1932

Abstract

Modern gas turbines rely on ceramic coatings to protect structural components along the hot gas path. These coatings are susceptible to accelerated degradation caused by silicate deposits formed when ingested environmental debris (dust, sand, ash) adheres to the coatings. This article reviews the current understanding of the deposit-induced failure mechanisms for zirconia-based thermal barrier coatings and silicate environmental barrier coatings. Details of the debris melting and crystallization behavior, the nature of the chemical reactions occurring between the deposits and coatings, and the implications for the thermocyclic durability of the coatings are described. Given the challenges posed in understanding how prospective coating materials and architectures will respond to a broad range of deposit compositions, it is proposed to develop an integrated framework linking thermochemical and thermomechanical models to predict coating durability. Initial progress toward developing this framework, and the requisite research needs, are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-010917-105000
2017-07-03
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/matsci/47/1/annurev-matsci-010917-105000.html?itemId=/content/journals/10.1146/annurev-matsci-010917-105000&mimeType=html&fmt=ahah

Literature Cited

  1. Evans AG, Clarke DR, Levi CG. 1.  2008. The influence of oxides on the performance of advanced gas turbines. J. Eur. Ceram. Soc. 28:1405–19 [Google Scholar]
  2. Borom MP, Johnson CA, Peluso LA. 2.  1996. Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 86:116–26Presents an early identification of the deposit-induced TBC delamination mechanism, including detailed characterization of deposit and infiltrated melt compositions. [Google Scholar]
  3. Levi CG, Hutchinson JW, Vidal-Sétif M-H, Johnson CA. 3.  2012. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull 37:932–41Reviews models describing the mechanics of delamination in melt-infiltrated TBCs. [Google Scholar]
  4. Mercer C, Faulhaber S, Evans AG, Darolia R. 4.  2005. A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration. Acta Mater 53:1029–39 [Google Scholar]
  5. Grant KM, Krämer S, Löfvander JPA, Levi CG. 5.  2007. CMAS degradation of environmental barrier coatings. Surf. Coat. Technol. 202:653–57 [Google Scholar]
  6. Grant KM, Krämer S, Seward GGE, Levi CG. 6.  2010. Calcium–magnesium alumino-silicate interaction with yttrium monosilicate environmental barrier coatings. J. Am. Ceram. Soc. 93:3504–11 [Google Scholar]
  7. Zhao HB, Richards BT, Levi CG, Wadley HNG. 7.  2016. Molten silicate reactions with plasma sprayed ytterbium silicate coatings. Surf. Coat. Technol. 288:151–62Analyzes, in detail, recession kinetics and reaction products for Yb2Si2O7 and Yb2SiO5 coatings on SiC-CMC substrates. [Google Scholar]
  8. Harder BJ, Ramirez-Rico J, Almer JD, Lee KN, Faber KT. 8.  2011. Chemical and mechanical consequences of environmental barrier coating exposure to calcium-magnesium-aluminosilicate. J. Am. Ceram. Soc. 94:S178–85Discusses in situ experiments to measure the evolving stress state upon reaction between EBCs and silicate deposits. [Google Scholar]
  9. Clarke DR, Oechsner M, Padture NP. 9.  2012. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 37:891–902 [Google Scholar]
  10. Sampath S, Schulz U, Jarligo MO, Kuroda S. 10.  2012. Processing science of advanced thermal-barrier systems. MRS Bull 37:903–10 [Google Scholar]
