1932

Abstract

The biodiversity of phytoplankton is a core measurement of the state and activity of marine ecosystems. In the context of historical approaches, we review recent major advances in the technologies that have enabled deeper characterization of the biodiversity of phytoplankton. In particular, high-throughput sequencing of single loci/genes, genomes, and communities (metagenomics) has revealed exceptional phylogenetic and genomic diversity whose breadth is not fully constrained. Other molecular tools—such as fingerprinting, quantitative polymerase chain reaction, and fluorescence in situ hybridization—have provided additional insight into the dynamics of this diversity in the context of environmental variability. Techniques for characterizing the functional diversity of community structure through targeted or untargeted approaches based on RNA or protein have also greatly advanced. A wide range of techniques is now available for characterizing phytoplankton communities, and these tools will continue to advance through ongoing improvements in both technology and data interpretation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010814-015902
2015-01-03
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/marine/7/1/annurev-marine-010814-015902.html?itemId=/content/journals/10.1146/annurev-marine-010814-015902&mimeType=html&fmt=ahah

Literature Cited

  1. Allen AE, LaRoche J, Maheswari U, Lommer M, Schauer N. et al. 2008. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl. Acad. Sci. USA 105:10438–43 [Google Scholar]
  2. Amann R, Fuchs BM. 2008. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6:339–48 [Google Scholar]
  3. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D. et al. 2004. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86 [Google Scholar]
  4. Batmalle CS, Chiang H-I, Zhang K, Lomas MW, Martiny AC. 2014. Development and bias assessment of a method for targeted metagenomic sequencing of marine cyanobacteria. Appl. Environ. Microbiol. 80:1116–25 [Google Scholar]
  5. Benfield MC, Grosjean P, Culverhouse PF, Irigoien X, Sieracki ME. et al. 2007. RAPID: Research on Automated Plankton Identification. Oceanography 20:2172–87 [Google Scholar]
  6. Bertilsson S, Berglund O, Karl DM, Chisholm SW. 2003. Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnol. Oceanogr. 48:1721–31 [Google Scholar]
  7. Bidigare RR, Van Heukeleum L, Trees CC. 2005. Analysis of algal pigments by high-performance liquid chromatography. Algal Culturing Techniques RA Andersen 327–45 Boston: Elsevier [Google Scholar]
  8. Blankenship RE. 2002. Molecular Mechanisms of Photosynthesis Oxford, UK: Blackwell Sci.
  9. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K. et al. 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–44 [Google Scholar]
  10. Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW. 2013. Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput. Biol. 9:e1003031 [Google Scholar]
  11. Brown MV, Schwalbach MS, Hewson I, Fuhrman JA. 2005. Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environ. Microbiol. 7:1466–79 [Google Scholar]
  12. Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. 2011. Activity of abundant and rare bacteria in a coastal ocean. Proc. Natl. Acad. Sci. USA 108:12776–81 [Google Scholar]
  13. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD. et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–36 [Google Scholar]
  14. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA. et al. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108:Suppl. 14516–22 [Google Scholar]
  15. Casey JR, Lomas MW, Mandecki J, Walker DE. 2007. Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum. Geophys. Res. Lett. 34:5 [Google Scholar]
  16. Chandler DP, Fredrickson JK, Brockman FJ. 1997. Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol. Ecol. 6:475–82 [Google Scholar]
  17. Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo M-J, Dupont CL. et al. 2011. Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat. Biotechnol. 29:915–21 [Google Scholar]
  18. Church MJ, Short CM, Jenkins BD, Karl DM, Zehr JP. 2005. Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific Ocean. Appl. Environ. Microbiol. 71:5362–70 [Google Scholar]
  19. Cordero OX, Polz MF. 2014. Explaining microbial genomic diversity in light of evolutionary ecology. Nat. Rev. Microbiol. 12:263–73 [Google Scholar]
