1932

Abstract

Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-122414-033913
2016-01-03
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/marine/8/1/annurev-marine-122414-033913.html?itemId=/content/journals/10.1146/annurev-marine-122414-033913&mimeType=html&fmt=ahah

Literature Cited

  1. Adams KA, Barth JA, Chan F. 2013. Temporal variability of near-bottom dissolved oxygen during upwelling off central Oregon. J. Geophys. Res. Oceans 118:4839–54 [Google Scholar]
  2. Alford MH, Peacock T, MacKinnon JA, Nash JD, Buijsman MC. et al. 2015. The formation and fate of internal waves in the South China Sea. Nature 521:65–69 [Google Scholar]
  3. Alkire MB, D'Asaro E, Lee C, Perry MJ, Gray A. et al. 2012. Estimates of net community production and export using high-resolution, Lagrangian measurements of O2, NO3, and POC through the evolution of a spring diatom bloom in the North Atlantic. Deep-Sea Res. I 64:157–74 [Google Scholar]
  4. Alkire MB, Lee C, D'Asaro E, Perry MJ, Briggs N. et al. 2014. Net community production and export from Seaglider measurements in the North Atlantic after the spring bloom. J. Geophys. Res. Oceans 119:6121–39 [Google Scholar]
  5. Alvarez A, Mourre B. 2012. Oceanographic field estimates from remote sensing and glider fleets. J. Atmos. Ocean. Technol. 29:1657–62 [Google Scholar]
  6. Baird ME, Ridgway KR. 2012. The southward transport of sub-mesoscale lenses of Bass Strait Water in the centre of anti-cyclonic mesoscale eddies. Geophys. Res. Lett. 39:L02603 [Google Scholar]
  7. Baird ME, Suthers IM, Griffin DA, Hollings B, Pattiaratchi C. et al. 2011. The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia. Deep-Sea Res. II 58:592–605 [Google Scholar]
  8. Baumgartner MF, Fratantoni DM. 2008. Diel periodicity in both sei whale vocalization rates and the vertical migration of their copepod prey observed from ocean gliders. Limnol. Oceanogr. 53:2197–209 [Google Scholar]
  9. Beaird NL, Fer I, Rhines PB, Eriksen CC. 2012. Dissipation of turbulent kinetic energy inferred from Seagliders: an application to the eastern Nordic Seas overflows. J. Phys. Oceanogr. 42:2268–82 [Google Scholar]
  10. Beaird NL, Rhines PB, Eriksen CC. 2013. Overflow waters at the Iceland-Faroe Ridge observed in multiyear Seaglider surveys. J. Phys. Oceanogr. 43:2334–51 [Google Scholar]
  11. Biddle LC, Kaiser J, Heywood KJ, Thompson AF, Jenkins A. 2015. Ocean glider observations of iceberg-enhanced biological production in the northwestern Weddell Sea. Geophys. Res. Lett. 42:459–65 [Google Scholar]
  12. Bouffard J, Pascual A, Ruiz S, Faugère Y, Tintoré J. 2010. Coastal and mesoscale dynamics characterization using altimetry and gliders: a case study in the Balearic Sea. J. Geophys. Res. Oceans 115:C10029 [Google Scholar]
  13. Briggs N, Perry MJ, Cetinić I, Lee C, D'Asaro E. et al. 2011. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep-Sea Res. I 58:1031–39 [Google Scholar]
  14. Brito M, Smeed D, Griffiths G. 2014. Underwater glider reliability and implications for survey design. J. Atmos. Ocean. Technol. 31:2858–70 [Google Scholar]
  15. Castelao R, Glenn S, Schofield O. 2010. Temperature, salinity, and density variability in the central Middle Atlantic Bight. J. Geophys. Res. Oceans 115:C10005 [Google Scholar]
  16. Castelao R, Glenn S, Schofield O, Chant R, Wilkin J, Kohut J. 2008a. Seasonal evolution of hydrographic fields in the central Middle Atlantic Bight from glider observations. Geophys. Res. Lett. 35:L03617 [Google Scholar]
