1932

Abstract

Theories addressing the biological basis of language must be built on an appreciation of the ways that molecular and neurobiological substrates can contribute to aspects of human cognition. Here, we lay out the principles by which a genome could potentially encode the necessary information to produce a language-ready brain. We describe what genes are; how they are regulated; and how they affect the formation, function, and plasticity of neuronal circuits. At each step, we give examples of molecules implicated in pathways that are important for speech and language. Finally, we discuss technological advances in genomics that are revealing considerable genotypic variation in the human population, from rare mutations to common polymorphisms, with the potential to relate this variation to natural variability in speech and language skills. Moving forward, an interdisciplinary approach to the language sciences, integrating genetics, neurobiology, psychology, and linguistics, will be essential for a complete understanding of our unique human capacities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-linguist-030514-125024
2015-01-14
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/linguistics/1/1/annurev-linguist-030514-125024.html?itemId=/content/journals/10.1146/annurev-linguist-030514-125024&mimeType=html&fmt=ahah

Literature Cited

  1. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM et al. 2012. An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65 [Google Scholar]
  2. Alarcón M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV et al. 2008. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am. J. Hum. Genet. 82:150–59 [Google Scholar]
  3. Ayub Q, Yngvadottir B, Chen Y, Xue Y, Hu M et al. 2013. FOXP2 targets show evidence of positive selection in European populations. Am. J. Hum. Genet. 92:696–706 [Google Scholar]
  4. Bacon C, Rappold GA. 2012. The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Hum. Genet. 131:1687–98 [Google Scholar]
  5. Bashaw GJ, Klein R. 2010. Signaling from axon guidance receptors. Cold Spring Harb. Perspect. Biol. 2:a001941 [Google Scholar]
  6. Bena F, Bruno DL, Eriksson M, van Ravenswaaij–Arts C, Stark Z et al. 2013. Molecular and clinical characterization of 25 individuals with exonic deletions of NRXN1 and comprehensive review of the literature. Am. J. Med. Genet. B 162:388–403 [Google Scholar]
  7. Berwick RC, Friederici AD, Chomsky N, Bolhuis JJ. 2013. Evolution, brain, and the nature of language. Trends Cogn. Sci. 17:89–98 [Google Scholar]
  8. Bishop DV. 1997. Cognitive neuropsychology and developmental disorders: uncomfortable bedfellows. Q. J. Exp. Psychol. A 50:899–923 [Google Scholar]
  9. Bishop DV. 2001. Genetic and environmental risks for specific language impairment in children. Philos. Trans. R. Soc. Lond. B 356:369–80 [Google Scholar]
  10. Bishop DV, Nation K, Patterson K. 2014. When words fail us: insights into language processing from developmental and acquired disorders. Philos. Trans. R. Soc. Lond. B 369:20120403 [Google Scholar]
  11. Boucard AA, Chubykin AA, Comoletti D, Taylor P, Südhof TC. 2005. A splice code for trans–synaptic cell adhesion mediated by binding of neuroligin 1 to α- and β-neurexins. Neuron 48:229–36 [Google Scholar]
  12. Bourgeron T. 2009. A synaptic trek to autism. Curr. Opin. Neurobiol. 19:231–34 [Google Scholar]
  13. Carrion-Castillo A, Franke B, Fisher SE. 2013. Molecular genetics of dyslexia: an overview. Dyslexia 19:214–40 [Google Scholar]
  14. Chahrour M, Zoghbi HY. 2007. The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422–37 [Google Scholar]
