1932

Abstract

Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-122414-033929
2016-01-03
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/marine/8/1/annurev-marine-122414-033929.html?itemId=/content/journals/10.1146/annurev-marine-122414-033929&mimeType=html&fmt=ahah

Literature Cited

  1. Abernathey R, Marshall J, Ferreira D. 2011. The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr. 41:2261–78 [Google Scholar]
  2. Biastoch A, Böning CW. 2013. Anthropogenic impact on the Agulhas leakage. Geophys. Res. Lett. 40:1138–43 [Google Scholar]
  3. Biastoch A, Böning CW, Lutjeharms JRE. 2008. Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature 456:489–92 [Google Scholar]
  4. Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU. 2008. The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci. 1:864–69 [Google Scholar]
  5. Box GEP. 1979. Robustness in the strategy of model building. Robustness in Statistics RL Launer, GN Wilkinson 201–36 New York: Academic [Google Scholar]
  6. Bracegirdle TJ, Shuckburgh E, Sallee JB, Wang Z, Meijers JS. et al. 2013. Assessment of surface winds over the Atlantic, Indian and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J. Geophys. Res. 118:547–62 [Google Scholar]
  7. Danabasoglu G, Bates SC, Briegleb BP, Jayne SR, Jochum M. et al. 2012. The CCSM4 ocean component. J. Clim. 25:1361–89 [Google Scholar]
  8. Delworth TL, Zeng F. 2008. Simulated impact of altered Southern Hemisphere winds on the Atlantic meridional overturning circulation. Geophys. Res. Lett. 35:L20708 [Google Scholar]
  9. Downes SM, Budnick AS, Sarmiento JL, Farneti R. 2011. Impacts of wind stress on the Antarctic Circumpolar Current fronts and associated subduction. Geophys. Res. Lett. 38:L11605 [Google Scholar]
  10. Downes SM, Hogg AM. 2013. Southern Ocean circulation and eddy compensation in CMIP5 models. J. Clim. 26:7198–220 [Google Scholar]
  11. Dufour CO, Le Sommer J, Zika JD, Gehlen M, Orr JC. et al. 2012. Standing and transient eddies in the response of the Southern Ocean meridional overturning to the southern annular mode. J. Clim. 25:6958–74 [Google Scholar]
  12. Durack PJ, Wijffels SE. 2010. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 23:4342–62 [Google Scholar]
  13. Durgadoo JV, Loveday BR, Reason CJC, Penven P, Biastoch A. 2013. Agulhas leakage predominantly responds to the Southern Hemisphere westerlies. J. Phys. Oceanogr. 43:2113–31 [Google Scholar]
  14. Farneti R, Delworth TL. 2010. The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. J. Phys. Oceanogr. 40:2348–54 [Google Scholar]
  15. Farneti R, Delworth TL, Rosati AJ, Griffies SM, Zeng F. 2010. The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr. 40:1539–57 [Google Scholar]
  16. Farneti R, Downes SM, Griffies SM, Marsland SJ, Behrens E. et al. 2015. An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Model. 9384–120
  17. Farneti R, Gent PR. 2011. The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Model. 39:135–45 [Google Scholar]
  18. Gent PR, Danabasoglu G. 2011. Response to increasing Southern Hemisphere winds in CCSM4. J. Clim. 24:4992–98 [Google Scholar]
  19. Gent PR, McWilliams JC. 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20:150–55 [Google Scholar]
  20. Gille ST. 2008. Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim. 21:4749–65 [Google Scholar]
  21. Gnanadesikan A, Hallberg RW. 2000. On the relationship of the circumpolar current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr. 30:2013–34 [Google Scholar]
  22. Hallberg R, Gnanadesikan A. 2006. The role of eddies in determining the structure and response of wind-driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr. 36:2232–52 [Google Scholar]
  23. Hasumi H, Suginohara N. 1999. Atlantic deep circulation controlled by heating in the Southern Ocean. Geophys. Res. Lett. 26:1873–76 [Google Scholar]
  24. Henning CC, Vallis GK. 2005. The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel. J. Phys. Oceanogr. 35:880–96 [Google Scholar]
  25. Hirabara M, Ishizaki H, Ishikawa I. 2007. Effects of the westerly wind stress over the Southern Ocean on the meridional overturning. J. Phys. Oceanogr. 37:2114–32 [Google Scholar]
  26. Hofmann M, Morales-Maqueda MA. 2011. The response of Southern Ocean eddies to increased midlatitude westerlies: a non-eddy resolving model study. Geophys. Res. Lett. 38:L03605 [Google Scholar]
  27. Hogg AM, Meredith MP, Blundell JR, Wilson C. 2008. Eddy heat flux in the Southern Ocean: response to variable wind forcing. J. Clim. 21:608–20 [Google Scholar]
  28. Iudicone D, Madec G, Blanke B, Speich S. 2008a. The role of Southern Ocean surface forcings and mixing in the global conveyor. J. Phys. Oceanogr. 38:1377–400 [Google Scholar]
  29. Iudicone D, Madec G, Blanke B, Speich S. 2008b. The global conveyor belt from a Southern Ocean perspective. J. Phys. Oceanogr. 38:1401–25 [Google Scholar]
  30. Kamenkovich I, Radko T. 2011. Role of the Southern Ocean in setting the Atlantic stratification and meridional overturning circulation. J. Mar. Res. 69:277–308 [Google Scholar]