  17. Castelao R, Schofield O, Glenn S, Chant R, Kohut J. 2008b. Cross-shelf transport of freshwater on the New Jersey shelf. J. Geophys. Res. Oceans 113:C07017 [Google Scholar]
  18. Cenedese C, Todd RE, Gawarkiewicz GG, Owens WB, Shcherbina AY. 2013. Offshore transport of shelf waters through interaction of vortices with a shelfbreak current. J. Phys. Oceanogr. 43:905–19 [Google Scholar]
  19. Cetinić I, Perry MJ, Briggs NT, Kallin E, D'Asaro EA, Lee CM. 2012. Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment. J. Geophys. Res. Oceans 117:C06028 [Google Scholar]
  20. Chao Y, Li ZJ, Farrara JD, McWilliams JC, Bellingham J. et al. 2009. Development, implementation and evaluation of a data-assimilative ocean forecasting system off the central California coast. Deep-Sea Res. II 56:100–26 [Google Scholar]
  21. Chao Y, Li ZJ, Farrara JD, Moline MA, Schofield OME, Majumdar SJ. 2008. Synergistic applications of autonomous underwater vehicles and regional ocean modeling system in coastal ocean forecasting. Limnol. Oceanogr. 53:2251–63 [Google Scholar]
  22. Cherubin LM, Morel Y, Chassignet EP. 2006. Loop current ring shedding: the formation of cyclones and the effect of topography. J. Phys. Oceanogr. 36:569–91 [Google Scholar]
  23. Cole ST, Rudnick DL. 2012. The spatial distribution and annual cycle of upper ocean thermohaline structure. J. Geophys. Res. Oceans 117:C02027 [Google Scholar]
  24. Curry B, Lee CM, Petrie B, Moritz RE, Kwok R. 2014. Multiyear volume, liquid freshwater, and sea ice transports through Davis Strait, 2004–10. J. Phys. Oceanogr. 44:1244–66 [Google Scholar]
  25. D'Asaro EA, Lien RC. 2000. Lagrangian measurements of waves and turbulence in stratified flows. J. Phys. Oceanogr. 30:641–55 [Google Scholar]
  26. Davis RE. 2010. On the coastal-upwelling overturning cell. J. Mar. Res. 68:369–85 [Google Scholar]
  27. Davis RE, Eriksen CC, Jones CP. 2003. Autonomous buoyancy-driven underwater gliders. Technology and Applications of Autonomous Underwater Vehicles G Griffiths 37–58 London: Taylor & Francis [Google Scholar]
  28. Davis RE, Kessler WS, Sherman JT. 2012. Gliders measure western boundary current transport from the South Pacific to the equator. J. Phys. Oceanogr. 42:2001–13 [Google Scholar]
  29. Davis RE, Leonard NE, Fratantoni DM. 2009. Routing strategies for underwater gliders. Deep-Sea Res. II 56:173–87 [Google Scholar]
  30. Davis RE, Ohman MD, Rudnick DL, Sherman JT, Hodges B. 2008. Glider surveillance of physics and biology in the southern California Current system. Limnol. Oceanogr. 53:2151–68 [Google Scholar]
  31. Davis RE, Sherman JT, Dufour J. 2001. Profiling ALACEs and other advances in autonomous subsurface floats. J. Atmos. Ocean. Technol. 18:982–93 [Google Scholar]
  32. Dobricic S, Pinardi N, Testor P, Send U. 2010. Impact of data assimilation of glider observations in the Ionian Sea (eastern Mediterranean). Dyn. Atmos. Oceans 50:78–92 [Google Scholar]
  33. Edwards CA, Moore AM, Hoteit I, Cornuelle BD. 2015. Regional ocean data assimilation. Annu. Rev. Mar. Sci. 7:21–42 [Google Scholar]
  34. Eriksen CC, Osse TJ, Light RD, Wen T, Lehman TW. et al. 2001. Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J. Ocean. Eng. 26:424–36 [Google Scholar]
  35. Eriksen CC, Rhines PB. 2008. Convective to gyre-scale dynamics: Seaglider campaigns in the Labrador Sea 2003–2005. Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate RR Dickson, J Meincke, PB Rhines 613–28 Dordrecht, Neth: Springer [Google Scholar]
  36. Fan X, Send U, Testor P, Karstensen J, Lherminier P. 2013. Observations of Irminger Sea anticyclonic eddies. J. Phys. Oceanogr. 43:805–23 [Google Scholar]
