1932

Abstract

Marine zooplankton comprise a phylogenetically and functionally diverse assemblage of protistan and metazoan consumers that occupy multiple trophic levels in pelagic food webs. Within this complex network, carbon flows via alternative zooplankton pathways drive temporal and spatial variability in production-grazing coupling, nutrient cycling, export, and transfer efficiency to higher trophic levels. We explore current knowledge of the processing of zooplankton food ingestion by absorption, egestion, respiration, excretion, and growth (production) processes. On a global scale, carbon fluxes are reasonably constrained by the grazing impact of microzooplankton and the respiratory requirements of mesozooplankton but are sensitive to uncertainties in trophic structure. The relative importance, combined magnitude, and efficiency of export mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations) likewise reflect regional variability in community structure. Climate change is expected to broadly alter carbon cycling by zooplankton and to have direct impacts on key species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010814-015924
2017-01-03
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/marine/9/1/annurev-marine-010814-015924.html?itemId=/content/journals/10.1146/annurev-marine-010814-015924&mimeType=html&fmt=ahah

Literature Cited

  1. Alcaraz M, Felipe J, Grote U, Arashkevich E, Nikishina A. 2014. Life in a warming ocean: thermal thresholds and metabolic balance of arctic zooplankton. J. Plankton Res. 36:3–10 [Google Scholar]
  2. Alldredge AL, Gorsky G, Youngbluth M, Deibel D. 2005. The contribution of discarded appendicularian houses to the flux of particulate organic carbon from oceanic surface waters. Response of Marine Ecosystems to Global Change: Ecological Impact of Appendicularians G Gorsky 309–26 Paris: Ed. Sci. GB [Google Scholar]
  3. Alldredge AL, Gotschalk CC, MacIntyre S. 1987. Evidence for sustained residence of macrocrustacean fecal pellets in surface waters off Southern California. Deep-Sea Res. A 34:1641–52 [Google Scholar]
  4. Almeda R, Alcaraz M, Calbet A, Saiz E. 2011. Metabolic rates and carbon budget of early developmental stages of the marine cyclopoid copepod Oithona davisae. Limnol. Oceanogr. 56:403–14 [Google Scholar]
  5. Al-Mutairi H, Landry MR. 2001. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep-Sea Res. II 48:2083–103 [Google Scholar]
  6. Alonso-González IJ, Arístegui J, Lee C, Sanchez-Vidal A, Calafat A. et al. 2013. Carbon dynamics within cyclonic eddies: insights from a biomarker study. PLOS ONE 8:e82447 [Google Scholar]
  7. Amacher J, Neuer S, Lomas M. 2013. DNA-based molecular fingerprinting of eukaryotic protists and cyanobacteria contributing to sinking particle flux at the Bermuda Atlantic Time-Series Study. Deep-Sea Res. II 93:71–83 [Google Scholar]
  8. Anderson TR, Ducklow HW. 2001. Microbial loop carbon cycling in ocean environments studied using a simple steady-state model. Aquat. Microb. Ecol. 26:37–49 [Google Scholar]
  9. Anderson TR, Hessen DO, Mitra A, Mayor DJ, Yool A. 2013. Sensitivity of secondary production and export flux to choice of trophic transfer formulation in marine ecosystem models. J. Mar. Syst. 125:41–53 [Google Scholar]
  10. Anderson TR, Tang KW. 2010. Carbon cycling and POC turnover in the mesopelagic zone of the ocean: insights from a simple model. Deep-Sea Res. II 57:1581–92 [Google Scholar]
  11. Atkinson A, Schmidt K, Fielding S, Kawaguchi S, Geissler PA. 2012. Variable food absorption by Antarctic krill: relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets. Deep-Sea Res. II 59–60:147–58 [Google Scholar]
  12. Banse K. 1994. Grazing and zooplankton production as key controls of phytoplankton production in the open ocean. Oceanography 7:113–20 [Google Scholar]
  13. Bathmann UV, Liebezeit G. 1986. Chlorophyll in copepod faecal pellets; changes in pellet numbers and pigment content during a declining Baltic spring bloom. Mar. Ecol. 7:59–73 [Google Scholar]
  14. Baudoux AC, Veldhuis MJW, Noordeloos AAM, van Norri G, Brussaard CPD. 2008. Estimates of virus versus grazing induced mortality of picophytoplankton in the North Sea during summer. Aquat. Microb. Ecol. 52:69–82 [Google Scholar]
  15. Beaugrand G. 2009. Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas. Deep-Sea Res. II 56:656–73 [Google Scholar]
  16. Beaugrand G, Edwards M, Legendre L. 2010. Marine biodiversity, ecosystem functioning and the carbon cycles. PNAS 107:10120–24 [Google Scholar]
  17. Beaugrand G, Reid PC, Ibañez F, Lindley JA, Edwards M. 2002. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–94 [Google Scholar]
  18. Behrenfeld MJ. 2010. Abandoning Sverdrup's critical depth hypothesis on phytoplankton blooms. Ecology 91:977–89 [Google Scholar]
  19. Behrenfeld MJ, Boss ES. 2014. Resurrecting the ecological underpinnings of ocean plankton blooms. Annu. Rev. Mar. Sci. 6:167–94 [Google Scholar]
  20. Besiktepe S, Dam HG. 2002. Coupling of ingestion and defecation as a function of diet in the calanoid copepod Acartia tonsa. . Mar. Ecol. Prog. Ser. 229:151–64 [Google Scholar]