  20. Cuvelier ML, Allen AE, Monier A, McCrow JP, Messié M. et al. 2010. Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proc. Natl. Acad. Sci. USA 107:14679–84 [Google Scholar]
  21. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ. et al. 2006. Community genomics among stratified microbial assemblages in the ocean's interior. Science 311:496–503 [Google Scholar]
  22. Dubelaar GBJ, Gerritzen PL, Beeker AER, Jonker RR, Tangen K. 1999. Design and first results of CytoBuoy: a wireless flow cytometer for in situ analysis of marine and fresh waters. Cytometry 37:247–54 [Google Scholar]
  23. Dyhrman ST, Jenkins BD, Rynearson TA, Saito MA, Mercier ML. et al. 2012. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS ONE 7:e33768 [Google Scholar]
  24. Escalas A, Bouvier T, Mouchet MA, Leprieur F, Bouvier C. et al. 2013. A unifying quantitative framework for exploring the multiple facets of microbial biodiversity across diverse scales. Environ. Microbiol. 15:2642–57 [Google Scholar]
  25. Falkowski PG, Barber RT, Smetacek V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–6 [Google Scholar]
  26. Falkowski PG, Fenchel T, DeLong EF. 2008. The microbial engines that drive Earth's biogeochemical cycles. Science 320:1034–39 [Google Scholar]
  27. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA. et al. 2004. The evolution of modern eukaryotic phytoplankton. Science 305:354–60 [Google Scholar]
  28. Falkowski PG, Owens TG. 1980. Light-shade adaptation: two strategies in marine phytoplankton. Plant Physiol. 66:592–95 [Google Scholar]
  29. Farrelly V, Rainey FA, Stackebrandt E. 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61:2798–801 [Google Scholar]
  30. Field CB, Behrenfeld MJ, Randerson JT, Falkowski PG. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40 [Google Scholar]
  31. Franks PJS. 1992. Sink or swim: accumulation of biomass at fronts. Mar. Ecol. Prog. Ser. 82:1–12 [Google Scholar]
  32. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC. et al. 2008. Microbial community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. USA 105:3805–10 [Google Scholar]
  33. Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, Naeem S. 2006. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl. Acad. Sci. USA 103:13104–9 [Google Scholar]
  34. Gilbert JA, Field D, Huang Y, Edwards R, Li W. et al. 2008. Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS ONE 3:e3042 [Google Scholar]
  35. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63 [Google Scholar]
  36. Goericke R, Welschmeyer NA. 1993. The chlorophyll-labeling method: measuring specific rates of chlorophyll a synthesis in cultures and in the open ocean. Limnol. Oceanogr. 38:80–95 [Google Scholar]
  37. Haeckel E. 2005 (1862). Art Forms from the Ocean: The Radiolarian Atlas of 1862 Munich: Prestel
  38. Hall BG. 2011. Phylogenetic Trees Made Easy: A How-To Manual Sunderland, MA: Sinauer
  39. He Z, Gentry TJ, Schadt CW, Wu L, Liebich J. et al. 2007. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1:67–77 [Google Scholar]
  40. Heldal M, Scanlan DJ, Norland S, Thingstad F, Mann NH. 2003. Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol. Oceanogr. 48:1732–43 [Google Scholar]
  41. Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G. 2011. The response of diatom central carbon metabolism to nitrogen starvation is different to that of green algae and higher plants. Plant Physiol. 158:299–312 [Google Scholar]
  42. Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N, Chen F. 2012. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 6:285–97 [Google Scholar]
  43. Hunt DE, Klepac-Ceraj V, Acinas SG, Gautier C, Bertilsson S, Polz MF. 2006. Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. Appl. Environ. Microbiol. 72:2221–25 [Google Scholar]
  44. Hunt DE, Lin Y, Church MJ, Karl DM, Izzo LK. et al. 2013. The relationship between abundance and specific activity of bacterioplankton in open ocean surface waters. Appl. Environ. Microbiol. 79:177–84 [Google Scholar]
  45. Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward M, Chisholm SW. 2006. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–40 [Google Scholar]
  46. Karl DM. 2007. Microbial oceanography: paradigms, processes and promise. Nat. Rev. Microbiol. 5:759–69 [Google Scholar]
  47. Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ. et al. 2014. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416–20 [Google Scholar]