  37. Farrar JT, Rainville L, Plueddemann AJ, Kessler WS, Lee C. et al. 2015. Salinity and temperature balances at the SPURS central mooring during fall and winter. Oceanography 28:156–65 [Google Scholar]
  38. Fer I, Peterson AK, Ullgren JE. 2014. Microstructure measurements from an underwater glider in the turbulent Faroe Bank Channel overflow. J. Atmos. Ocean. Technol. 31:1128–50 [Google Scholar]
  39. Frajka-Williams E, Eriksen CC, Rhines PB, Harcourt RR. 2011. Determining vertical water velocities from Seaglider. J. Atmos. Ocean. Technol. 28:1641–56 [Google Scholar]
  40. Frajka-Williams E, Rhines PB, Eriksen CC. 2009. Physical controls and mesoscale variability in the Labrador Sea spring phytoplankton bloom observed by Seaglider. Deep-Sea Res. I 56:2144–61 [Google Scholar]
  41. Frajka-Williams E, Rhines PB, Eriksen CC. 2014. Horizontal stratification during deep convection in the Labrador Sea. J. Phys. Oceanogr. 44:220–28 [Google Scholar]
  42. Fu LL, Christensen EJ, Yamarone CA, Lefebvre M, Menard Y. et al. 1994. Topex/Poseidon mission overview. J. Geophys. Res. Oceans 99:24369–81 [Google Scholar]
  43. Gawarkiewicz G, Jan S, Lermusiaux PFJ, McClean JL, Centurioni L. et al. 2011. Circulation and intrusions northeast of Taiwan: chasing and predicting uncertainty in the cold dome. Oceanography 24:4110–21 [Google Scholar]
  44. Glenn S, Jones C, Twardowski M, Bowers L, Kerfoot J. et al. 2008. Glider observations of sediment resuspension in a Middle Atlantic Bight fall transition storm. Limnol. Oceanogr. 53:2180–96 [Google Scholar]
  45. Gopalakrishnan G, Cornuelle BD, Hoteit I. 2013a. Adjoint sensitivity studies of loop current and eddy shedding in the Gulf of Mexico. J. Geophys. Res. Oceans 118:3315–35 [Google Scholar]
  46. Gopalakrishnan G, Cornuelle BD, Hoteit I, Rudnick DL, Owens WB. 2013b. State estimates and forecasts of the Loop Current in the Gulf of Mexico using the MITgcm and its adjoint. J. Geophys. Res. 118:1–23 [Google Scholar]
  47. Gourdeau L, Kessler WS, Davis RE, Sherman J, Maes C, Kestenare E. 2008. Zonal jets entering the coral sea. J. Phys. Oceanogr. 38:715–25 [Google Scholar]
  48. Gregg MC. 1989. Scaling turbulent dissipation in the thermocline. J. Geophys. Res. 94:9686–98 [Google Scholar]
  49. Gregg MC, Sanford TB, Winkel DP. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature 422:513–15 [Google Scholar]
  50. Guihen D, Fielding S, Murphy EJ, Heywood KJ, Griffiths G. 2014. An assessment of the use of ocean gliders to undertake acoustic measurements of zooplankton: the distribution and density of Antarctic krill (Euphausia superba) in the Weddell Sea. Limnol. Oceanogr. Methods 12:373–89 [Google Scholar]
  51. Haley PJ, Lermusiaux PFJ, Robinson AR, Leslie WG, Logoutov O. et al. 2009. Forecasting and reanalysis in the Monterey Bay/California Current region for the Autonomous Ocean Sampling Network-II experiment. Deep-Sea Res. II 56:127–48 [Google Scholar]
  52. Hatun H, Eriksen CC, Rhines PB. 2007. Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr. 37:2838–54 [Google Scholar]
  53. Heslop EE, Ruiz S, Allen J, López-Jurado JL, Renault L, Tintoré J. 2012. Autonomous underwater gliders monitoring variability at “choke points” in our ocean system: a case study in the Western Mediterranean Sea. Geophys. Res. Lett. 39:L20604 [Google Scholar]
  54. Heywood KJ, Schmidtko S, Heuzé C, Kaiser J, Jickells TD. et al. 2014. Ocean processes at the Antarctic continental slope. Philos. Trans. R. Soc. A 372:20130047 [Google Scholar]