  15. Chailangkarn T, Acab A, Muotri AR. 2012. Modeling neurodevelopmental disorders using human neurons. Curr. Opin. Neurobiol. 22:785–90 [Google Scholar]
  16. Chedotal A, Richards LJ. 2010. Wiring the brain: the biology of neuronal guidance. Cold Spring Harb. Perspect. Biol. 2:a001917 [Google Scholar]
  17. Chia PH, Li P, Shen K. 2013. Cell biology in neuroscience: cellular and molecular mechanisms underlying presynapse formation. J. Cell Biol. 203:11–22 [Google Scholar]
  18. Ching MS, Shen Y, Tan WH, Jeste SS, Morrow EM et al. 2010. Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am. J. Med. Genet. B 153:937–47 [Google Scholar]
  19. Chomsky N. 1965. Aspects of the Theory of Syntax Cambridge, MA: MIT Press251
  20. Chomsky N. 2011. Language and other cognitive systems. What is special about language?. Lang. Learn. Dev. 7:263–78 [Google Scholar]
  21. Christiansen MH, Kirby S. 2003. Language Evolution. Oxford, UK/New York: Oxford Univ. Press395
  22. Cross-Disord. Group Psychiatr. Genomics Consort 2013. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–79 [Google Scholar]
  23. Crow TJ. 1997. Is schizophrenia the price that Homo sapiens pays for language?. Schizophr. Res. 28:127–41 [Google Scholar]
  24. Damasio AR, Geschwind N. 1984. The neural basis of language. Annu. Rev. Neurosci. 7:127–47 [Google Scholar]
  25. Darwin C. 1871. The Descent of Man, and Selection in Relation to Sex New York: D. Appleton & Co
  26. Day JJ, Sweatt JD. 2011. Epigenetic mechanisms in cognition. Neuron 70:813–29 [Google Scholar]
  27. Dennis EL, Jahanshad N, Rudie JD, Brown JA, Johnson K et al. 2011. Altered structural brain connectivity in healthy carriers of the autism risk gene, CNTNAP2. Brain Connect. 1:447–59 [Google Scholar]
  28. Deriziotis P, Fisher SE. 2013. Neurogenomics of speech and language disorders: the road ahead. Genome Biol. 14:204 [Google Scholar]
  29. Devanna P, Vernes SC. 2014. A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137. Sci. Rep. 4:3994 [Google Scholar]
  30. Ebert DH, Greenberg ME. 2013. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493:327–37 [Google Scholar]
  31. Feuk L, Kalervo A, Lipsanen-Nyman M, Skaug J, Nakabayashi K et al. 2006. Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. Am. J. Hum. Genet. 79:965–72 [Google Scholar]
  32. Fisher SE. 2006. Tangled webs: tracing the connections between genes and cognition. Cognition 101:270–97 [Google Scholar]
  33. Fisher SE. 2013. Building bridges between genes, brains and language. Birdsong, Speech, and Language: Exploring the Evolution of Mind and Brain Bolhuis JJ, Everaert M. 425–54 Cambridge, MA: MIT Press [Google Scholar]
  34. Fisher SE, DeFries JC. 2002. Developmental dyslexia: genetic dissection of a complex cognitive trait. Nat. Rev. Neurosci. 3:767–80 [Google Scholar]
  35. Fisher SE, Marcus GF. 2006. The eloquent ape: genes, brains and the evolution of language. Nat. Rev. Genet. 7:9–20 [Google Scholar]
  36. Fisher SE, Ridley M. 2013. Culture, genes, and the human revolution. Science 340:929–30 [Google Scholar]
  37. Fisher SE, Scharff C. 2009. FOXP2 as a molecular window into speech and language. Trends Genet. 25:166–77 [Google Scholar]
  38. Fogel BL, Wexler E, Wahnich A, Friedrich T, Vijayendran C et al. 2012. RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. Hum. Mol. Genet. 21:4171–86 [Google Scholar]
  39. Fonseca-Azevedo K, Herculano-Houzel S. 2012. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution. Proc. Natl. Acad. Sci. USA 109:18571–76 [Google Scholar]