  21. Bianchi D, Stock C, Galbraith ED, Sarmiento JL. 2013. Diel vertical migration: ecological controls and impacts on the biological pump in a one-dimensional ocean model. Glob. Biogeochem. Cycles 27:487–91 [Google Scholar]
  22. Billett DSM, Bett BJ, Jacobs CL, Rouse IP, Wigham BD. 2006. Mass deposition of jellyfish in the deep Arabian Sea. Limnol. Oceanogr. 51:2077–83 [Google Scholar]
  23. Bishop JKB, Wood TJ. 2009. Year-round observations of carbon biomass and flux variability in the Southern Ocean. Glob. Biogeochem. Cycles 23:GB2019 [Google Scholar]
  24. Bochdansky AB, Deibel D, Rivkin RB. 1999. Absorption efficiencies and biochemical fractionation of assimilated compounds in the cold water appendicularian Oikopleura vanhoeffeni. Limnol. Oceanogr. 44:415–24 [Google Scholar]
  25. Bradford-Grieve JM, Nodder SD, Jillett JB, Currie K, Lassey KR. 2001. Potential contribution that the copepod Neocalanus tonsus makes to downward carbon flux in the Southern Ocean. J. Plankton Res. 23:963–75 [Google Scholar]
  26. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85:1771–89 [Google Scholar]
  27. Buck KR, Marin R III, Chavez FP. 2005. Heterotrophic dinoflagellate fecal pellet production: grazing of large, chain-forming diatoms during upwelling events in Monterey Bay, California. Aquat. Microb. Ecol. 40:293–98 [Google Scholar]
  28. Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD. et al. 2007. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J. Mar. Res. 65:345–416 [Google Scholar]
  29. Buesseler KO, Boyd PW. 2009. Shedding light on processes that control particle attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54:1210–32 [Google Scholar]
  30. Buitenhuis E, Rivkin RB, Sailley S, Le Quéré C. 2010. Biogeochemical fluxes through microzooplankton. Glob. Biogeochem. Cycles 24:GB4015 [Google Scholar]
  31. Burd AB, Hansell DA, Steinberg DK, Anderson TR, Arístegui J. et al. 2010. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$#! is wrong with present calculations of carbon budgets. Deep-Sea Res. II 57:1557–71 [Google Scholar]
  32. Calbet A. 2001. Mesozooplankton grazing impact on primary production: a global comparative analysis in marine ecosystems. Limnol. Oceanogr. 46:1824–30 [Google Scholar]
  33. Calbet A, Landry MR. 1999. Mesozooplankton influences on the microbial food web: direct and indirect trophic interactions in the oligotrophic open-ocean. Limnol. Oceanogr. 44:1370–80 [Google Scholar]
  34. Calbet A, Landry MR. 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49:51–57 [Google Scholar]
  35. Calbet A, Saiz E. 2005. The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38:157–67 [Google Scholar]
  36. Carlson CA. 2002. Production and removal processes. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 91–151 San Diego, CA: Academic [Google Scholar]
  37. Carlson CA, Hansell DA. 2014. DOM sources, sinks, reactivity, and budgets. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 65–126 San Diego, CA: Academic, 2nd ed.. [Google Scholar]
  38. Cass CJ, Daley KL. 2014. Eucalanoid copepod metabolic rates in the oxygen minimum zone of the eastern tropical north Pacific: effects of oxygen and temperature. Deep-Sea Res. I 94:137–49 [Google Scholar]
  39. Chen B, Landry MR, Huang B, Liu H. 2012. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean. Limnol. Oceanogr. 57:519–26 [Google Scholar]
  40. Condon RH, Steinberg DK, Bronk DA. 2009. Production of dissolved organic matter and inorganic nutrients by gelatinous zooplankton in the York River estuary, Chesapeake Bay. J. Plankton Res. 32:153–70 [Google Scholar]
  41. Condon RH, Steinberg DK, del Giorgio PA, Bouvierd TC, Bronk DA. et al. 2011. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. PNAS 108:10225–30 [Google Scholar]
  42. Copping AE, Lorenzen CJ. 1980. Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer. Limnol. Oceanogr. 25:873–82 [Google Scholar]
  43. Dagg MJ, Jackson GA, Checkley DM Jr. 2014. The distribution and vertical flux of fecal pellets from large zooplankton in Monterey Bay and coastal California. Deep-Sea Res. I 94:72–86 [Google Scholar]
  44. Darnis G, Fortier L. 2012. Zooplankton respiration and the export of carbon at depth in the Amundsen Gulf (Arctic Ocean). J. Geophys. Res. 117:C04013 [Google Scholar]
  45. De La Rocha CL, Passow U. 2007. Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep-Sea Res. II 54:639–58 [Google Scholar]
  46. del Giorgio PA, Duarte CM. 2002. Respiration in the open ocean. Nature 420:379–84 [Google Scholar]
  47. Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Huey RB. 2015. Climate change tightens a metabolic constraint on marine habitats. Science 348:1132–35 [Google Scholar]
  48. Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–29 [Google Scholar]
  49. Dickson M-L, Orchado J, Barber RT, Marra J, McCarthy JJ, Sambrotto R. 2001. Production and respiration rates in the Arabian Sea during 1995 northeast and southwest monsoons. Deep-Sea Res. II 48:1199–230 [Google Scholar]