  55. Hobson BW, Bellingham JG, Kieft B, McEwen R, Godin M, Zhang YW. 2012. Tethys-class long range AUVs—extending the endurance of propeller-driven cruising AUVs from days to weeks. 2012 IEEE/OES Autonomous Underwater Vehicles (AUV): Southampton, UK, September 24–27, 2012 New York: IEEE http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6380735 [Google Scholar]
  56. Hodges BA, Fratantoni DM. 2009. A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders. J. Geophys. Res. Oceans 114:C10020 [Google Scholar]
  57. Hoydalsvik F, Mauritzen C, Orvik KA, LaCasce JH, Lee CM, Gobat J. 2013. Transport estimates of the Western Branch of the Norwegian Atlantic Current from glider surveys. Deep-Sea Res. I 79:86–95 [Google Scholar]
  58. Hristova HG, Kessler WS, McWilliams JC, Molemaker MJ. 2014. Mesoscale variability and its seasonality in the Solomon and Coral Seas. J. Geophys. Res. Oceans 119:4669–87 [Google Scholar]
  59. Jacox MG, Edwards CA, Kahru M, Rudnick DL, Kudela RM. 2015. The potential for improving remote primary productivity estimates through subsurface chlorophyll and irradiance measurement. Deep-Sea Res. II 112:107–16 [Google Scholar]
  60. Johnston TMS, Rudnick DL. 2015. Mixing estimates in the California Current System from sustained observations by underwater gliders. Deep-Sea Res. II 112:61–78 [Google Scholar]
  61. Johnston TMS, Rudnick DL, Alford MH, Pickering A, Simmons HL. 2013. Internal tidal energy fluxes in the South China Sea from density and velocity measurements by gliders. J. Geophys. Res. 118:3939–49 [Google Scholar]
  62. Jones EM, Oke PR, Rizwi F, Murray LM. 2012. Assimilation of glider and mooring data into a coastal ocean model. Ocean Model. 47:1–13 [Google Scholar]
  63. Juza M, Renault L, Ruiz S, Tintoré J. 2013. Origin and pathways of Winter Intermediate Water in the Northwestern Mediterranean Sea using observations and numerical simulation. J. Geophys. Res. Oceans 118:6621–33 [Google Scholar]
  64. Klinck H, Mellinger DK, Klinck K, Bogue NM, Luby JC. et al. 2012. Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider™. PLOS ONE 7:e36128 [Google Scholar]
  65. Kohut J, Hunter E, Huber B. 2013. Small-scale variability of the cross-shelf flow over the outer shelf of the Ross Sea. J. Geophys. Res. Oceans 118:1863–76 [Google Scholar]
  66. L'Heveder B, Mortier L, Testor P, Lekien F. 2013. A glider network design study for a synoptic view of the oceanic mesoscale variability. J. Atmos. Ocean. Technol. 30:1472–93 [Google Scholar]
  67. Lavender KL, Davis RE, Owens WB. 2002. Observations of open-ocean deep convection in the Labrador Sea from subsurface floats. J. Phys. Oceanogr. 32:511–26 [Google Scholar]
  68. Leonard NE, Paley DA, Davis RE, Fratantoni DM, Lekien F, Zhang FM. 2010. Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Robot. 27:718–40 [Google Scholar]
  69. Lien RC, Ma B, Cheng YH, Ho CR, Qiu B. et al. 2014. Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance. J. Geophys. Res. Oceans 119:2129–42 [Google Scholar]
  70. Mahadevan A, D'Asaro E, Lee C, Perry MJ. 2012. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 337:54–58 [Google Scholar]
  71. Martin JP, Lee CM, Eriksen CC, Ladd C, Kachel NB. 2009. Glider observations of kinematics in a Gulf of Alaska eddy. J. Geophys. Res. 114:C12021 [Google Scholar]
  72. Matthews AJ, Baranowski DB, Heywood KJ, Flatau PJ, Schmidtko S. 2014. The surface diurnal warm layer in the Indian Ocean during CINDY/DYNAMO. J. Clim. 27:9101–22 [Google Scholar]