  48. Kerkhof L, Kemp P. 1999. Small ribosomal RNA content in marine Proteobacteria during non-steady-state growth. FEMS Microbiol. Ecol. 30:253–60 [Google Scholar]
  49. Kettler GC, Martiny AC, Huang K, Zucker J, Coleman ML. et al. 2007. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet. 3:e231 [Google Scholar]
  50. Lang I, Hodac L, Friedl T, Feussner I. 2011. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 11:124 [Google Scholar]
  51. Larsson J, Celepli N, Ininbergs K, Dupont CL, Yooseph S. et al. 2014. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J. 8:1892–903 [Google Scholar]
  52. Li WKW. 1994. Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol. Oceanogr. 39:169–75 [Google Scholar]
  53. Lin Y, Gazsi K, Lance VP, Larkin A, Chandler J. et al. 2013. In situ activity of a dominant Prochlorococcus ecotype (eHL-II) from rRNA content and cell size. Environ. Microbiol. 15:2736–47 [Google Scholar]
  54. Lomas MW, Bronk DA, van den Engh G. 2011. Use of flow cytometry to measure biogeochemical rates and processes in the ocean. Annu. Rev. Mar. Sci. 3:537–66 [Google Scholar]
  55. Ludwig W, Strunk O, Westram R, Richter L, Meier H. et al. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32:1363–71 [Google Scholar]
  56. Luo C, Rodriguez RL, Konstantinidis KT. 2013. A user's guide to quantitative and comparative analysis of metagenomic datasets. Methods Enzymol. 531:525–47 [Google Scholar]
  57. Mackey M, Mackey D, Higgins H, Wright S. 1996. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144:265–83 [Google Scholar]
  58. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE. et al. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95:3140–45 [Google Scholar]
  59. Malfatti F, Azam F. 2009. Atomic force microscopy reveals microscale networks and possible symbioses among pelagic marine bacteria. Aquat. Microb. Ecol. 58:1–14 [Google Scholar]
  60. Malmstrom RR, Rodrigue S, Huang KH, Kelly L, Kern SE. et al. 2013. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis. ISME J. 7:184–98 [Google Scholar]
  61. Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL. et al. 2009. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457:467–70 [Google Scholar]
  62. Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB. et al. 2012. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl. Acad. Sci. USA 109:E317–25 [Google Scholar]
  63. Mardis ER. 2013. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. 6:287–303 [Google Scholar]
  64. Martiny AC, Coleman ML, Chisholm SW. 2006. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc. Natl. Acad. Sci. USA 103:12552–57 [Google Scholar]
  65. Martiny AC, Huang Y, Li W. 2009a. Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. Environ. Microbiol. 11:1340–47 [Google Scholar]
  66. Martiny AC, Kathuria S, Berube PM. 2009b. Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc. Natl. Acad. Sci. USA 106:10787–92 [Google Scholar]
  67. Martiny AC, Pham CTA, Primeau FW, Vrugt JA, Moore JK. et al. 2013. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6:279–83 [Google Scholar]
  68. Meyer F, Paarmann D, D'Souza M, Olson R, Glass E. et al. 2008. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform. 9:386 [Google Scholar]
  69. Moeseneder MM, Arrieta JM, Muyzer G, Winter C, Herndl GJ. 1999. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 65:3518–25 [Google Scholar]
  70. Moon-van der Staay SY, De Wachter R, Vaulot D. 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–10 [Google Scholar]
  71. Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G. 2010. Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J. 4:673–85 [Google Scholar]
  72. Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S. et al. 2010. Genome characteristics of a generalist marine bacterial lineage. ISME J. 4:784–98 [Google Scholar]
  73. Olson RJ, Vaulot D, Chisholm SW. 1985. Marine phytoplankton distributions measured using shipboard flow cytometry. Deep-Sea Res. 32:1273–80 [Google Scholar]
  74. Osanai T, Oikawa A, Shirai T, Kuwahara A, Iijima H. et al. 2014. Capillary electrophoresis–mass spectrometry reveals the distribution of carbon metabolites during nitrogen starvation in Synechocystis sp. PCC 6803. Environ. Microbiol. 16:512–24 [Google Scholar]
  75. Ottesen EA, Marin R III, Preston CM, Young CR, Ryan JP. et al. 2011. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISME J. 5:1881–95 [Google Scholar]