  50. Dilling L, Alldredge AL. 2000. Fragmentation of marine snow by swimming macrozooplankton: a new process impacting carbon cycling in the sea. Deep-Sea Res. I 47:1227–45 [Google Scholar]
  51. Dilling L, Wilson J, Steinberg D, Alldredge AL. 1998. Feeding by the euphausiid, Euphausia pacifica, and the copepod, Calanus pacificus, on marine snow. Mar. Ecol. Prog. Ser 170:189–201 [Google Scholar]
  52. Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169–92 [Google Scholar]
  53. Ebersbach F, Trull TW. 2008. Sinking particle properties from polyacrylamide gels during the KErguelen Ocean and Plateau compared Study (KEOPS): zooplankton control of carbon export in an area of persistent natural iron inputs in the Southern Ocean. Limnol. Oceanogr. 53:212–24 [Google Scholar]
  54. Elliott DT, Tang KW. 2011. Influence of carcass abundance on estimates of mortality and assessment of population dynamics in Acartia tonsa. . Mar. Ecol Prog. Ser. 427:1–12 [Google Scholar]
  55. Fabry VJ, Seibel BA, Feely RA, Orr JC. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65:414–32 [Google Scholar]
  56. Fenchel T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9:35–42 [Google Scholar]
  57. Fenchel T, Finlay BJ. 1983. Respiration rates in heterotrophic, free-living protozoa. Microb. Ecol. 9:99–122 [Google Scholar]
  58. Flood PR, Deibel D. 1998. The appendicularian house. The Biology of Pelagic Tunicates Q Bone 105–24 Oxford, UK: Oxford Univ. Press [Google Scholar]
  59. Flynn KJ, Stoecker DK, Mitra A, Raven JA, Glibert PM. et al. 2013. Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J. Plankton Res. 35:3–11 [Google Scholar]
  60. Frangoulis C, Skliris N, Lepoint G, Elkalay K, Goffart A. et al. 2011. Importance of copepod carcasses versus faecal pellets in the upper water column of an oligotrophic area. Estuar. Coast. Shelf Sci. 92:456–63 [Google Scholar]
  61. Giering SLC, Sanders R, Lampitt RS, Anderson TR, Tamburini C. et al. 2014. Reconciliation of the carbon budget in the ocean's twilight zone. Nature 507:480–86 [Google Scholar]
  62. Gilly WF, Beman JM, Litvin SY, Robison BH. 2013. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu. Rev. Mar. Sci. 5:393–420 [Google Scholar]
  63. Gleiber MR, Steinberg DK, Ducklow HW. 2012. Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 471:23–36 [Google Scholar]
  64. Goldthwait SA, Steinberg DK. 2008. Elevated biomass of mesozooplankton and enhanced fecal pellet flux in cyclonic and mode-water eddies in the Sargasso Sea. Deep-Sea Res. II 55:1360–77 [Google Scholar]
  65. Goldthwait SA, Yen J, Brown J, Alldredge A. 2004. Quantification of marine snow fragmentation by swimming euphausiids. Limnol. Oceanogr. 49:940–52 [Google Scholar]
  66. Gowing MM, Silver MW. 1985. Minipellets: a new and abundant size class of marine fecal pellets. J. Mar. Res. 43:395–418 [Google Scholar]
  67. Gutiérrez-Rodríguez A, Décima M, Popp BN, Landry MR. 2014. Isotopic invisibility of protozoan trophic steps in marine food webs. Limnol. Oceanogr. 59:1590–98 [Google Scholar]
  68. Hannides CCS, Landry MR, Benitez-Nelson CR, Styles RM, Montoya JP, Karl DM. 2009a. Export stoichiometry and migrant-mediated flux of phosphorus in the North Pacific Subtropical Gyre. Deep-Sea Res. I 56:73–88 [Google Scholar]
  69. Hannides CCS, Popp BN, Landry MR, Graham BS. 2009b. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54:50–61 [Google Scholar]
  70. Hansen B, Bjørnsen PK, Hansen PJ. 1994. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39:395–403 [Google Scholar]
  71. Hansson LJ, Norrman B. 1995. Release of dissolved organic carbon (DOC) by the scyphozoan jellyfish Aurelia aurita and its potential influence on the production of planktic bacteria. Mar. Biol. 121:527–32 [Google Scholar]
  72. Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH. et al. 2012. Mixotrophic basis of Atlantic oligotrophic ecosystems. PNAS 109:5756–60 [Google Scholar]
  73. Henschke N, Bowden DA, Everett JD, Holmes SP, Kloser RJ. et al. 2013. Salp-falls in the Tasman Sea: a major food input to deep-sea benthos. Mar. Ecol. Prog. Ser. 491:165–75 [Google Scholar]
  74. Hernández-León S, Ikeda T. 2005a. A global assessment of mesozooplankton respiration in the ocean. J. Plankton Res. 27:153–58 [Google Scholar]
  75. Hernández-León S, Ikeda T. 2005b. Zooplankton respiration. Respiration in Aquatic Ecosystems PA del Giorgio, PJLB Williams 57–82 Oxford, UK: Oxford Univ. Press [Google Scholar]
  76. Hirst A, Lampitt RS. 1998. Towards a global model of in situ weight-specific growth in marine planktonic copepods. Mar. Biol. 132:247–57 [Google Scholar]
  77. Hirst A, Sheader M. 1997. Are in situ weight-specific growth rates body-size independent in marine planktonic copepods? A re-analysis of the global syntheses and a new empirical model. Mar. Ecol. Prog. Ser. 154:155–65 [Google Scholar]
  78. Huntley M, Lopez M. 1992. Temperature-dependent production of marine copepods: a global synthesis. Am. Nat. 140:201–42 [Google Scholar]
  79. Hygum BH, Petersen JW, Sondergaard M. 1997. Dissolved organic carbon released by zooplankton grazing activity—a high-quality substrate pool for bacteria. J. Plankton Res. 19:97–111 [Google Scholar]