  11. Levi CG.11.  2004. Emerging materials and processes for thermal barrier systems. Curr. Opin. Solid State Mater. Sci. 8:77–91 [Google Scholar]
  12. Pitek FM, Levi CG. 12.  2007. Opportunities for TBCs in the ZrO2-YO1.5-TaO2.5 system. Surf. Coat. Technol. 201:6044–50 [Google Scholar]
  13. Schaedler TA, Leckie RM, Krämer S, Evans AG, Levi CG. 13.  2007. Toughening of nontransformable t′-YSZ by addition of titania. J. Am. Ceram. Soc. 90:3896–901 [Google Scholar]
  14. Krogstad JA, Lepple M, Levi CG. 14.  2013. Opportunities for improved TBC durability in the CeO2-TiO2-ZrO2 system. Surf. Coat. Technol. 221:44–52 [Google Scholar]
  15. Leckie RM, Krämer S, Rühle M, Levi CG. 15.  2005. Thermochemical compatibility between alumina and ZrO2-GdO3/2 thermal barrier coatings. Acta Mater 53:3281–92 [Google Scholar]
  16. Viswanathan V, Dwivedi G, Sampath S. 16.  2014. Engineered multilayer thermal barrier coatings for enhanced durability and functional performance. J. Am. Ceram. Soc. 97:2770–78 [Google Scholar]
  17. Lee KN.17.  2000. Current status of environmental barrier coatings for Si-based ceramics. Surf. Coat. Technol. 133–134:1–7 [Google Scholar]
  18. Spitsberg I, Steibel J. 18.  2004. Thermal and environmental barrier coatings for SiC/SiC CMCs in aircraft engine applications. Int. J. Appl. Ceram. Technol. 1:291–301 [Google Scholar]
  19. Lee KN, Fox DS, Bansal NP. 19.  2005. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 25:1705–15 [Google Scholar]
  20. Harder BJ, Almer JD, Weyant CM, Lee KN, Faber KT. 20.  2010. Residual stress analysis of multilayer environmental barrier coatings. J. Am. Ceram. Soc. 92:452–59 [Google Scholar]
  21. Fernández-Carrión AJ, Allix M, Becerro AI, White M. 21.  2013. Thermal expansion of rare-earth pyrosilicates. J. Am. Ceram. Soc. 96:2298–305 [Google Scholar]
  22. Sun Z, Li M, Zhou Y. 22.  2009. Thermal properties of single-phase Y2SiO5. J. Eur. Ceram. Soc. 29:551–57 [Google Scholar]
  23. Jacobson NS.23.  2014. Silica activity measurements in the Y2O3-SiO2 system and applications to modeling of coating volatility. J. Am. Ceram. Soc. 97:1959–65 [Google Scholar]
  24. Costa GCC, Jacobson NS. 24.  2015. Mass spectrometric measurements of the silica activity in the Yb2O3-SiO2 system and implications to assess the degradation of silicate-based coatings in combustion environments. J. Eur. Ceram. Soc. 35:4259–67 [Google Scholar]
  25. Richards BT, Zhao HB, Wadley HNG. 25.  2015. Structure, composition, and defect control during plasma spray deposition of ytterbium silicate coatings. J. Mater. Sci. 50:7939–57 [Google Scholar]
  26. Poerschke DL, Hass DD, Eustis S, Seward GGE, Van Sluytman JS, Levi CG. 26.  2015. Stability and CMAS resistance of ytterbium-silicate/hafnate EBCs/TBC for SiC composites. J. Am. Ceram. Soc. 98:278–86 [Google Scholar]
  27. Smialek JL, Archer FA, Garlick RG. 27.  1994. Turbine airfoil degradation in the Persian Gulf War. JOM 46:39–41 [Google Scholar]
  28. Mechnich P, Braue W, Schulz U. 28.  2011. High-temperature corrosion of EB-PVD yttria partially stabilized zirconia thermal barrier coatings with an artificial volcanic ash overlay. J. Am. Ceram. Soc. 94:925–31 [Google Scholar]
  29. Song WJ, Lavallee Y, Hess KU, Kueppers U, Cimarelli C, Dingwell DB. 29.  2016. Volcanic ash melting under conditions relevant to ash turbine interactions. Nat. Commun. 7:10795 [Google Scholar]
  30. Bons JP, Crosby J, Wammack JE, Bentley BI, Fletcher TH. 30.  2007. High-pressure turbine deposition in land-based gas turbines from various synfuels. J. Eng. Gas Turb. Power 129:135–43 [Google Scholar]