  73. Mazzini PLF, Barth JA, Shearman RK, Erofeev A. 2014. Buoyancy-driven coastal currents off Oregon during fall and winter. J. Phys. Oceanogr. 44:2854–76 [Google Scholar]
  74. McClatchie S. 2014. Regional Fisheries Oceanography of the California Current System New York: Springer
  75. McClatchie S, Cowen R, Nieto K, Greer A, Luo JY. et al. 2012. Resolution of fine biological structure including small narcomedusae across a front in the Southern California Bight. J. Geophys. Res. Oceans 117:C04020 [Google Scholar]
  76. Melet A, Verron J, Brankart JM. 2012. Potential outcomes of glider data assimilation in the Solomon Sea: control of the water mass properties and parameter estimation. J. Mar. Syst. 94:232–46 [Google Scholar]
  77. Merckelbach L, Smeed D, Griffiths G. 2010. Vertical water velocities from underwater gliders. J. Atmos. Ocean. Technol. 27:547–63 [Google Scholar]
  78. Miles T, Glenn SM, Schofield O. 2013. Temporal and spatial variability in fall storm induced sediment resuspension on the Mid-Atlantic Bight. Cont. Shelf Res. 63:S36–49 [Google Scholar]
  79. Miles T, Seroka G, Kohut J, Schofield O, Glenn S. 2015. Glider observations and modeling of sediment transport in Hurricane Sandy. J. Geophys. Res. Oceans 120:1771–91 [Google Scholar]
  80. Mourre B, Alvarez A. 2012. Benefit assessment of glider adaptive sampling in the Ligurian Sea. Deep-Sea Res. I 68:68–78 [Google Scholar]
  81. Mourre B, Chiggiato J. 2014. A comparison of the performance of the 3-D super-ensemble and an ensemble Kalman filter for short-range regional ocean prediction. Tellus A 66:21640 [Google Scholar]
  82. Mrvaljevic RK, Black PG, Centurioni LR, Chang YT, D'Asaro EA. et al. 2013. Observations of the cold wake of Typhoon Fanapi 2010. Geophys. Res. Lett. 40:316–21 [Google Scholar]
  83. Nicholson D, Emerson S, Eriksen CC. 2008. Net community production in the deep euphotic zone of the subtropical North Pacific gyre from glider surveys. Limnol. Oceanogr. 53:2226–36 [Google Scholar]
  84. Niewiadomska K, Claustre H, Prieur L, d'Ortenzio F. 2008. Submesoscale physical-biogeochemical coupling across the Ligurian Current (northwestern Mediterranean) using a bio-optical glider. Limnol. Oceanogr. 53:2210–25 [Google Scholar]
  85. Ohman MD, Rudnick DL, Chekalyuk A, Davis RE, Feely RA. et al. 2013. Autonomous ocean measurements in the California Current Ecosystem. Oceanography 26:318–25 [Google Scholar]
  86. Oke PR, Sakov P, Schulz E. 2009. A comparison of shelf observation platforms for assimilation in an eddy-resolving ocean model. Dyn. Atmos. Oceans 48:121–42 [Google Scholar]
  87. Oliver MJ, Irwin A, Moline MA, Fraser W, Patterson D. et al. 2013. Adélie penguin foraging location predicted by tidal regime switching. PLOS ONE 8:e55163 [Google Scholar]
  88. Palmer MR, Stephenson GR, Inall ME, Balfour C, Düsterhus A, Green JAM. 2015. Turbulence and mixing by internal waves in the Celtic Sea determined from ocean glider microstructure measurements. J. Mar. Syst. 144:57–69 [Google Scholar]
  89. Pan CD, Zheng LY, Weisberg RH, Liu YG, Lembke CE. 2014. Comparisons of different ensemble schemes for glider data assimilation on West Florida Shelf. Ocean Model. 81:13–24 [Google Scholar]
  90. Pelland NA, Eriksen CC, Lee CM. 2013. Subthermocline eddies over the Washington continental slope as observed by Seagliders, 2003–09. J. Phys. Oceanogr. 43:2025–53 [Google Scholar]
  91. Pelland NA, Sterling JT, Lea MA, Bond NA, Ream RR. et al. 2014. Fortuitous encounters between Seagliders and adult female northern fur seals (Callorhinus ursinus) off the Washington (USA) coast: upper ocean variability and links to top predator behavior. PLOS ONE 9:e101268 [Google Scholar]