  76. Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R. et al. 2014. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 345:207–12 [Google Scholar]
  77. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L. et al. 2003. The genome of a motile marine Synechococcus. Nature 424:1037–42 [Google Scholar]
  78. Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A. et al. 2007. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc. Natl. Acad. Sci. USA 104:7705–10 [Google Scholar]
  79. Palenik B, Ren Q, Tai V, Paulsen IT. 2009. Coastal Synechococcus metagenome reveals major roles for horizontal gene transfer and plasmids in population diversity. Environ. Microbiol. 11:349–59 [Google Scholar]
  80. Parsons ML, Scholin CA, Miller PE, Doucette GJ, Powell CL. et al. 1999. Pseudo-nitzschia species (Bacillariophyceae) in Louisiana coastal waters: molecular probe field trials, genetic variability, and domoic acid analyses. J. Phycol. 35:1368–78 [Google Scholar]
  81. Paul JH, Pichard SL, Kang JB, Watson GMF, Tabita FR. 1999. Evidence for a clade-specific temporal and spatial separation in ribulose bisphosphate carboxylase gene expression in phytoplankton populations off Cape Hatteras and Bermuda. Limnol. Oceanogr. 44:12–23 [Google Scholar]
  82. Pichard SL, Campbell L, Paul JH. 1997. Diversity of the ribulose bisphosphate carboxylase/oxygenase form I gene (rbcL) in natural phytoplankton communities. Appl. Environ. Microbiol. 63:3600–6 [Google Scholar]
  83. Polz MF, Cavanaugh CM. 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64:3724–30 [Google Scholar]
  84. Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA. 2009. Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ. Microbiol. 11:1358–75 [Google Scholar]
  85. Preheim SP, Perrotta AR, Martin-Platero AM, Gupta A, Alm EJ. 2013. Distribution-based clustering: using ecology to refine the operational taxonomic unit. Appl. Environ. Microbiol. 79:6593–603 [Google Scholar]
  86. Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC. et al. 2013. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209–13 [Google Scholar]
  87. Rich VI, Konstantinidis K, DeLong EF. 2008. Design and testing of “genome-proxy” microarrays to profile marine microbial communities. Environ. Microbiol. 10:506–21 [Google Scholar]
  88. Robidart JC, Preston CM, Paerl RW, Turk KA, Mosier AC. et al. 2012. Seasonal Synechococcus and Thaumarchaeal population dynamics examined with high resolution with remote in situ instrumentation. ISME J. 6:513–23 [Google Scholar]
  89. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P. et al. 2003. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–47 [Google Scholar]
  90. Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR, Chisholm SW. 2009. Whole genome amplification and de novo assembly of single bacterial cells. PLoS ONE 4:e6864 [Google Scholar]
  91. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S. et al. 2007. The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol. 5:e77 [Google Scholar]
  92. Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC. 2010. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc. Natl. Acad. Sci. USA 107:16184–89 [Google Scholar]
  93. Scanlan DJ, Hess WR, Partensky F, Newman J, Vaulot D. 1996. High degree of genetic variation in Prochlorococcus (Prochlorophyta) revealed by RFLP analysis. Eur. J. Phycol. 31:1–9 [Google Scholar]
  94. Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L. et al. 2009. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73:249–99 [Google Scholar]
  95. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M. et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537–41 [Google Scholar]
  96. Scholin C, Doucette G, Jensen S, Roman B, Pargett D. et al. 2009. Remote detection of marine microbes, small invertebrates, harmful algae, and biotoxins using the Environmental Sample Processor (ESP). Oceanography 22:2158–67 [Google Scholar]
  97. See JH, Campbell L, Richardson TL, Pinckney JL, Shen R, Guinasso NL. 2005. Combining new technologies for determination of phytoplankton community structure in the Northern Gulf of Mexico. J. Phycol. 41:305–10 [Google Scholar]
  98. Selph KE, Landry MR, Taylor AG, Yang E-J, Measures CI. et al. 2011. Spatially-resolved taxon-specific phytoplankton production and grazing dynamics in relation to iron distributions in the equatorial Pacific between 110 and 140°W. Deep-Sea Res. II 58:358–77 [Google Scholar]
  99. Shapiro HM. 2003. Practical Flow Cytometry Hoboken, NJ: Wiley