  31. Crosby JM, Lewis S, Bons JP, Ai WG, Fletcher TH. 31.  2008. Effects of temperature and particle size on deposition in land based turbines. J. Eng. Gas Turb. Power 130:051503 [Google Scholar]
  32. Gledhill AD, Reddy KM, Drexler JM, Shinoda K, Sampath S, Padture NP. 32.  2011. Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings. Mater. Sci. Eng. A 528:7214–21 [Google Scholar]
  33. Braue W, Mechnich P. 33.  2011. Recession of an EB-PVD YSZ coated turbine blade by CaSO4 and Fe, Ti-rich CMAS-type deposits. J. Am. Ceram. Soc. 94:4483–89Along with References 28, 36, and 67, characterizes ex-service hardware, identifying relevant deposit compositions and reaction processes. [Google Scholar]
  34. Shinozaki M, Roberts KA, van de Goor B, Clyne TW. 34.  2013. Deposition of ingested volcanic ash on surfaces in the turbine of a small jet engine. Adv. Eng. Mater. 15:986–94 [Google Scholar]
  35. Vidal-Setif MH, Chellah N, Rio C, Sanchez C, Lavigne O. 35.  2012. Calcium-magnesium-alumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings: characterization of CMAS damage on ex-service high pressure blade TBCs. Surf. Coat. Technol. 208:39–45 [Google Scholar]
  36. Mechnich P, Braue W. 36.  2015. Solid-state CMAS corrosion of an EB-PVD YSZ coated turbine blade: Zr4+ partitioning and phase evolution. J. Am. Ceram. Soc. 98:296–302 [Google Scholar]
  37. Witz G, Shklover V, Steurer W, Bachegowda S, Bossmann HP. 37.  2015. High-temperature interaction of yttria stabilized zirconia coatings with CaO-MgO-Al2O3-SiO2 (CMAS) deposits. Surf. Coat. Technol. 265:244–49 [Google Scholar]
  38. Bale CW, Belisle E, Chartrand P, Decterov SA, Eriksson G. 38.  et al. 2014. Recent developments in Factsage thermochemical software and databases. Celebrating the Megascale: Proceedings of the Extraction and Processing Division Symposium on Pyrometallurgy in Honor of David G.C. Robertson PJ Mackey, EJ Grimsey, RT Jones, GA Brooks 141–48 Hoboken, NJ: Wiley [Google Scholar]
  39. Bohna N, Gheno T, Meier GH, Gleeson B. 39.  2015. Degradation of TBC systems in environments relevant to advanced gas turbines for IGCC systems Presented at Mater. Sci. Technol. Meet. Columbus, OH:
  40. Krämer S, Faulhaber S, Chambers M, Clarke DR, Levi CG. 40.  et al. 2008. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Mater. Sci. Eng. A 490:26–35Presents an important extension of the model in Reference 4 to define the critical cooling profile for preventing delamination. [Google Scholar]
  41. Tolpygo VK.41.  2017. Vapor-phase CMAS-induced degradation of adhesion of thermal barrier coatings. Oxid. Met. https://doi.org/10.1007/s11085-017-9715-7 [Crossref]
  42. Wessels K.42.  2016. Elucidating the mechanism of bond coat cavitation under CMAS-infiltrated thermal barrier coatings PhD Diss. Univ. Calif. Santa Barbara:
  43. Evans AG, Hutchinson JW. 43.  2007. The mechanics of coating delamination in thermal gradients. Surf. Coat. Technol. 201:7905–16 [Google Scholar]
  44. Sundaram S, Lipkin DM, Johnson CA, Hutchinson JW. 44.  2013. The influence of transient thermal gradients and substrate constraint on delamination of thermal barrier coatings. J. Appl. Mech. 80:011002 [Google Scholar]
  45. Jackson RW, Begley MR. 45.  2014. Critical cooling rates to avoid transient-driven cracking in thermal barrier coating (TBC) systems. Int. J. Solids Struct. 51:1364–74 [Google Scholar]
  46. Lutz BS, Jackson RW, Abdul-Jabbar NM, Tolpygo VK, Levi CG. 46.  2017. Water vapor effects on the CMAS degradation of thermal barrier coatings. Oxid. Met. https://doi.org/10.1007/s11085-016-9694-0 [Crossref]