  92. Perry MJ, Rudnick DL. 2003. Observing the ocean with Autonomous and Lagrangian Platforms and Sensors (ALPS): the role of ALPS in sustained observing systems. Oceanography 16:431–36 [Google Scholar]
  93. Perry MJ, Sackmann BS, Eriksen CC, Lee CM. 2008. Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast. Limnol. Oceanogr. 53:2169–79 [Google Scholar]
  94. Peterson AK, Fer I. 2014. Dissipation measurements using temperature microstructure from an underwater glider. Methods Oceanogr. 10:44–69 [Google Scholar]
  95. Pierce SD, Barth JA, Shearman RK, Erofeev AY. 2012. Declining oxygen in the northeast Pacific. J. Phys. Oceanogr. 42:495–501 [Google Scholar]
  96. Pollard R. 1986. Frontal surveys with a towed profiling conductivity/temperature/depth measurement package (SeaSoar). Nature 323:433–35 [Google Scholar]
  97. Polzin K, Toole JM, Schmitt RW. 1995. Finescale parameterization of turbulent dissipation. J. Phys. Oceanogr. 25:306–28 [Google Scholar]
  98. Powell JR, Ohman MD. 2015. Covariability of zooplankton gradients with glider-detected density fronts in the Southern California Current System. Deep-Sea Res. II 112:79–90 [Google Scholar]
  99. Qiu B, Rudnick DL, Chen S, Kashino Y. 2013. Quasi-stationary North Equatorial Undercurrent jets across the tropical North Pacific Ocean. Geophys. Res. Lett. 40:2183–87 [Google Scholar]
  100. Rainville L, Lee CM, Rudnick DL, Yang K-C. 2013. Propagation of internal tides generated near Luzon Strait: observations from autonomous gliders. J. Geophys. Res. 118:4125–38 [Google Scholar]
  101. Ramp SR, Davis RE, Leonard NE, Shulman I, Chao Y. et al. 2009. Preparing to predict: the second Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay. Deep-Sea Res. II 56:68–86 [Google Scholar]
  102. Ramp SR, Tang TY, Duda TF, Lynch JF, Liu AK. et al. 2004. Internal solitons in the northeastern South China Sea—part I: sources and deep water propagation. IEEE J. Ocean. Eng. 29:1157–81 [Google Scholar]
  103. Reid JL. 1961. On the geostrophic flow at the surface of the Pacific Ocean with respect to the 1,000-decibar surface. Tellus 13:489–502 [Google Scholar]
  104. Roemmich D, Johnson GC, Riser S, Davis R, Gilson J. et al. 2009. The Argo program observing the global ocean with profiling floats. Oceanography 22:234–43 [Google Scholar]
  105. Roemmich D, Riser S, Davis R, Desaubies Y. 2004. Autonomous profiling floats: workhorse for broad-scale ocean observations. Mar. Technol. Soc. J. 38:21–29 [Google Scholar]
  106. Rudnick DL, Baltes R, Crowley M, Schofield O, Lee CM, Lembke C. 2012. A national glider network for sustained observation of the coastal ocean Presented at Oceans '12, Hampton Roads, VA, Oct. 14–19
  107. Rudnick DL, Cole ST. 2011. On sampling the ocean using underwater gliders. J. Geophys. Res. 116:C08010 [Google Scholar]
  108. Rudnick DL, Davis RE, Eriksen CC, Fratantoni DM, Perry MJ. 2004. Underwater gliders for ocean research. Mar. Technol. Soc. J. 38:73–84 [Google Scholar]
  109. Rudnick DL, Gopalakrishnan G, Cornuelle BD. 2015. Cyclonic eddies in the Gulf of Mexico: observations by underwater gliders and simulations by numerical model. J. Phys. Oceanogr. 45:313–26 [Google Scholar]
  110. Rudnick DL, Jan S, Centurioni L, Lee C, Lien R-C. et al. 2011. Seasonal and mesoscale variability of the Kuroshio near its origin. Oceanography 24:452–63 [Google Scholar]
  111. Rudnick DL, Johnston TMS, Sherman JT. 2013. High-frequency internal waves near the Luzon Strait observed by underwater gliders. J. Geophys. Res. Oceans 118:774–84 [Google Scholar]