  80. Ikeda T. 2014. Respiration and ammonia excretion by marine metazooplankton taxa: synthesis toward a global-bathymetric model. Mar. Biol. 161:2753–66 [Google Scholar]
  81. Ikeda T, Kanno Y, Ozaki K, Shinada A. 2001. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar. Biol. 139:587–96 [Google Scholar]
  82. Irigoien X, Flynn KJ, Harris RP. 2005. Phytoplankton blooms: a “loophole” in microzooplankton grazing impact?. J. Plankton Res. 27:313–21 [Google Scholar]
  83. Isaacs JD. 1973. Potential trophic biomasses and trace-substance concentrations in unstructured marine food webs. Mar. Biol. 22:97–104 [Google Scholar]
  84. Isla JA, Ceballos S, Anadón R. 2004. Mesozooplankton metabolism and feeding in the NW Iberian upwelling. Estuar. Coast. Shelf Sci. 61:151–60 [Google Scholar]
  85. Isla JA, Scharek R, Latasa M. 2015. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Sys. 143:86–97 [Google Scholar]
  86. Johnson PW, Xu HS, Sieburth JM. 1982. The utilization of chroococcoid cyanobacteria by marine protozooplankters but not by calanoid copepods. Ann. Inst. Oceanogr. 58:297–308 [Google Scholar]
  87. Jónasdóttir SH, Richardson K, Heath MR. 2015. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. PNAS 112:12122–26 [Google Scholar]
  88. Kiko R, Hauss H, Buchholz F, Melzner F. 2015. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions. Biogeosci. Discuss. 12:17329–66 [Google Scholar]
  89. Kjellerup S, Dünweber M, Swalethorp R, Nielsen TG, Møller EF. et al. 2012. Effects of a future warmer ocean on the coexisting copepods Calanus finmarchicus and C. glacialis in Disko Bay, western Greenland. Mar. Ecol. Prog. Ser 447:87–108 [Google Scholar]
  90. Kobari T, Shinada A, Tsuda A. 2003. Functional roles of interzonal migrating mesozooplankton in the western subarctic Pacific. Prog. Oceanogr. 57:279–98 [Google Scholar]
  91. Kobari T, Steinberg DK, Ueda A, Tsuda A, Silver MW, Kitamura M. 2008. Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean. Deep-Sea Res. II 55:1648–60 [Google Scholar]
  92. Lalande C, Bauerfeind E, Nöthig E-M, Beszczynska-Möller A. 2013. Impact of a warm anomaly on export fluxes of biogenic matter in the eastern Fram Strait. Prog. Oceanogr. 109:70–77 [Google Scholar]
  93. Lampert W. 1978. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3:21–27 [Google Scholar]
  94. Lampitt RS, Salter I, Johns D. 2009. Radiolaria: major exporters of organic carbon to the deep ocean. Glob. Biogeochem. Cycles 23:GB1010 [Google Scholar]
  95. Lampitt RS, Wishner K, Turley C, Angel M. 1993. Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Mar. Biol. 116:689–702 [Google Scholar]
  96. Landry MR. 2002. Integrating classical and microbial food web concepts: evolving views from the open-ocean tropical Pacific. Hydrobiologia 480:29–39 [Google Scholar]
  97. Landry MR. 2009. Grazing processes and secondary production in the Arabian Sea: a simple food web synthesis with measurement constraints. Indian Ocean: Biogeochemical Processes and Ecological Variability JD Wiggert, RR Hood, SWA Naqvi, KH Brink, SL Smith 133–46 Geophys. Monogr. Ser. 185 Washington, DC: Am. Geophys. Union [Google Scholar]
  98. Landry MR, Barber RT, Bidigare RR, Chai F, Coale KH. et al. 1997. Iron and grazing constraints on primary production in the central equatorial Pacific: an EqPac synthesis. Limnol. Oceanogr. 42:405–18 [Google Scholar]
  99. Landry MR, Calbet A. 2004. Microzooplankton production in the oceans. ICES J. Mar. Sci. 61:501–7 [Google Scholar]
  100. Landry MR, Selph KE, Décima M, Gutiérrez-Rodríguez A, Stukel MR, Pasulka AL. 2016. Phytoplankton production and grazing balances in the Costa Rica Dome. J. Plankton Res. 38:366–79 [Google Scholar]
  101. Landry MR, Selph KE, Taylor AG, Décima M, Balch WM, Bidigare RR. 2011a. Phytoplankton growth, grazing and production balances in the HNLC equatorial Pacific. Deep-Sea Res. II 58:524–35 [Google Scholar]
  102. Landry MR, Selph KE, Yang E-J. 2011b. Decoupled phytoplankton growth and microzooplankton grazing in the deep euphotic zone of the HNLC equatorial Pacific. Mar. Ecol. Prog. Ser. 421:13–24 [Google Scholar]
  103. Lavaniegos BE, Ohman MD. 2007. Coherence of long-term variations of zooplankton in two sectors of the California Current System. Prog. Oceanogr. 75:42–69 [Google Scholar]
  104. Lebrato M, de Jesus P, Steinberg DK, Cartes JE, Jones BM. et al. 2013a. Jelly biomass sinking speed reveals a fast carbon export mechanism. Limnol. Oceanogr. 58:1113–22 [Google Scholar]
  105. Lebrato M, Jones DOB. 2009. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnol. Oceanogr. 45:1197–209 [Google Scholar]
  106. Lebrato M, Jones DOB. 2011. Expanding the oceanic carbon cycle: jellyfish biomass in the biological pump. Biochem. e-volution 33:35–39 [Google Scholar]
  107. Lebrato M, Molinero J-C, Cartes JE, Lloris D, Melin F, Beni-Casadella L. 2013b. Sinking jelly-carbon unveils potential environmental variability along a continental margin. PLOS ONE 8:e82070 [Google Scholar]
  108. Lebrato M, Pitt KA, Sweetman AK, Jones DOB, Cartes JE. et al. 2012. Jelly-falls historic and recent observations: a review to drive future research directions. Hydrobiol 690:227–45 [Google Scholar]