  47. Jackson RW, Zaleski EM, Poerschke DL, Hazel BT, Begley MR, Levi CG. 47.  2015. Interaction of molten silicates with thermal barrier coatings under temperature gradients. Acta Mater 89:396–407Develops a laser-based thermal gradient test to validate infiltration kinetics and mechanics models. [Google Scholar]
  48. Hasz WC, Borom MP, Johnson CA. 48.  1999. Protected thermal barrier coating composite with multiple coatings US Patent Appl. US5914189 A
  49. Rai AK, Bhattacharya RS, Wolfe DE, Eden TJ. 49.  2010. CMAS-resistant thermal barrier coatings (TBC). Int. J. Appl. Ceram. Technol. 7:662–74 [Google Scholar]
  50. Zhao H, Levi CG, Wadley HNG. 50.  2014. Molten silicate interactions with thermal barrier coatings. Surf. Coat. Technol. 251:74–86 [Google Scholar]
  51. Mohan P, Yao B, Patterson T, Sohn YH. 51.  2009. Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation. Surf. Coat. Technol. 204:797–801 [Google Scholar]
  52. Krämer S, Yang J, Levi CG. 52.  2008. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. J. Am. Ceram. Soc. 91:576–83Identifies the reactive crystallization mechanism leading to significantly reduced melt infiltration in Gd2Zr2O7 versus YSZ TBCs. [Google Scholar]
  53. Richards BT, Young KA, de Francqueville F, Sehr S, Begley MR, Wadley HNG. 53.  2016. Response of ytterbium disilicates–silicon environmental barrier coatings to thermal cycling in water vapor. Acta Mater 106:1–14 [Google Scholar]
  54. Richards BT, Sehr S, de Franqueville F, Begley MR, Wadley HNG. 54.  2016. Fracture mechanisms of ytterbium monosilicate environmental barrier coatings during cyclic thermal exposure. Acta Mater 103:448–60 [Google Scholar]
  55. Krämer S, Yang J, Levi CG, Johnson CA. 55.  2006. Thermochemical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits. J. Am. Ceram. Soc. 89:3167–75 [Google Scholar]
  56. Naraparaju R, Huttermann M, Schulz U, Mechnich P. 56.  2017. Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings. J. Eur. Ceram. Soc. 37:261–70 [Google Scholar]
  57. Tolpygo VK.57.  2014. Examination of CMAS-induced EB-PVD TBC failure Presented at ECI Conference on Thermal Barrier Coatings , , 4th., Irsee, Ger.:
  58. Turkdogan ET.58.  1980. Physical Chemistry of High Temperature Technology New York: Academic
  59. Fluegel A.59.  2007. Glass viscosity calculation based on a global statistical modelling approach. Glass Technol. Eur. J. Glass Sci. Technol. A 48:13–30 [Google Scholar]
  60. Giordano D, Russell JK, Dingwell DB. 60.  2008. Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett. 271:123–34 [Google Scholar]
  61. Wiesner VL, Vempati UK, Bansal NP. 61.  2016. High temperature viscosity of calcium-magnesium-aluminosilicate glass from synthetic sand. Scr. Mater. 124:189–92 [Google Scholar]
  62. Poerschke DL, Barth TL, Levi CG. 62.  2016. Equilibrium relationships between thermal barrier oxides and silicate melts. Acta Mater 120:302–14 [Google Scholar]
  63. Wiesner VL, Bansal NP. 63.  2014. Crystallization kinetics of calcium-magnesium aluminosilicate (CMAS) glass. Surf. Coat. Technol. 259:608–15 [Google Scholar]
  64. Zaleski EM, Ensslen C, Levi CG. 64.  2015. Melting and crystallization of silicate systems relevant to thermal barrier coating damage. J. Am. Ceram. Soc. 98:1642–49 [Google Scholar]
  65. Stott FH, de Wet DJ, Taylor R. 65.  1994. Degradation of thermal-barrier coatings at very high temperatures. MRS Bull 19:46–49 [Google Scholar]