  40. Forrest M, Chapman RM, Doyle AM, Tinsley CL, Waite A, Blake DJ. 2012. Functional analysis of TCF4 missense mutations that cause Pitt–Hopkins syndrome. Hum. Mutat. 33:1676–86 [Google Scholar]
  41. French CA, Jin X, Campbell TG, Gerfen E, Groszer M et al. 2012. An aetiological Foxp2 mutation causes aberrant striatal activity and alters plasticity during skill learning. Mol. Psychiatry 17:1077–85 [Google Scholar]
  42. Galaburda AM, Kemper TL. 1979. Cytoarchitectonic abnormalities in developmental dyslexia: a case study. Ann. Neurol. 6:94–100 [Google Scholar]
  43. Galaburda AM, Sherman GF, Rosen GD, Aboitiz F, Geschwind N. 1985. Developmental dyslexia: four consecutive patients with cortical anomalies. Ann. Neurol. 18:222–33 [Google Scholar]
  44. Gao P, Sultan KT, Zhang XJ, Shi SH. 2013. Lineage-dependent circuit assembly in the neocortex. Development 140:2645–55 [Google Scholar]
  45. Gehman LT, Stoilov P, Maguire J, Damianov A, Lin CH et al. 2011. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat. Genet. 43:706–11 [Google Scholar]
  46. Gialluisi A, Newbury DF, Wilcutt EG, Olson RK, DeFries JC et al. 2014. Genome-wide screening DNA variants associated with reading and language traits. Genes Brain Behav 13:686–701 [Google Scholar]
  47. Goldie BJ, Cairns MJ. 2012. Post-transcriptional trafficking and regulation of neuronal gene expression. Mol. Neurobiol. 45:99–108 [Google Scholar]
  48. Gonda Y, Andrews WD, Tabata H, Namba T, Parnavelas JG et al. 2013. Robo1 regulates the migration and laminar distribution of upper-layer pyramidal neurons of the cerebral cortex. Cereb. Cortex 23:1495–508 [Google Scholar]
  49. Gopnik M. 1997. Language deficits and genetic factors. Trends Cogn. Sci. 1:5–9 [Google Scholar]
  50. Grabowski P. 2011. Alternative splicing takes shape during neuronal development. Curr. Opin. Genet. Dev. 21:388–94 [Google Scholar]
  51. Graham SA, Fisher SE. 2013. Decoding the genetics of speech and language. Curr. Opin. Neurobiol. 23:43–51 [Google Scholar]
  52. Gregor A, Albrecht B, Bader I, Bijlsma EK, Ekici AB et al. 2011. Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1. BMC Med. Genet. 12:106 [Google Scholar]
  53. Groszer M, Keays DA, Deacon RM, de Bono JP, Prasad-Mulcare S et al. 2008. Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr. Biol. 18:354–62 [Google Scholar]
  54. Ha M. 2013. Understanding the chromatin remodeling code. Plant Sci. 211:137–45 [Google Scholar]
  55. Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P, Scharff C. 2007. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLOS Biol. 5:e321 [Google Scholar]
  56. Hamdan FF, Daoud H, Rochefort D, Piton A, Gauthier J et al. 2010. De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am. J. Hum. Genet. 87:671–78 [Google Scholar]
  57. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ et al. 2008. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 105:17046–49 [Google Scholar]
  58. Holtmaat A, Svoboda K. 2009. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10:647–58 [Google Scholar]
  59. Hong EJ, West AE, Greenberg ME. 2005. Transcriptional control of cognitive development. Curr. Opin. Neurobiol. 15:21–28 [Google Scholar]
  60. Hoogman M, Guadalupe T, Zwiers MP, Klarenbeek P, Francks C, Fisher SE. 2014. Assessing the effects of common variation in the FOXP2 gene on human brain structure. Front. Hum. Neurosci. 8:473 [Google Scholar]
  61. Horn D. 2011. Mild to moderate intellectual disability and significant speech and language deficits in patients with FOXP1 deletions and mutations. Mol. Syndromol 2:213–16 [Google Scholar]
  62. Jung H, Holt CE. 2011. Local translation of mRNAs in neural development. Wiley Interdiscip. Rev. RNA 2:153–65 [Google Scholar]