  109. Legendre L, Rivkin RB. 2002. Fluxes of carbon in the upper ocean: regulation by food-web control nodes. Mar. Ecol. Prog. Ser. 242:95–109 [Google Scholar]
  110. Lenz J, Morales A, Gunkel A. 1993. Mesozooplankton standing stock during the North Atlantic spring bloom study in 1989 and its potential grazing pressure on phytoplankton: a comparison between low, medium and high latitudes. Deep-Sea Res. II 40:559–72 [Google Scholar]
  111. Levin LA, Breitburg DL. 2015. Linking coasts and seas to address ocean deoxygenation. Nat. Clim. Change 5:401–3 [Google Scholar]
  112. Lombard F, Kiørboe T. 2010. Marine snow originating from appendicularian houses: age-dependent settling characteristics. Deep-Sea Res. I 57:1304–13 [Google Scholar]
  113. Lombard F, Selander E, Kiørboe T. 2011. Active prey rejection in the filter-feeding appendicularian Oikopleura dioica. . Limnol. Oceanogr. 56:1504–12 [Google Scholar]
  114. Longhurst AR, Bedo AW, Harrison WG, Head EJH, Sameoto DD. 1990. Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep-Sea Res. A 37:685–94 [Google Scholar]
  115. Longhurst AR, Sathyendranath S, Platt T, Caverhill C. 1995. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17:1245–71 [Google Scholar]
  116. Longhurst AR, Williams R. 1992. Carbon flux by seasonal vertical migrant copepods is a small number. J. Plankton Res. 14:1495–509 [Google Scholar]
  117. Lucas CH, Pitt KA, Purcell JE, Lebrato M, Condon RH. 2011. What's in a jellyfish? Proximate and elemental composition and biometric relationships for use in biogeochemical studies. Ecology 92:1704 [Google Scholar]
  118. Maas AE, Wishner KF, Seibel BA. 2012. Metabolic suppression in thecosomatous pteropods as an effect of low temperature and hypoxia in the eastern tropical North Pacific. Mar. Biol. 159:1955–67 [Google Scholar]
  119. Mackas DL, Greve W, Edwards M, Chiba S, Tadokoro K. et al. 2012. Changing zooplankton seasonality in a changing ocean: comparing time series of zooplankton phenology. Prog. Oceanogr. 97–100:31–62 [Google Scholar]
  120. Madin LP, Purcell JE. 1992. Feeding, metabolism, and growth of Cyclosalpa bakeri in the subarctic Pacific. Limnol. Oceanogr. 37:1236–51 [Google Scholar]
  121. Martin P, Lampitt RS, Perry MJ, Sanders R, Lee C, D'Asaro E. 2011. Export and mesopelagic particle flux during a North Atlantic spring diatom bloom. Deep-Sea Res. I 58:338–49 [Google Scholar]
  122. Mayor DJ, Sanders R, Giering SLC, Anderson TR. 2014. Microbial gardening in the ocean's twilight zone: detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus. BioEssays 36:1132–37 [Google Scholar]
  123. Mayzaud P, Boutoute M, Gasparini S, Mousseau L. 2005. Respiration in marine zooplankton—the other side of the coin: CO2 production. Limnol. Oceanogr. 50:291–98 [Google Scholar]
  124. Mayzaud P, Pakhomov EA. 2014. The role of zooplankton communities in carbon recycling in the ocean: the case of the Southern Ocean. J. Plankton Res. 36:1543–56 [Google Scholar]
  125. Mitra A, Flynn J, Burkholder JM, Berge T, Calbet A. et al. 2014. The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11:995–1005 [Google Scholar]
  126. Møller EF. 2005. Sloppy feeding in marine copepods: prey-size-dependent production of dissolved organic carbon. J. Plankton Res. 27:341–56 [Google Scholar]
  127. Møller EF. 2007. Production of dissolved organic carbon by sloppy feeding in the copepods Acartiatonsa, Centropages typicus and Temora longicornis. . Limnol. Oceanogr 52:79–84 [Google Scholar]
  128. Møller EF, Nielson TG. 2001. Production of bacterial substrate by marine copepods: effect of phytoplankton biomass and cell size. J. Plankton Res. 23:527–36 [Google Scholar]
  129. Møller EF, Thor P, Nielson TG. 2003. Production of DOC by Calanus finmarchicus, C. glacialis and C. hyperboreus through sloppy feeding and leakage from fecal pellets. Mar. Ecol. Prog. Ser 262:185–91 [Google Scholar]
  130. Nagata T. 2000. Production mechanisms of dissolved organic matter. Microbial Ecology of the Oceans DL Kirchman 121–52 New York: Wiley-Liss [Google Scholar]
  131. Paffenhöfer G-A. 1998. Heterotrophic protozoa and small metazoa: feeding rates and prey-consumer interactions. J. Plankton Res. 20:121–33 [Google Scholar]
  132. Passow U, Carlson CA. 2012. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470:249–71 [Google Scholar]
  133. Pasulka A, Samo TJ, Landry MR. 2015. Grazer and viral impacts on microbial growth and mortality in the southern California Current Ecosystem. J. Plankton Res. 37:1–17 [Google Scholar]
  134. Pauly D, Christensen V. 1995. Primary production required to sustain global fisheries. Nature 374:255–57 [Google Scholar]
  135. Pauly D, Christensen V, Guénette S, Pitcher J, Sumaila UR. et al. 2002. Towards sustainability in world fisheries. Nature 418:689–95 [Google Scholar]
  136. Peduzzi P, Herndl G. 1992. Zooplankton activity fueling the microbial loop: differential growth response of bacteria from oligotrophic and eutrophic waters. Limnol. Oceanogr. 37:1087–92 [Google Scholar]