  112. Rudnick DL, Luyten JR. 1996. Intensive surveys of the Azores Front: 1. Tracers and dynamics. J. Geophys. Res. 101:923–39 [Google Scholar]
  113. Rudnick DL, Meinig C, Ando K, Riser S, Send U, Suga T. 2014. Emerging technology. Report of the Tropical Pacific Observing System 2020 Workshop (TPOS 2020) 2 White Papers299–319 Paris: Ocean Obs. Panel Clim. [Google Scholar]
  114. Rudnick DL, Perry MJ. 2003. ALPS: autonomous and Lagrangian platforms and sensors Workshop Rep. http://geo-prose.com/pdfs/alps_report.pdf
  115. Ruiz S, Pascual A, Garau B, Faugère Y, Alvarez A, Tintoré J. 2009. Mesoscale dynamics of the Balearic Front, integrating glider, ship and satellite data. J. Mar. Syst. 78:S3–16 [Google Scholar]
  116. Ruiz S, Renault L, Garau B, Tintoré J. 2012. Underwater glider observations and modeling of an abrupt mixing event in the upper ocean. Geophys. Res. Lett. 39:L01603 [Google Scholar]
  117. Schofield O, Chant R, Cahill B, Castelao R, Gong D. et al. 2008. The decadal view of the Mid-Atlantic Bight from the COOLroom: Is our coastal system changing?. Oceanography 21:4108–17 [Google Scholar]
  118. Schofield O, Ducklow H, Bernard K, Doney S, Patterson-Fraser D. et al. 2013. Penguin biogeography along the West Antarctic Peninsula: testing the canyon hypothesis with Palmer LTER observations. Oceanography 26:3204–6 [Google Scholar]
  119. Schofield O, Kohut J, Aragon D, Creed L, Graver J. et al. 2007. Slocum gliders: robust and ready. J. Field Robot. 24:473–85 [Google Scholar]
  120. Schönau MC, Rudnick DL. 2015. Glider observations of the North Equatorial Current in the western tropical Pacific. J. Geophys. Res. Oceans 120:3586–605 [Google Scholar]
  121. Send U, Davis R, Fischer J, Imawaki S, Kessler W. et al. 2010. A global boundary current circulation observing network. Proceedings of OceanObs '09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009 2 Community White Papers J Hall, DE Harrison, D Stammer, chap. 78. ESA Publ. WPP-306 Paris: Eur. Space Agency http://www.oceanobs09.net/proceedings/cwp/cwp78
  122. Sherman J, Davis RE, Owens WB, Valdes J. 2001. The autonomous underwater glider “Spray.”. IEEE J. Ocean. Eng. 26:437–46 [Google Scholar]
  123. Shulman I, Rowley C, Anderson S, DeRada S, Kindle J. et al. 2009. Impact of glider data assimilation on the Monterey Bay model. Deep-Sea Res. II 56:188–98 [Google Scholar]
  124. Stommel H. 1989. The Slocum mission. Oceanography 2:122–25 [Google Scholar]
  125. Testor P, Meyers G, Pattiaratchi C, Bachmayer R, Hayes D. et al. 2010. Gliders as a component of future observing systems. Proceedings of OceanObs '09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009 2 Community White Papers J Hall, DE Harrison, D Stammer, chap. 89. ESA Publ. WPP-306 Paris: Eur. Space Agency http://www.oceanobs09.net/proceedings/cwp/cwp89
  126. Thompson AF, Heywood KJ, Schmidtko S, Stewart AL. 2014. Eddy transport as a key component of the Antarctic overturning circulation. Nat. Geosci. 7:879–84 [Google Scholar]
  127. Timmermans ML, Winsor P. 2013. Scales of horizontal density structure in the Chukchi Sea surface layer. Cont. Shelf Res. 52:39–45 [Google Scholar]
  128. Todd RE, Gawarkiewicz GG, Owens WB. 2013. Horizontal scales of variability over the Middle Atlantic Bight shelf break and continental rise from finescale observations. J. Phys. Oceanogr. 43:222–30 [Google Scholar]
  129. Todd RE, Rudnick DL, Davis RE. 2009. Monitoring the greater San Pedro Bay region using autonomous underwater gliders during fall of 2006. J. Geophys. Res. 114:C06001 [Google Scholar]