  63. Kim M, Roesener AP, Mendonca PR, Mastick GS. 2011. Robo1 and Robo2 have distinct roles in pioneer longitudinal axon guidance. Dev. Biol. 358:181–88 [Google Scholar]
  64. Klein RG, Edgar B. 2002. The Dawn of Human Culture. New York: Wiley288
  65. Kolodkin AL, Tessier-Lavigne M. 2011. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb. Perspect. Biol 3:a001727 [Google Scholar]
  66. Kos M, van den Brink D, Snijders TM, Rijpkema M, Franke B et al. 2012. CNTNAP2 and language processing in healthy individuals as measured with ERPs. PLOS ONE 7:e46995 [Google Scholar]
  67. Kuhl PK. 2010. Brain mechanisms in early language acquisition. Neuron 67:713–27 [Google Scholar]
  68. Kwon E, Wang W, Tsai LH. 2013. Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets. Mol. Psychiatry 18:11–12 [Google Scholar]
  69. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. 2001. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–23 [Google Scholar]
  70. Lappalainen T, Sammeth M, Friedländer MR, ’t Hoen PA, Monlong J et al. 2013. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501:506–11 [Google Scholar]
  71. Loebrich S, Nedivi E. 2009. The function of activity-regulated genes in the nervous system. Physiol. Rev. 89:1079–103 [Google Scholar]
  72. Luciano M, Evans DM, Hansell NK, Medland SE, Montgomery GW et al. 2013. A genome-wide association study for reading and language abilities in two population cohorts. Genes Brain Behav. 12:645–52 [Google Scholar]
  73. MacDermot KD, Bonora E, Sykes N, Coupe AM, Lai CS et al. 2005. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. Am. J. Hum. Genet. 76:1074–80 [Google Scholar]
  74. Manzini MC, Walsh CA. 2011. What disorders of cortical development tell us about the cortex: One plus one does not always make two. Curr. Opin. Genet. Dev. 21:333–39 [Google Scholar]
  75. Marin O, Valiente M, Ge X, Tsai LH. 2010. Guiding neuronal cell migrations. Cold Spring Harb. Perspect. Biol. 2:a001834 [Google Scholar]
  76. McNeill E, Van Vactor D. 2012. MicroRNAs shape the neuronal landscape. Neuron 75:363–79 [Google Scholar]
  77. Metzker ML. 2010. Sequencing technologies—the next generation. Nat. Rev. Genet. 11:31–46 [Google Scholar]
  78. Navarrete K, Pedroso I, De Jong S, Stefansson H, Steinberg S et al. 2013. TCF4 (e2-2; ITF2): a schizophrenia-associated gene with pleiotropic effects on human disease. Am. J. Med. Genet. B 162:1–16 [Google Scholar]
  79. Newbury DF, Winchester L, Addis L, Paracchini S, Buckingham LL et al. 2009. CMIP and ATP2C2 modulate phonological short-term memory in language impairment. Am. J. Hum. Genet. 85:264–72 [Google Scholar]
  80. Nudel R, Simpson NH, Baird G, O’Hare A, Conti-Ramsden G et al. 2014. Genome-wide association analyses of child genotype effects and parent-of-origin effects in specific language impairment. Genes Brain Behav. 13:418–29 [Google Scholar]
  81. O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ et al. 2011. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43:585–89 [Google Scholar]
  82. Ooi L, Wood IC. 2008. Regulation of gene expression in the nervous system. Biochem. J. 414:327–41 [Google Scholar]
  83. Paabo S. 2014. The human condition—a molecular approach. Cell 157:216–26 [Google Scholar]
  84. Palumbo O, D’Agruma L, Minenna AF, Palumbo P, Stallone R et al. 2013. 3p14.1 de novo microdeletion involving the FOXP1 gene in an adult patient with autism, severe speech delay and deficit of motor coordination. Gene 516:107–13 [Google Scholar]
  85. Paracchini S, Scerri T, Monaco AP. 2007. The genetic lexicon of dyslexia. Annu. Rev. Genomics Hum. Genet. 8:57–79 [Google Scholar]