  66. Garces HF, Senturk BS, Padture NP. 66.  2014. In situ Raman spectroscopy studies of high-temperature degradation of thermal barrier coatings by molten silicate deposits. Scr. Mater. 76:29–32 [Google Scholar]
  67. Vidal-Setif MH, Rio C, Boivin D, Lavigne O. 67.  2014. Microstructural characterization of the interaction between 8YPSZ (EB-PVD) thermal barrier coatings and a synthetic CAS. Surf. Coat. Technol. 239:41–48 [Google Scholar]
  68. Chellah N, Vidal-Sétif M-H, Petitjean C, Panteix P-J, Rapin C, Vilasi M. 68.  2012. Calcium-magnesium-alumino-silicate (CMAS) degradation of thermal barrier coatings: solubility of different oxides from ZrO2-Nd2O3 system in a model CMAS. Proc. HTCPM8 Les Embiez, Fr.: [Google Scholar]
  69. Aygun A, Vasiliev AL, Padture NP, Ma XQ. 69.  2007. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater 55:6734–45 [Google Scholar]
  70. Drexler JM, Chen C-H, Gledhill AD, Shinoda K, Sampath S, Padture NP. 70.  2012. Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca-Mg-Al-silicate glass. Surf. Coat. Technol. 206:3911–16 [Google Scholar]
  71. Poerschke DL, Levi CG. 71.  2015. Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS. J. Eur. Ceram. Soc. 35:681–91Identifies how REO1.5 partitioning between fluorite and apatite determines the effectiveness of reactive crystallization. [Google Scholar]
  72. Mechnich P, Braue W. 72.  2013. Volcanic ash–induced decomposition of EB-PVD Gd2Zr2O7 thermal barrier coatings to Gd-oxyapatite, zircon, and Gd, Fe-zirconolite. J. Am. Ceram. Soc. 96:1958–65 [Google Scholar]
  73. Drexler JM, Ortiz AL, Padture NP. 73.  2012. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass. Acta Mater 60:5437–47 [Google Scholar]
  74. Krause AR, Garces HF, Senturk BS, Padture NP. 74.  2014. 2ZrO2 Y2O3 thermal barrier coatings resistant to degradation by molten CMAS. II. Interactions with sand and fly ash. J. Am. Ceram. Soc. 97:3950–57 [Google Scholar]
  75. Eils NK, Mechnich P, Braue W. 75.  2013. Effect of CMAS deposits on MOCVD coatings in the system Y2O3–ZrO2: phase relationships. J. Am. Ceram. Soc. 96:3333–40 [Google Scholar]
  76. Wang H, Bakal A, Zhang X, Tarwater E, Sheng Z, Fergus JW. 76.  2016. CaO-MgO-Al2O3-SiO2 (CMAS) corrosion of Gd2Zr2O7 and Sm2Zr2O7. J. Electrochem. Soc. 163:C643–48 [Google Scholar]
  77. Gao L, Guo H, Gong S, Xu H. 77.  2014. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium–magnesium–alumina–silicate penetration. J. Eur. Ceram. Soc. 34:2553–61 [Google Scholar]
  78. Ramachandran CS, Balasubramanian V, Ananthapadmanabhan PV. 78.  2013. Thermal cycling behaviour of plasma sprayed lanthanum zirconate based coatings under concurrent infiltration by a molten glass concoction. Ceram. Int. 39:1413–31 [Google Scholar]
  79. Schulz U, Braue W. 79.  2013. Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO–MgO–Al2O3–SiO2) and volcanic ash deposits. Surf. Coat. Technol. 235:165–73 [Google Scholar]
  80. Poerschke DL, Seward GGE, Levi CG. 80.  2016. Influence of Yb:Hf ratio on ytterbium hafnate/molten silicate (CMAS) reactivity. J. Am. Ceram. Soc. 99:651–59 [Google Scholar]
  81. Poerschke DL, Barth TL, Fabrichnaya O, Levi CG. 81.  2016. Phase equilibria and crystal chemistry in the calcia–silica–yttria system. J. Eur. Ceram. Soc. 36:1743–54 [Google Scholar]
  82. Poerschke DL, Levi CG. 82.  2017. Phase equilibria in the cacia-gadolinia-silica system. J. Alloys Compd. 695:1397–1404 [Google Scholar]
  83. Qu ZX, Sparks TD, Pan W, Clarke DR. 83.  2011. Thermal conductivity of the gadolinium calcium silicate apatites: effect of different point defect types. Acta Mater 59:3841–50 [Google Scholar]