  137. Phillips B, Kremer P, Madin LP. 2009. Defecation by Salpa thompsoni and its contribution to vertical flux in the Southern Ocean. Mar. Biol. 156:455–67 [Google Scholar]
  138. Ploug H, Iversen MH, Koski M, Buitenhuis ET. 2008. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: direct measurements of ballasting by opal and calcite. Limnol. Oceanogr. 53:469–76 [Google Scholar]
  139. Poulsen LK, Iversen M. 2008. Degradation of copepod fecal pellets: key role of protozooplankton. Mar. Ecol. Prog. Ser. 367:1–13 [Google Scholar]
  140. Poulsen LK, Kiørboe T. 2005. Coprophagy and coprorhexy in the copepods Acartia tonsa and Temora longicornis: clearance rates and feeding behavior. Mar. Ecol. Prog. Ser 299:217–27 [Google Scholar]
  141. Purcell JE. 1983. Digestion rates and assimilation efficiencies of siphonophores fed zooplankton prey. Mar. Biol. 73:257–61 [Google Scholar]
  142. Putzeys S, Yebra L, Almeida C, Becognee P, Hernández-León S. 2011. Influence of the late winter bloom on migrant zooplankton metabolism and its implications on export fluxes. J. Mar. Syst. 88:553–62 [Google Scholar]
  143. Quevedo M, Anadón R. 2000. Spring microzooplankton composition, biomass and potential grazing in the central Cantabrian coast (southern Bay of Biscay). Oceanol. Acta 23:297–309 [Google Scholar]
  144. Reinthaler T, van Aken HM, Herndl GJ. 2010. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior. Deep-Sea Res. II 57:1572–80 [Google Scholar]
  145. Richardson AJ. 2008. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65:279–95 [Google Scholar]
  146. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–67 [Google Scholar]
  147. Rivest EB, Hofmann GE. 2014. Responses of the metabolism of the larvae of Pocillopora damicornis to ocean acidification and warming. PLOS ONE 9:e96172 [Google Scholar]
  148. Rivkin RB, Legendre L. 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291:2398–400 [Google Scholar]
  149. Robinson C, Steinberg DK, Koppelmann R, Robison B, Andersen TR. et al. 2010. Mesopelagic zone ecology and biogeochemistry—a synthesis. Deep-Sea Res. II 57:1504–18 [Google Scholar]
  150. Robison BH, Reisenbichler KR, Sherlock RE. 2005. Giant larvacean houses: rapid carbon transport to the deep sea floor. Science 308:1609–11 [Google Scholar]
  151. Roman M, Adolf HA, Landry MR, Madin LP, Steinberg DK, Zhang X. 2002. Estimates of oceanic mesozooplankton production: a comparison using the Bermuda and Hawaii time-series data. Deep-Sea Res. II 49:175–92 [Google Scholar]
  152. Roman M, Smith S, Wishner K, Zhang XS, Gowing M. 2000. Mesozooplankton production and grazing in the Arabian Sea. Deep-Sea Res. II 47:1423–50 [Google Scholar]
  153. Romero-Ibarra N, Silverberg N. 2011. The contribution of various types of settling particles to the flux of organic carbon in the Gulf of St. Lawrence. Cont. Shelf Res. 31:1761–76 [Google Scholar]
  154. Rose JM, Caron DM. 2007. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52:886–95 [Google Scholar]
  155. Roullier F, Berline L, Guidi L, Durrieu De Madron X, Picheral M. et al. 2014. Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone. Biogeosciences 11:4541–57 [Google Scholar]
  156. Ruiz-Halpern S, Duarte CM, Tovar-Sanchez A, Pastor M, Horstkotte B. et al. 2011. Antarctic krill as a source of dissolved organic carbon to the Antarctic ecosystem. Limnol. Oceanogr. 56:521–28 [Google Scholar]
  157. Saba GK, Steinberg DK, Bronk DA. 2009. Effects of diet on release of dissolved organic and inorganic nutrients by the copepod Acartia tonsa. . Mar. Ecol. Prog. Ser. 386:147–61 [Google Scholar]
  158. Saba GK, Steinberg DK, Bronk DA. 2011. The relative importance of sloppy feeding, excretion, and fecal pellet leaching in the release of dissolved carbon and nitrogen by Acartia tonsa copepods. J. Exp. Mar. Biol. Ecol. 404:47–56 [Google Scholar]
  159. Sailley SF, Vogt M, Doney SC, Aita MN, Bopp L. et al. 2013. Comparing food web structures and dynamics across a suite of global marine ecosystem models. Ecol. Model. 261–62:43–57 [Google Scholar]
  160. Sampei M, Sasaki H, Forest A, Fortier L. 2012. A substantial export flux of particulate organic carbon linked to sinking dead copepods during winter 2007–2008 in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean). Limnol. Oceanogr. 57:90–96 [Google Scholar]
  161. Sampei M, Sasaki H, Hattori H, Forest A, Fortier L. 2009. Significant contribution of passively sinking copepods to the downward export flux in Arctic waters. Limnol. Oceanogr. 54:1894–900 [Google Scholar]
  162. Sanders RW, Gast RJ. 2012. Bacterivory by phototrophic picoplankton and nanoplankton in Arctic waters. FEMS Microbiol. Ecol. 82:242–53 [Google Scholar]
  163. Sanders RW, Wickham SA. 1993. Planktonic protozoa and metazoa: predation, food quality and population control. Mar. Microb. Food Webs 7:197–223 [Google Scholar]
  164. Sato R, Tanaka Y, Ishimaru T. 2001. House production by Oikopleura dioica (Tunicata, Appendicularia) under laboratory conditions. J. Plankton Res. 23:415–23 [Google Scholar]
