1932

Abstract

Metal additive manufacturing (AM) works on the principle of incremental layer-by-layer material consolidation, facilitating the fabrication of objects of arbitrary complexity through the controlled melting and resolidification of feedstock materials by using high-power energy sources. The focus of metal AM is to produce complex-shaped components made of metals and alloys to meet demands from various industrial sectors such as defense, aerospace, automotive, and biomedicine. Metal AM involves a complex interplay between multiple modes of energy and mass transfer, fluid flow, phase change, and microstructural evolution. Understanding the fundamental physics of these phenomena is a key requirement for metal AM process development and optimization. The effects of material characteristics and processing conditions on the resulting epitaxy and microstructure are of critical interest in metal AM. This article reviews various metal AM processes in the context of fabricating metal and alloy parts through epitaxial solidification, with material systems ranging from pure-metal and prealloyed to multicomponent materials. The aim is to cover the relationships between various AM processes and the resulting microstructures in these material systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070115-031728
2016-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/matsci/46/1/annurev-matsci-070115-031728.html?itemId=/content/journals/10.1146/annurev-matsci-070115-031728&mimeType=html&fmt=ahah

Literature Cited

  1. Kuech T.1.  2014. Handbook of Crystal Growth: Thin Films and Epitaxy Amsterdam: Elsevier
  2. Rakovan J.2.  2006. Epitaxy. Rocks Miner. Mag. 81:317–20 [Google Scholar]
  3. Basavaraj DR, Biyani CS, Browning AJ, Cartledge JJ. 3.  2007. The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones. EAU-EBU Update Ser. 5:126–36 [Google Scholar]
  4. Teal G, Sparks M, Buehler E. 4.  1951. Growth of germanium single crystals containing pn junctions. Phys. Rev. 81:637 [Google Scholar]
  5. Cho A.5.  1983. Growth of III–V semiconductors by molecular beam epitaxy and their properties. Thin Solid Films 100:291–317 [Google Scholar]
  6. Beaman JJ, Deckard CR. 6.  1990. Selective laser sintering with assisted powder handling US Patent 4938816 A
  7. Noorani R.7.  2006. Rapid Prototyping: Principles and Applications Hoboken, NJ: John Wiley & Sons
  8. Venuvinod PK, Ma W. 8.  2013. Rapid Prototyping: Laser-Based and Other Technologies Berlin: Springer Science & Business Media
  9. Xiao B, Zhang Y. 9.  2008. Numerical simulation of direct metal laser sintering of single-component powder on top of sintered layers. J. Manuf. Sci. Eng. 130:041002 [Google Scholar]
  10. Acharya R, Bansal R, Gambone JJ, Das S. 10.  2014. A coupled thermal, fluid flow, and solidification model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (part I). Metall. Mater. Trans. B 45:2247–61 [Google Scholar]
  11. Dai K, Shaw L. 11.  2004. Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Mater. 52:69–80 [Google Scholar]
  12. He X, Mazumder J. 12.  2007. Transport phenomena during direct metal deposition. J. Appl. Phys. 101:053113 [Google Scholar]
  13. Park J-W, Babu SS, Vitek JM, Kenik EA, David SA. 13.  2003. Stray grain formation in single crystal Ni-base superalloy welds. J. Appl. Phys. 94:4203–9 [Google Scholar]
  14. Gäumann M, Henry S, Cleton F, Wagniere J-D, Kurz W. 14.  1999. Epitaxial laser metal forming: analysis of microstructure formation. Mater. Sci. Eng. A 271:232–41 [Google Scholar]
  15. Babu S, David S, Park J, Vitek J. 15.  2004. Joining of nickel base superalloy single crystals. Sci. Technol. Weld. Join. 9:1–12 [Google Scholar]
  16. Gäumann M, Bezencon C, Canalis P, Kurz W. 16.  2001. Single-crystal laser deposition of superalloys: processing–microstructure maps. Acta Mater. 49:1051–62 [Google Scholar]
  17. Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J. 17.  et al. 2012. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28:1–14 [Google Scholar]
  18. Das S.18.  2003. Physical aspects of process control in selective laser sintering of metals. Adv. Eng. Mater. 5:701–11 [Google Scholar]
  19. Grong Ø. 19.  1994. Metallurgical Modelling of Welding London: Inst. Mater.
  20. Balla VK, Bodhak S, Bose S, Bandyopadhyay A. 20.  2010. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater. 6:3349–59 [Google Scholar]
  21. 21. ASTM 2012. Standard terminology for additive manufacturing technologies Stand. F2792-12a, ASTM