  31. Klinger BA, Cruz C. 2009. Decadal response of global circulation to Southern Ocean zonal wind stress production. J. Phys. Oceanogr. 39:1888–904 [Google Scholar]
  32. Klinger BA, Drijfhout S, Marotzke J, Scott JR. 2003. Sensitivity of basinwide meridional overturning to diapycnal diffusion and remote wind forcing in an idealized Atlantic-Southern Ocean geometry. J. Phys. Oceanogr. 33:249–66 [Google Scholar]
  33. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S. 2007. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 45:RG2001 [Google Scholar]
  34. Large WG, Yeager SG. 2009. The global climatology of an interannually varying air-sea flux data set. Clim. Dyn. 33:341–64 [Google Scholar]
  35. Lovenduski NS, Long MC, Gent PR, Lindsay K. 2013. Multi-decadal trends in the advection and mixing of natural carbon in the Southern Ocean. Geophys. Res. Lett. 40:139–42 [Google Scholar]
  36. Marini C, Frankignoul C, Mignot J. 2011. Links between the southern annular mode and the Atlantic meridional overturning circulation in a climate model. J. Clim. 24:624–40 [Google Scholar]
  37. McDermott DA. 1996. The regulation of northern overturning by Southern Hemisphere winds. J. Phys. Oceanogr. 26:1234–55 [Google Scholar]
  38. Meredith MP, Hogg AM. 2006. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett. 33:L16608 [Google Scholar]
  39. Meredith MP, Naveira-Garabato AC, Hogg AM, Farneti R. 2012. Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Clim. 25:99–110 [Google Scholar]
  40. Morrison AK, Hogg AM. 2013. On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr. 43:140–48 [Google Scholar]
  41. Munday DR, Johnson HL, Marshall DP. 2013. Eddy saturation of equilibrated circumpolar currents. J. Clim. 43:507–32 [Google Scholar]
  42. Munday DR, Johnson HL, Marshall DP. 2014. Impacts and effects of mesoscale ocean eddies on ocean carbon storage and atmospheric pCO2. Glob. Biogeochem. Cycles 28:877–96 [Google Scholar]
  43. Polvani LM, Previdi M, Deser C. 2011. Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett. 38:L04707 [Google Scholar]
  44. Rahmstorf S, England MH. 1997. Influence of Southern Hemisphere winds on North Atlantic deep water flow. J. Phys. Oceanogr. 27:2040–54 [Google Scholar]
  45. Redi MH. 1982. Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr. 12:1154–58 [Google Scholar]
  46. Screen JA, Gillett NP, Stevens DP, Marshall GJ, Roscoe HK. 2009. The role of eddies in the Southern Ocean temperature response to the southern annular mode. J. Clim. 22:806–18 [Google Scholar]
  47. Sévellec F, Fedorov AV. 2011. Stability of the Atlantic meridional overturning circulation and stratification in a zonally averaged ocean model: effects of freshwater flux, Southern Ocean winds, and diapycnal diffusion. Deep-Sea Res. II 58:1927–43 [Google Scholar]
  48. Sijp WP, England MH. 2009. Southern Hemisphere westerly wind control over the ocean's thermohaline circulation. J. Clim. 22:1277–86 [Google Scholar]
  49. Speer K, Rintoul SR, Sloyan B. 2000. The diabatic Deacon cell. J. Phys. Oceanogr. 30:3212–22 [Google Scholar]
  50. Spence P, Fyfe JC, Montenegro A, Weaver AJ. 2010. Southern Ocean response to strengthening winds in an eddy-permitting global climate model. J. Clim. 23:5332–43 [Google Scholar]
  51. Spence P, Saenko OA, Eby M, Weaver AJ. 2009. The Southern Ocean overturning: parameterized versus permitted eddies. J. Phys. Oceanogr. 39:1634–51 [Google Scholar]
  52. Swart NC, Fyfe JC. 2012. Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett. 39:L16711 [Google Scholar]
  53. Swart NC, Fyfe JC, Saenko OA, Eby M. 2014. Wind-driven changes in the ocean carbon sink. Biogeosciences 11:6107–17 [Google Scholar]
  54. Toggweiler JR, Samuels B. 1993. Is the magnitude of the deep outflow from the Atlantic Ocean actually governed by Southern Hemisphere winds?. The Global Carbon Cycle M Heimann 303–31 Berlin: Springer-Verlag [Google Scholar]
  55. Toggweiler JR, Samuels B. 1995. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I 42:477–500 [Google Scholar]
  56. Treguier AM, Held IM, Larichev VD. 1997. Parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr. 27:567–80 [Google Scholar]
  57. Viebahn J, Eden C. 2010. Towards the impact of eddies on the response of the Southern Ocean to climate change. Ocean Model. 34:150–65 [Google Scholar]
  58. Wei W, Lohmann G, Dima M. 2012. Distinct modes of internal variability in the global meridional overturning circulation associated with the Southern Hemisphere westerly winds. J. Phys. Oceanogr. 42:785–801 [Google Scholar]
  59. Wolfe CL, Cessi P. 2010. What sets the strength of the middepth stratification and overturning circulation in eddying ocean models?. J. Phys. Oceanogr. 40:1520–38 [Google Scholar]
  60. Yeager S, Danabasoglu G. 2014. The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J. Clim. 27:3222–47 [Google Scholar]
/content/journals/10.1146/annurev-marine-122414-033929
Loading
/content/journals/10.1146/annurev-marine-122414-033929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error