  165. Scheinberg RD, Landry MR, Calbet A. 2005. Grazing impacts of two common appendicularians on the natural prey assemblage of a subtropical coastal ecosystem. Mar. Ecol. Prog. Ser. 294:201–12 [Google Scholar]
  166. Schmoker C, Hernández-León S, Calbet A. 2013. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35:691–706 [Google Scholar]
  167. Schnetzer A, Steinberg D. 2002. Natural diets of vertically migrating zooplankton in the Sargasso Sea. Mar. Biol. 141:89–99 [Google Scholar]
  168. Seibel BA, Drazen JC. 2007. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos. Trans. R. Soc. Lond. B 362:2061–78 [Google Scholar]
  169. Seibel BA, Maas AE, Dierssen HM. 2012. Energetic plasticity underlies a variable response to ocean acidification in the pteropod. Limacina helicina antarctica. PLOS ONE 7:e30464 [Google Scholar]
  170. Shatova O, Koweek D, Conte MH, Weber JC. 2012. Contribution of zooplankton fecal pellets to deep ocean particle flux in the Sargasso Sea assessed using quantitative image analysis. J. Plankton Res. 34:905–21 [Google Scholar]
  171. Sherr EB, Sherr BF. 2002. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81:293–308 [Google Scholar]
  172. Sherr EB, Sherr BF, Paffenhöfer GA. 1986. Phagotrophic protozoa as food for metazoans: a ‘missing’ trophic link in marine pelagic food webs. Mar. Microb. Food Webs 1:61–80 [Google Scholar]
  173. Sieburth JM, Smetacek V, Lenz J. 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23:1256–63 [Google Scholar]
  174. Silver MW, Bruland KW. 1981. Differential feeding and fecal pellet composition of salps and pteropods, and the possible origin of the deep-water flora and olive-green ‘cells. .’ Mar. Biol 62:263–73 [Google Scholar]
  175. Smith DC, Simon M, Alldredge AL, Azam F. 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–42 [Google Scholar]
  176. Smith KL Jr, Baldwin RJ, Ruhl HA, Kahru M, Mitchell BG, Kaufmann RS. 2006. Climate effect on food supply to depths greater than 4,000 meters in the northeast Pacific. Limnol. Oceanogr. 51:166–76 [Google Scholar]
  177. Smith KL Jr., Sherman AD, Huffard CL, McGill PR, Henthorn R. et al. 2014. Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific: day to week resolution. Limnol. Oceanogr. 59:745–57 [Google Scholar]
  178. Stamieszkin K, Pershing AJ, Record NR, Pilskaln CH, Dam HG, Feinberg LR. 2015. Size as the master trait in modeled copepod fecal pellet carbon flux. Mar. Ecol. Prog. Ser. 60:2090–107 [Google Scholar]
  179. Steinberg DK. 1995. Diet of copepods (Scopalatum vorax) associated with mesopelagic detritus (giant larvacean houses) in Monterey Bay, California. Mar. Biol. 122:571–84 [Google Scholar]
  180. Steinberg DK. 2017. Marine zooplankton biogeochemical cycles. Marine Plankton C Castellani, M Edwards Oxford, UK: Oxford Univ. Press In press [Google Scholar]
  181. Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF. 2000. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep-Sea Res. I 47:137–58 [Google Scholar]
  182. Steinberg DK, Cope JS, Wilson SE, Kobari T. 2008a. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep-Sea Res. II 55:1615–35 [Google Scholar]
  183. Steinberg DK, Goldthwait SA, Hansell DA. 2002. Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea. Deep-Sea Res. I 49:1445–61 [Google Scholar]
  184. Steinberg DK, Lomas MW, Cope JS. 2012. Long-term increase in mesozooplankton biomass in the Sargasso Sea: linkage to climate and implications for food web dynamics and biogeochemical cycling. Glob. Biogeochem. Cycles 26:GB1004 [Google Scholar]
  185. Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM. 2008b. Bacterial versus zooplankton control of sinking particle flux in the ocean's twilight zone. Limnol. Oceanogr. 53:1327–38 [Google Scholar]
  186. Stoecker DK. 1998. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur. J. Protistol. 34:281–90 [Google Scholar]
  187. Stoecker DK, Capuzzo JM. 1990. Predation on Protozoa: its importance to zooplankton. J. Plankton Res. 12:891–908 [Google Scholar]
  188. Stoecker DK, Gustafson DE, Verity PG. 1996. Micro- and mesoprotozooplankton at 140°W in the equatorial Pacific: heterotrophs and mixotrophs. Aquat. Microb. Ecol. 10:273–82 [Google Scholar]
  189. Stoecker DK, Johnson MD, de Vargas C, Not F. 2009. Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57:279–310 [Google Scholar]
  190. Stone JP, Steinberg DK. 2016. Salp contributions to vertical carbon flux in the Sargasso Sea. Deep-Sea Res. I 113:90–100 [Google Scholar]
  191. Straile D. 1997. Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group. Limnol. Oceanogr. 42:1375–85 [Google Scholar]
  192. Stramma L, Johnson GC, Sprintall J, Mohrholz V. 2008. Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–58 [Google Scholar]
  193. Stramma L, Schmidtko S, Levin LA, Johnson GC. 2010. Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res. I 57:587–95 [Google Scholar]
  194. Strom SL, Benner R, Ziegler S, Dagg MJ. 1997. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr. 42:1364–74 [Google Scholar]
  195. Strom SL, Buskey EJ. 1993. Feeding, growth, and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda. . Limnol. Oceanogr. 38:965–77 [Google Scholar]