  86. Park HT, Wu J, Rao Y. 2002. Molecular control of neuronal migration. BioEssays 24:821–27 [Google Scholar]
  87. Paterson SJ, Brown JH, Gsödl MK, Johnson MH, Karmiloff-Smith A. 1999. Cognitive modularity and genetic disorders. Science 286:2355–58 [Google Scholar]
  88. Piton A, Gauthier J, Hamdan FF, Lafrenière RG, Yang Y et al. 2011. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol. Psychiatry 16:867–80 [Google Scholar]
  89. Poeppel D, Hickok G. 2004. Towards a new functional anatomy of language. Cognition 92:1–12 [Google Scholar]
  90. Polleux F, Snider W. 2010. Initiating and growing an axon. Cold Spring Harb. Perspect. Biol. 2:a001925 [Google Scholar]
  91. Poon MM, Choi SH, Jamieson CA, Geschwind DH, Martin KC. 2006. Identification of process-localized mRNAs from cultured rodent hippocampal neurons. J. Neurosci. 26:13390–99 [Google Scholar]
  92. Rice GM, Raca G, Jakielski KJ, Laffin JJ, Iyama-Kurtycz CM et al. 2012. Phenotype of FOXP2 haploinsufficiency in a mother and son. Am. J. Med. Genet. A 158:174–81 [Google Scholar]
  93. Rodenas-Cuadrado P, Ho J, Vernes SC. 2014. Shining a light on CNTNAP2: complex functions to complex disorders. Eur. J. Hum. Genet. 22:171–78 [Google Scholar]
  94. Roeske D, Ludwig KU, Neuhoff N, Becker J, Bartling J et al. 2011. First genome-wide association scan on neurophysiological endophenotypes points to trans-regulation effects on SLC2A3 in dyslexic children. Mol. Psychiatry 16:97–107 [Google Scholar]
  95. Rothbart SB, Strahl BD. 2014. Interpreting the language of histone and DNA modifications. Biochim. Biophys. Acta 1839:627–43 [Google Scholar]
  96. Scerri TS, Schulte-Körne G. 2010. Genetics of developmental dyslexia. Eur. Child Adolesc. Psychiatry 19:179–97 [Google Scholar]
  97. Shandilya J, Roberts SG. 2012. The transcription cycle in eukaryotes: from productive initiation to RNA polymerase II recycling. Biochim. Biophys. Acta 1819:391–400 [Google Scholar]
  98. Shriberg LD, Ballard KJ, Tomblin JB, Duffy JR, Odell KH, Williams CA. 2006. Speech, prosody, and voice characteristics of a mother and daughter with a 7;13 translocation affecting FOXP2. J. Speech Lang. Hear. Res. 49:500–25 [Google Scholar]
  99. Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W et al. 2010. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28:1060–70 [Google Scholar]
  100. Spiteri E, Konopka G, Coppola G, Bomar J, Oldham M et al. 2007. Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. Am. J. Hum. Genet. 81:1144–57 [Google Scholar]
  101. Südhof TC. 2008. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–11 [Google Scholar]
  102. Sweatt JD. 2013. Pitt–Hopkins syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp. Mol. Med. 45:e21 [Google Scholar]
  103. Szalontai A, Csiszar K. 2013. Genetic insights into the functional elements of language. Hum. Genet. 132:959–86 [Google Scholar]
  104. Szymanski M, Barciszewski J. 2007. The genetic code—40 years on. Acta Biochim. Pol. 54:51–54 [Google Scholar]
  105. Tan X, Shi SH. 2013. Neocortical neurogenesis and neuronal migration. Wiley Interdiscip. Rev. Dev. Biol. 2:443–59 [Google Scholar]
  106. Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA et al. 2014. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 8:153–82 [Google Scholar]
  107. Turner SJ, Hildebrand MS, Block S, Damiano J, Fahey M et al. 2013. Small intragenic deletion in FOXP2 associated with childhood apraxia of speech and dysarthria. Am. J. Med. Genet. A 161:2321–26 [Google Scholar]
  108. Ullrich B, Ushkaryov YA, Südhof TC. 1995. Cartography of neurexins: more than 1,000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14:497–507 [Google Scholar]