  84. Risbud AS, Helean KB, Wilding MC, Lu P, Navrotsky A. 84.  2001. Enthalpies of formation of lanthanide oxyapatite phases. J. Mater. Res. 16:2780–83 [Google Scholar]
  85. Andrievskaya ER.85.  2008. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. J. Eur. Ceram. Soc. 28:2363–88 [Google Scholar]
  86. Poerschke DL, Wong KB, Van Sluytman JS, Levi CG. 86.  2013. Thermochemical compatibility of ytterbia-(hafnia/silica) multilayers for environmental barrier coatings. Acta Mater 61:6743–55 [Google Scholar]
  87. Ahlborg NL, Zhu D. 87.  2013. Calcium-magnesium aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings. Surf. Coat. Technol. 237:79–87 [Google Scholar]
  88. Krause AR, Senturk BS, Garces HF, Dwivedi G, Ortiz AL. 88.  et al. 2014. 2ZrO2 Y2O3 thermal barrier coatings resistant to degradation by molten CMAS. I. Optical basicity considerations and processing. J. Am. Ceram. Soc. 97:3943–49 [Google Scholar]
  89. Stolzenburg F, Johnson MT, Lee KN, Jacobson NS, Faber KT. 89.  2015. The interaction of calcium-magnesium-aluminosilicate with ytterbium silicate environmental barrier materials. Surf. Coat. Technol. 284:44–50 [Google Scholar]
  90. Mao H, Hillert M, Selleby M, Sundman B. 90.  2006. Thermodynamic assessment of the CaO–Al2O3-SiO2 system. J. Am. Ceram. Soc. 89:298–308 [Google Scholar]
  91. Mao HH, Fabrichnaya A, Selleby M, Sundman B. 91.  2005. Thermodynamic assessment of the MgO-Al2O3-SiO2 system. J. Mater. Res. 20:975–86 [Google Scholar]
  92. Lakiza S, Fabrichnaya O, Zinkevich M, Aldinger F. 92.  2006. On the phase relations in the ZrO2-YO1.5-AlO1.5 system. J. Alloys Compd. 420:237–45 [Google Scholar]
  93. Mao H, Selleby M, Fabrichnaya O. 93.  2008. Thermodynamic reassessment of the Y2O3-Al2O3-SiO2 system and its subsystems. CALPHAD 32:399–412 [Google Scholar]
  94. Fabrichnaya O, Aldinger F. 94.  2004. Assessment of thermodynamic parameters in the system ZrO2-Y2O3-Al2O3. Z. Metallkd. 95:27–39 [Google Scholar]
  95. Petitjean C, Panteix PJ, Rapin C, Vilasi M, Podor R. 95.  2014. Electrochemical behavior of glass melts: application to corrosion processes. Proc. Mater. Sci. 7:101–10 [Google Scholar]
  96. Duffy JA, Ingram MD. 96.  1971. Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. J. Am. Chem. Soc. 93:6448–54 [Google Scholar]
  97. Ndamka NL, Wellman RG, Nicholls JR. 97.  2016. The degradation of thermal barrier coatings by molten deposits: introducing the concept of basicity. Mater. High Temp. 33:44–50 [Google Scholar]
  98. Craig M, Ndamka NL, Wellman RG, Nicholls JR. 98.  2015. CMAS degradation of EB-PVD TBCs: the effect of basicity. Surf. Coat. Technol. 270:145–53 [Google Scholar]
  99. Duffy JA.99.  2005. Polarisability and polarising power of rare earth ions in glass: an optical basicity assessment. Phys. Chem. Glasses 46:1–6 [Google Scholar]
  100. Dimitrov V, Sakka S. 100.  1996. Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79:1736–40 [Google Scholar]
  101. Zhang YX, Ni HW, Chen Y. 101.  2010. Diffusion data in silicate melts. Diffus. Miner. Melts 72:311–408 [Google Scholar]
  102. Poerschke D, Barth TL, Levi CG. 102.  2014. Transient reaction processes during thermal barrier coating/silicate melt interaction Presented at Mater. Sci. Technol. Meet. Pittsburgh, PA:
  103. Begley M.103.  2012. LayerSlayer multilayer analysis https://engineering.ucsb.edu/∼begley/LayerSlayer.html
  104. Pro JW, Lim RK, Petzold LR, Utz M, Begley MR. 104.  2015. The impact of stochastic microstructures on the macroscopic fracture properties of brick and mortar composites. Extreme Mech. Lett. 5:1–9 [Google Scholar]