  196. Stukel MR, Landry MR, Selph KE. 2011. Nanoplankton mixotrophy in the eastern equatorial Pacific. Deep-Sea Res. II 58:378–86 [Google Scholar]
  197. Stukel MR, Ohman MD, Benitez-Nelson CR, Landry MR. 2013. Contributions of mesozooplankton to vertical carbon export in a coastal upwelling system. Mar. Ecol. Prog. Ser. 491:47–65 [Google Scholar]
  198. Sutherland KR, Madin LP, Stocker R. 2010. Filtration of submicrometer particles by pelagic tunicates. PNAS 107:15129–34 [Google Scholar]
  199. Svensen C, Riser CW, Reigstad M, Seuthe L. 2012. Degradation of copepod faecal pellets in the upper layer: role of microbial community and Calanus finmarchicus. Mar. Ecol. Prog. Ser. 462:39–49 [Google Scholar]
  200. Sweetman AK, Chapman A. 2011. First observations of jelly-falls at the seafloor in a deep-sea fjord. Deep-Sea Res. I 58:1206–11 [Google Scholar]
  201. Sweetman AK, Smith CR, Dale T, Jones DOB. 2014. Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs. Proc. R. Soc. B 281:20142210 [Google Scholar]
  202. Takahashi K, Kuwata A, Sugisaki H, Uchikawa K, Saito H. 2009. Downward carbon transport by diel vertical migration of the copepods Metridia pacifica and Metridia okhotensis in the Oyashio region of the western subarctic Pacific Ocean. Deep-Sea Res. I 56:1777–91 [Google Scholar]
  203. Tang KW. 2005. Copepods as microbial hotspots in the ocean: effects of host feeding activities on attached bacteria. Aquat. Microb. Ecol. 38:31–40 [Google Scholar]
  204. Tang KW, Hutalle KML, Grossart HP. 2006. Microbial abundance, composition and enzymatic activity during decomposition of copepod carcasses. Aquat. Microb. Ecol. 45:219–27 [Google Scholar]
  205. Teuber L, Kiko R, Séguin F, Auel H. 2013. Respiration rates of tropical Atlantic copepods in relation to the oxygen minimum zone. J. Exp. Mar. Biol. Ecol. 448:28–36 [Google Scholar]
  206. Thingstad FT, Havskum H, Garde K, Riemann B. 1996. On the strategy of “eating your competitor”: a mathematical analysis of algal mixotrophy. Ecology 77:2108–18 [Google Scholar]
  207. Thor P, Dam HG, Rogers DR. 2003. Fate of organic carbon released from decomposing copepod fecal pellets in relation to bacterial production and ectoenzymatic activity. Aquat. Microb. Ecol. 33:279–88 [Google Scholar]
  208. Thor P, Koski M, Tang KW, Jónasdóttir SH. 2007. Supplemental effects of diet mixing on absorption of ingested organic carbon in the marine copepod Acartia tonsa. . Mar. Ecol. Prog. Ser. 331:131–38 [Google Scholar]
  209. Turner JT. 2002. Zooplankton fecal pellets, marine snow and ratio between planktonic predators and their prey. Limnol. Oceanogr. 39:395–403 [Google Scholar]
  210. Turner JT. 2004. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43:255–66 [Google Scholar]
  211. Turner JT. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Prog. Oceanogr. 130:205–48 [Google Scholar]
  212. Unrein F, Massana R, Alonso-Sáez L, Gasol JM. 2007. Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol. Oceanogr. 52:456–69 [Google Scholar]
  213. Urban-Rich J. 1999. Release of dissolved organic carbon from copepod fecal pellets in the Greenland Sea. J. Exp. Mar. Biol. Ecol. 232:107–24 [Google Scholar]
  214. Vargas CA, Martinez RA, Cuevas LA, Parvez MA, Cortes C, González HE. 2007. The relative importance of microbial and classical food webs in a highly productive coastal upwelling area. Limnol. Oceanogr. 52:1495–510 [Google Scholar]
  215. Verity PG, Smetacek V. 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130:277–93 [Google Scholar]
  216. Weeks A, Conte MH, Harris RP, Bedo A, Bellan I. et al. 1993. The physical and chemical environment and changes in community structure associated with bloom evolution: the Joint Global Flux Study North Atlantic Bloom Experiment. Deep-Sea Res. II 40:347–68 [Google Scholar]
  217. Wilson SE, Ruhl HA, Smith KL Jr. 2013. Zooplankton fecal pellet flux in the abyssal northeast Pacific: a 15 year time-series study. Limnol. Oceanogr. 58:881–92 [Google Scholar]
  218. Wilson SE, Steinberg DK, Buesseler KO. 2008. Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep-Sea Res. II 55:1636–47 [Google Scholar]
  219. Wishner KF, Outrama DM, Seibel BA, Daly KL, Williams RL. 2013. Zooplankton in the eastern tropical north Pacific: boundary effects of oxygen minimum zone expansion. Deep-Sea Res. I 79:122–40 [Google Scholar]
  220. Yamamoto J, Hirose M, Ohtani T, Sugimoto K, Hirase K. et al. 2008. Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomurai in the Sea of Japan. Mar. Biol. 153:311–17 [Google Scholar]
  221. Yoon W, Kim S, Han K. 2001. Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic. Mar. Biol. 139:923–28 [Google Scholar]
  222. Zhang XS, Dam HG. 1997. Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific. Deep-Sea Res. II 44:2191–202 [Google Scholar]
  223. Zubkov MV, Tarran GA. 2008. High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455:224–26 [Google Scholar]
/content/journals/10.1146/annurev-marine-010814-015924
Loading
/content/journals/10.1146/annurev-marine-010814-015924
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error