  109. van Bokhoven H. 2011. Genetic and epigenetic networks in intellectual disabilities. Annu. Rev. Genet. 45:81–104 [Google Scholar]
  110. van der Lely HK, Rosen S, McClelland A. 1998. Evidence for a grammar-specific deficit in children. Curr. Biol. 8:1253–58 [Google Scholar]
  111. Vernes SC, Fisher SE. 2009. Unravelling neurogenetic networks implicated in developmental language disorders. Biochem. Soc. Trans. 37:1263–69 [Google Scholar]
  112. Vernes SC, Fisher SE. 2013. Genetic pathways implicated in speech and language. Animal Models of Speech and Language Disorders Helekar S. 13–40 New York: Springer [Google Scholar]
  113. Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J et al. 2008. A functional genetic link between distinct developmental language disorders. N. Engl. J. Med. 359:2337–45 [Google Scholar]
  114. Vernes SC, Oliver PL, Spiteri E, Lockstone HE, Puliyadi R et al. 2011. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLOS Genet. 7:e1002145 [Google Scholar]
  115. Vernes SC, Spiteri E, Nicod J, Groszer M, Taylor JM et al. 2007. High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. Am. J. Hum. Genet. 81:1232–50 [Google Scholar]
  116. Visscher PM, Brown MA, McCarthy MI, Yang J. 2012. Five years of GWAS discovery. Am. J. Hum. Genet. 90:7–24 [Google Scholar]
  117. Watkins KE, Dronkers NF, Vargha-Khadem F. 2002. Behavioural analysis of an inherited speech and language disorder: comparison with acquired aphasia. Brain 125:452–64 [Google Scholar]
  118. Whalley HC, O’Connell G, Sussmann JE, Peel A, Stanfield AC et al. 2011. Genetic variation in CNTNAP2 alters brain function during linguistic processing in healthy individuals. Am. J. Med. Genet. B 156:941–48 [Google Scholar]
  119. White SA, Fisher SE, Geschwind DH, Scharff C, Holy TE. 2006. Singing mice, songbirds, and more: models for FOXP2 function and dysfunction in human speech and language. J. Neurosci. 26:10376–79 [Google Scholar]
  120. Whitehouse AJ, Bishop DV, Ang QW, Pennell CE, Fisher SE. 2011. CNTNAP2 variants affect early language development in the general population. Genes Brain Behav. 10:451–56 [Google Scholar]
  121. Willemsen MH, Vallès A, Kirkels LA, Mastebroek M, Olde Loohuis N et al. 2011. Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. J. Med. Genet. 48:810–18 [Google Scholar]
  122. Worthey EA, Raca G, Laffin JJ, Wilk BM, Harris JM et al. 2013. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech. J. Neurodev. Disord. 5:29 [Google Scholar]
  123. Wright C, Turner JA, Calhoun VD, Perrone-Bizzozero N. 2013. Potential impact of miR-137 and its targets in schizophrenia. Front. Genet. 4:58 [Google Scholar]
  124. Zhang W, Rohlmann A, Sargsyan V, Aramuni G, Hammer RE et al. 2005. Extracellular domains of α-neurexins participate in regulating synaptic transmission by selectively affecting N- and P/Q-type Ca2+ channels. J. Neurosci. 25:4330–42 [Google Scholar]
  125. Zheng S, Black DL. 2013. Alternative pre-mRNA splicing in neurons: growing up and extending its reach. Trends Genet. 29:442–48 [Google Scholar]
  126. Zivraj KH, Tung YC, Piper M, Gumy L, Fawcett JW et al. 2010. Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J. Neurosci. 30:15464–78 [Google Scholar]
  127. Zweier C. 2012. Severe intellectual disability associated with recessive defects in CNTNAP2 and NRXN1. Mol. Syndromol. 2:181–85 [Google Scholar]
/content/journals/10.1146/annurev-linguist-030514-125024
Loading
/content/journals/10.1146/annurev-linguist-030514-125024
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error