  100. Shi Y, Tyson GW, DeLong EF. 2009. Metatranscriptomics reveals unique microbial small RNAs in the ocean's water column. Nature 459:266–69 [Google Scholar]
  101. Shilova IN, Robidart JC, Tripp HJ, Turk-Kubo K, Wawrik B. et al. 2014. A microarray for assessing transcription from pelagic marine microbial taxa. ISME J. 8:1476–91 [Google Scholar]
  102. Sieracki CK, Sieracki ME, Yentsch CS. 1998. An imaging-in-flow system for automated analysis of marine microplankton. Mar. Ecol. Prog. Ser. 168:285–96 [Google Scholar]
  103. Siggins A, Gunnigle E, Abram F. 2012. Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol. Ecol. 80:265–80 [Google Scholar]
  104. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM. et al. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere.”. Proc. Natl. Acad. Sci. USA 103:12115–20 [Google Scholar]
  105. Sowell SM, Abraham PE, Shah M, Verberkmoes NC, Smith DP. et al. 2011. Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J. 5:856–65 [Google Scholar]
  106. Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD. et al. 2009. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 3:93–105 [Google Scholar]
  107. Stewart FJ, Ottesen EA, DeLong EF. 2010. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J. 4:896–907 [Google Scholar]
  108. Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N. et al. 2012. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–50 [Google Scholar]
  109. Thompson JR, Marcelino LA, Polz MF. 2002. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by “reconditioning PCR.”. Nucleic Acids Res. 30:2083–88 [Google Scholar]
  110. Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH. 2006. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc. Natl. Acad. Sci. USA 103:8607–12 [Google Scholar]
  111. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D. et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74 [Google Scholar]
  112. Voigt K, Sharma CM, Mitschke J, Joke Lambrecht S, Voß B. et al. 2014. Comparative transcriptomics of two environmentally relevant cyanobacteria reveals unexpected transcriptome diversity. ISME J. 82056–68
  113. Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW. 2008. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320:246–49 [Google Scholar]
  114. Williams TJ, Long E, Evans F, DeMaere MZ, Lauro FM. et al. 2012. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J. 6:1883–900 [Google Scholar]
  115. Woebken D, Burow LC, Prufert-Bebout L, Bebout BM, Hoehler TM. et al. 2012. Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis. ISME J. 6:1427–39 [Google Scholar]
  116. Worden AZ, Lee J-H, Mock T, Rouze P, Simmons MP. et al. 2009. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:268–72 [Google Scholar]
  117. Woyke T, Xie G, Copeland A, González JM, Han C. et al. 2009. Assembling the marine metagenome, one cell at a time. PLoS ONE 4:e5299 [Google Scholar]
  118. Yentsch CM, Horan PK, Muirhead K, Dortch Q, Haugen E. et al. 1983. Flow cytometry and cell sorting: a technique for analysis and sorting of aquatic particles. Limnol. Oceanogr. 28:1275–80 [Google Scholar]
  119. Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F. et al. 2008. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322:1110–12 [Google Scholar]
  120. Zeidner G, Beja O. 2004. The use of DGGE analyses to explore eastern Mediterranean and Red Sea marine picophytoplankton assemblages. Environ. Microbiol. 6:528–34 [Google Scholar]
  121. Zeidner G, Preston CM, Delong EF, Massana R, Post AF. et al. 2003. Molecular diversity among marine picophytoplankton as revealed by psbA analyses. Environ. Microbiol. 5:212–16 [Google Scholar]
  122. Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J. et al. 2006. Sequencing genomes from single cells by polymerase cloning. Nat. Biotechnol. 24:680–86 [Google Scholar]
  123. Zinser ER, Coe A, Johnson ZI, Martiny AC, Fuller NJ. et al. 2006. Prochlorococcus ecotype abundances in the North Atlantic Ocean revealed by an improved quantitative PCR method. Appl. Environ. Microbiol. 72:723–32 [Google Scholar]
  124. Zinser ER, Lindell D, Johnson ZI, Futschik M, Steglich C. et al. 2009. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus. PLoS ONE 4:e5135 [Google Scholar]
/content/journals/10.1146/annurev-marine-010814-015902
Loading
/content/journals/10.1146/annurev-marine-010814-015902
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error