  130. Todd RE, Rudnick DL, Davis RE, Ohman MD. 2011a. Underwater gliders reveal rapid arrival of El Niño effects off California's coast. Geophys. Res. Lett. 38:L03609 [Google Scholar]
  131. Todd RE, Rudnick DL, Mazloff MR, Cornuelle BD, Davis RE. 2012. Thermohaline structure in the California Current System: observations and modeling of spice variance. J. Geophys. Res. 117:C02008 [Google Scholar]
  132. Todd RE, Rudnick DL, Mazloff MR, Davis RE, Cornuelle BD. 2011b. Poleward flows in the southern California Current System: glider observations and numerical simulation. J. Geophys. Res. 116:C02026 [Google Scholar]
  133. Ullgren JE, Fer I, Darelius E, Beaird N. 2014. Interaction of the Faroe Bank Channel overflow with Iceland Basin intermediate waters. J. Geophys. Res. Oceans 119:228–40 [Google Scholar]
  134. Visbeck M. 2002. Deep velocity profiling using lowered acoustic Doppler current profilers: bottom track and inverse solutions. J. Atmos. Ocean. Technol. 19:794–807 [Google Scholar]
  135. Voorhis AD. 1968. Measurements of vertical motion and partition of energy in New England slope water. Deep-Sea Res. 15:599–608 [Google Scholar]
  136. Vukovich FM, Maul GA. 1985. Cyclonic eddies in the eastern Gulf of Mexico. J. Phys. Oceanogr. 15:105–17 [Google Scholar]
  137. Walker N, Leben R, Anderson S, Feeney J, Coholan P, Sharma N. 2009. Loop Current frontal eddies based on satellite remote sensing and drifter data OCS Study MMS 2009-023, US Dep. Inter. Miner. Manag. Serv., Gulf Mex. OCS Reg., New Orleans, LA
  138. Wall CC, Lembke C, Mann DA. 2012. Shelf-scale mapping of sound production by fishes in the eastern Gulf of Mexico, using autonomous glider technology. Mar. Ecol. Prog. Ser. 449:55–64 [Google Scholar]
  139. Webb DC, Simonetti PJ, Jones CP. 2001. SLOCUM: an underwater glider propelled by environmental energy. IEEE J. Ocean. Eng. 26:447–52 [Google Scholar]
  140. Webber BGM, Matthews AJ, Heywood KJ, Kaiser J, Schmidtko S. 2014. Seaglider observations of equatorial Indian Ocean Rossby waves associated with the Madden-Julian Oscillation. J. Geophys. Res. Oceans 119:3714–31 [Google Scholar]
  141. Webster SE, Lee CM, Gobat JI. 2014. Preliminary results in under-ice acoustic navigation for seagliders in Davis Strait Presented at Oceans '14, St. John's, Can., Sept. 14–19
  142. Wilkin JL, Hunter EJ. 2013. An assessment of the skill of real-time models of Mid-Atlantic Bight continental shelf circulation. J. Geophys. Res. Oceans 118:2919–33 [Google Scholar]
  143. Xu Y, Cahill B, Wilkin J, Schofield O. 2013. Role of wind in regulating phytoplankton blooms on the Mid-Atlantic Bight. Cont. Shelf Res. 63:Suppl.S26–35 [Google Scholar]
  144. Xu Y, Chant R, Gong DL, Castelao R, Glenn S, Schofield O. 2011. Seasonal variability of chlorophyll a in the Mid-Atlantic Bight. Cont. Shelf Res. 31:1640–50 [Google Scholar]
  145. Zhang WFG, Wilkin JL, Arango HG. 2010a. Towards an integrated observation and modeling system in the New York Bight using variational methods. Part I: 4DVAR data assimilation. Ocean Model. 35:119–33 [Google Scholar]
  146. Zhang WFG, Wilkin JL, Levin JC. 2010b. Towards an integrated observation and modeling system in the New York Bight using variational methods. Part II: representer-based observing strategy evaluation. Ocean Model. 35:134–45 [Google Scholar]
/content/journals/10.1146/annurev-marine-122414-033913
Loading
/content/journals/10.1146/annurev-marine-122414-033913
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error