Hum. Mol. Genet. 19:3282–94 [Google Scholar]
  193. Greenwood BM. 193.  1968. Autoimmune disease and parasitic infections in Nigerians. Lancet 2:380–82 [Google Scholar]
  194. Greenwood BM, Herrick EM, Voller A. 194.  1970. Can parasitic infection suppress autoimmune disease?. Proc. R. Soc. Med. 63:19–20 [Google Scholar]
  195. Greenwood BM, Herrick EM, Voller A. 195.  1970. Suppression of autoimmune disease in NZB and (NZB × NZW) F1 hybrid mice by infection with malaria. Nature 226:266–67 [Google Scholar]
  196. Larson JD, Thurman JM, Rubtsov AV, Claypool D, Marrack P. 196.  et al. 2012. Murine gammaherpesvirus 68 infection protects lupus-prone mice from the development of autoimmunity. Proc. Natl. Acad. Sci. USA 109:E1092–100 [Google Scholar]
  197. Lemaitre B, Hoffmann J. 197.  2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25:697–743 [Google Scholar]
  198. Jaramillo-Gutierrez G, Molina-Cruz A, Kumar S, Barillas-Mury C. 198.  2010. The Anopheles gambiae oxidation resistance 1 (OXR1) gene regulates expression of enzymes that detoxify reactive oxygen species. PLoS ONE 5:e11168 [Google Scholar]
  199. Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C. 199.  2010. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science 327:1644–48 [Google Scholar]
  200. Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. 200.  2007. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 3:e26 [Google Scholar]
  201. Roth O, Sadd BM, Schmid-Hempel P, Kurtz J. 201.  2009. Strain-specific priming of resistance in the red flour beetle, Tribolium castaneum. Proc. Biol. Sci. 276:145–51 [Google Scholar]
  202. Raulet DH. 202.  2009. Natural killer cells: remembrances of things past. Curr. Biol. 19:R294–96 [Google Scholar]
  203. Sun JC, Beilke JN, Lanier LL. 203.  2009. Adaptive immune features of natural killer cells. Nature 457:557–61 [Google Scholar]
  204. Sun JC, Lanier LL. 204.  2009. Natural killer cells remember: an evolutionary bridge between innate and adaptive immunity?. Eur. J. Immunol. 39:2059–64 [Google Scholar]
  205. Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C. 205.  2010. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329:1353–55 [Google Scholar]
  206. Luckhart S, Vodovotz Y, Cui L, Rosenberg R. 206.  1998. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc. Natl. Acad. Sci. USA 95:5700–5 [Google Scholar]
  207. Han YS, Thompson J, Kafatos FC, Barillas-Mury C. 207.  2000. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J. 19:6030–40 [Google Scholar]
  208. Han YS, Barillas-Mury C. 208.  2002. Implications of Time Bomb model of ookinete invasion of midgut cells. Insect Biochem. Mol. Biol. 32:1311–16 [Google Scholar]
  209. Kumar S, Gupta L, Han YS, Barillas-Mury C. 209.  2004. Inducible peroxidases mediate nitration of Anopheles midgut cells undergoing apoptosis in response to Plasmodium invasion. J. Biol. Chem. 279:53475–82 [Google Scholar]
  210. Kumar S, Barillas-Mury C. 210.  2005. Ookinete-induced midgut peroxidases detonate the time bomb in anopheline mosquitoes. Insect Biochem. Mol. Biol. 35:721–27 [Google Scholar]
  211. Pfeiffer S, Lass A, Schmidt K, Mayer B. 211.  2001. Protein tyrosine nitration in cytokine-activated murine macrophages. Involvement of a peroxidase/nitrite pathway rather than peroxynitrite. J. Biol. Chem. 276:34051–58 [Google Scholar]
  212. But PG, Murav'ev RA, Fomina VA, Rogovin VV. 212.  2004. [Oxides of nitrogen (NO and NO2) as cofactors of the myeloperoxidase system]. Izv. Akad. Nauk Ser. Biol. 2004:3269–73 (in Russian) [Google Scholar]
  213. Povelones M, Waterhouse RM, Kafatos FC, Christophides GK. 213.  2009. Leucine-rich repeat protein complex activates mosquito complement in defense against Plasmodium parasites. Science 324:258–61 [Google Scholar]
  214. Fraiture M, Baxter RH, Steinert S, Chelliah Y, Frolet C. 214.  et al. 2009. Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of Plasmodium. Cell Host Microbe 5:273–84 [Google Scholar]
  215. Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP. 215.  et al. 2004. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116:661–70 [Google Scholar]
  216. Oliveira GA, Lieberman J, Barillas-Mury C. 216.  2012. Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science 335:856–59 [Google Scholar]
  217. Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS. 217.  et al. 2007. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316:1738–43 [Google Scholar]
  218. Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S. 218.  et al. 2002. Immunity-related genes and gene families in Anopheles gambiae. Science 298:159–65 [Google Scholar]
  219. Zdobnov EM, von Mering C, Letunic I, Torrents D, Suyama M. 219.  et al. 2002. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298:149–59 [Google Scholar]
  220. Barillas-Mury C, Han YS, Seeley D, Kafatos FC. 220.  1999. Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection. EMBO J. 18:959–67 [Google Scholar]
  221. Barillas-Mury C, Charlesworth A, Gross I, Richman A, Hoffmann JA, Kafatos FC. 221.  1996. Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae. EMBO J. 15:4691–701 [Google Scholar]
  222. Frolet C, Thoma M, Blandin S, Hoffmann JA, Levashina EA. 222.  2006. Boosting NF-κB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei. Immunity 25:677–85 [Google Scholar]
  223. Garver LS, Dong Y, Dimopoulos G. 223.  2009. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species. PLoS Pathog. 5:e1000335 [Google Scholar]
  224. Garver LS, Bahia AC, Das S, Souza-Neto JA, Shiao J. 224.  et al. 2012. Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action. PLoS Pathog. 8:e1002737 [Google Scholar]
  225. Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J. 225.  et al. 2012. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature 487:375–79 [Google Scholar]
  226. Nsango SE, Pompon J, Xie T, Rademacher A, Fraiture M. 226.  et al. 2013. AP-1/Fos-TGase2 axis mediates wounding-induced Plasmodium falciparum killing in Anopheles gambiae. J. Biol. Chem. 288:16145–54 [Google Scholar]
  227. Ramirez JL, Garver LS, Brayner FA, Alves LC, Rodrigues J. 227.  et al. 2013. The role of hemocytes in Anopheles gambiae antiplasmodial immunity. J. Innate Immun. In press. doi: 10.1159/000353765
  228. Garver LS, Oliveira GA, Barillas-Mury C. 228.  2013. The JNK pathway is a key mediator of Anopheles gambiae antiplasmodial immunity. PLoS Pathog. 9:e1003622 [Google Scholar]
  229. Gupta L, Molina-Cruz A, Kumar S, Rodrigues J, Dixit R. 229.  et al. 2009. The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito Anopheles gambiae. Cell Host Microbe 5:498–507 [Google Scholar]
  230. Dong Y, Cirimotich CM, Pike A, Chandra R, Dimopoulos G. 230.  2012. Anopheles NF-κB-regulated splicing factors direct pathogen-specific repertoires of the hypervariable pattern recognition receptor AgDscam. Cell Host Microbe 12:521–30 [Google Scholar]
  231. Dong Y, Taylor HE, Dimopoulos G. 231.  2006. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol. 4:e229 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032713-120220
Loading
/content/journals/10.1146/annurev-immunol-032713-120220
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error