  105. Jackson RW, Zaleski E, Hazel BT, Begley M, Levi CG. 105.  2017. Response of molten silicate infiltrated Gd2Zr2O7 thermal barrier coatings to temperature gradients. Acta Mater. In press
  106. Richards BT, Begley MR, Wadley HNG. 106.  2015. Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor. J. Am. Ceram. Soc. 98:4066–75 [Google Scholar]
  107. Donohue EM, Philips NR, Begley MR, Levi CG. 107.  2013. Thermal barrier coating toughness: measurement and identification of a bridging mechanism enabled by segmented microstructure. Mater. Sci. Eng. A 564:324–30 [Google Scholar]
  108. Yang J, Shahid M, Zhao M, Feng J, Wan CL, Pan W. 108.  2016. Physical properties of La2B2O7 (B=Zr, Sn, Hf and Ge) pyrochlore: first-principles calculations. J. Alloys Compd. 663:834–41 [Google Scholar]
  109. Miller RA.109.  1984. Oxidation-based model for thermal barrier coating life. J. Am. Ceram. Soc. 67:517–21 [Google Scholar]
  110. Hillery RV, Pilsner BH, McKnight TS, Cook TS, Hartle MS. 110.  1988. Thermal barrier coating life prediction model development Contract. Rep. (CR) 180807, General Electric/NASA
  111. Steinke T, Sebold D, Mack DE, Vassen R, Stover D. 111.  2010. A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions. Surf. Coat. Technol. 205:2287–95Develops a burner rig thermal gradient test, later used to evaluate novel Al+Ti-modified YSZ TBCs (117). [Google Scholar]
  112. Mack DE.112.  2014. TBC lifetime under thermal gradient cyclic testing with simultaneous CMAS attack: towards prediction of advanced TBC performance Presented at ECI Conference on Thermal Barrier Coatings, 4th Irsee, Ger.:
  113. Zhu DM, Lee KN, Miller RA. 113.  2002. Thermal gradient cyclic behavior of a thermal/environmental barrier coating system on SiC/SiC ceramic matrix composites. Proc. ASME Turbo. Expo. 2002 4: Paper GT2002-30632 171–78 [Google Scholar]
  114. Novak MD, Zok FW. 114.  2011. High-temperature materials testing with full-field strain measurement: experimental design and practice. Rev. Sci. Instrum. 82:115101 [Google Scholar]
  115. Rai AK, Schmitt MP, Bhattacharya RS, Zhu DM, Wolfe DE. 115.  2015. Thermal conductivity and stability of multilayered thermal barrier coatings under high temperature annealing conditions. J. Eur. Ceram. Soc. 35:1605–12 [Google Scholar]
  116. Schmitt MP, Rai AK, Bhattacharya R, Zhu DM, Wolfe DE. 116.  2014. Multilayer thermal barrier coating (TBC) architectures utilizing rare earth doped YSZ and rare earth pyrochlores. Surf. Coat. Technol. 251:56–63 [Google Scholar]
  117. Drexler JM, Aygun A, Li D, Vassen R, Steinke T, Padture NP. 117.  2010. Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation. Surf. Coat. Technol. 204:2683–88 [Google Scholar]
  118. 118. MercoPress. 2011. Volcanic ash cloud reaches New Zealand and Australia MercoPress, Montevideo, Urug. http://en.mercopress.com/2011/06/13/volcanic-ash-cloud-reaches-new-zealand-and-australia
  119. Bansal NP, Choi SR. 119.  2015. Properties of CMAS glass from desert sand. Ceram. Int. 41:3901–9 [Google Scholar]
  120. Grant KM.120.  2010. The degradation of environmental barrier coatings by molten silicates: mechanisms and mitigation PhD Diss. Univ. Calif. Santa Barbara:
  121. Zaleski E.121.  2013. Mechanisms and mitigation of CMAS attack on thermal barrier coatings PhD Diss. Univ. Calif. Santa Barbara:
/content/journals/10.1146/annurev-matsci-010917-105000
Loading
/content/journals/10.1146/annurev-matsci-010917-105000
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error