  22. Gu D, Shen Y, Lu Z. 22.  2009. Microstructural characteristics and formation mechanism of direct laser-sintered Cu-based alloys reinforced with Ni particles. Mater. Des. 30:2099–107 [Google Scholar]
  23. Kaiser T, Albrecht GJ. 23.  2007. Industrial disk lasers for micro material processing—compact reliable systems conquer the market. Laser Technik J. 4:54–57 [Google Scholar]
  24. Kruth J-P, Wang X, Laoui T, Froyen L. 24.  2003. Lasers and materials in selective laser sintering. Assembly Autom. 23:357–71 [Google Scholar]
  25. Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. 25.  1995. Direct selective laser sintering of metals. Rapid Prototyp. J. 1:26–36 [Google Scholar]
  26. Das S, Beaman JJ, Wohlert M, Bourell DL. 26.  1998. Direct laser freeform fabrication of high performance metal components. Rapid Prototyp. J. 4:112–17 [Google Scholar]
  27. Liu J, Ryneson ML. 27.  2006. Blended powder solid-supersolidus liquid phase sintering US Patent 20060083652 A1
  28. Kruth J-P, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. 28.  2005. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11:26–36 [Google Scholar]
  29. Buchbinder D, Schleifenbaum H, Heidrich S, Meiners W, Bültmann J. 29.  2011. High power selective laser melting (HP SLM) of aluminum parts. Phys. Procedia 12:271–78 [Google Scholar]
  30. Becker D, Wissenbach K. 30.  2009. Additive manufacturing of copper components Annu. Rep., Fraunhofer ILT. http://www.ilt.fraunhofer.de/content/dam/ilt/en/documents/product_and_services/laser_material_processing/HO_Additive_Manufacturing_of_Copper_Components_with_SLM_2011.pdf
  31. Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S. 31.  et al. 2011. Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomater. 7:1398–406 [Google Scholar]
  32. Verhaeghe F, Craeghs T, Heulens J, Pandelaers L. 32.  2009. A pragmatic model for selective laser melting with evaporation. Acta Mater. 57:6006–12 [Google Scholar]
  33. Dutta B, Palaniswamy S, Choi J, Song LJ, Mazumder J. 33.  2011. Additive manufacturing by direct metal deposition. Adv. Mater. Process. 169:533–36 [Google Scholar]
  34. Schwendner KI, Banerjee R, Collins PC, Brice CA, Fraser HL. 34.  2001. Direct laser deposition of alloys from elemental powder blends. Scr. Mater. 45:1123–29 [Google Scholar]
  35. Liu W, Dupont J. 35.  2003. In-situ reactive processing of nickel aluminides by laser-engineered net shaping. Metall. Mater. Trans. A 34:2633–41 [Google Scholar]
  36. Pratt P, Felicelli S, Wang L, Hubbard C. 36.  2008. Residual stress measurement of laser-engineered net shaping AISI 410 thin plates using neutron diffraction. Metall. Mater. Trans. A 39:3155–63 [Google Scholar]
  37. Ding D, Pan Z, Cuiuri D, Li H. 37.  2015. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int. J. Adv. Manuf. Technol. 81:465–81 [Google Scholar]
  38. Mazumder J, Morgan D, Skszek TW, Lowney M. 38.  2010. Direct metal deposition apparatus utilizing rapid-response diode laser source US Patent 7765022 B2
  39. Taminger KM, Hafley RA. 39.  2006. Electron beam freeform fabrication (EBF3) for cost effective near-net shape manufacturing NATO Unclassif. Pap., Langley Res. Cent., NASA [Google Scholar]
  40. Weman K.40.  2012. Welding Processes Handbook Oxford, UK: Woodhead
  41. Fischer P, Leber H, Romano V, Weber H, Karapatis N. 41.  et al. 2004. Microstructure of near-infrared pulsed laser sintered titanium samples. Appl. Phys. A 78:1219–27 [Google Scholar]
  42. Santos E, Osakada K, Shiomi M, Kitamura Y, Abe F. 42.  2004. Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting. Proc. Inst. Mech. Eng. C 218:711–19 [Google Scholar]
  43. Krishna BV, Bose S, Bandyopadhyay A. 43.  2007. Low stiffness porous Ti structures for load-bearing implants. Acta Biomater. 3:997–1006 [Google Scholar]
  44. Xue W, Krishna BV, Bandyopadhyay A, Bose S. 44.  2007. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 3:1007–18 [Google Scholar]
  45. Khan M, Dickens P. 45.  2010. Selective laser melting (SLM) of pure gold. Gold Bull. 43:114–21 [Google Scholar]
  46. Pogson S, Fox P, Sutcliffe C, O'Neill W. 46.  2003. The production of copper parts using DMLR. Rapid Prototyp. J. 9:334–43 [Google Scholar]
  47. Ramirez D, Murr L, Martinez E, Hernandez D, Martinez J. 47.  et al. 2011. Novel precipitate–microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater. 59:4088–99 [Google Scholar]
  48. Murr L.48.  2015. Metallurgy of additive manufacturing: examples from electron beam melting. Addit. Manuf. 5:40–53 [Google Scholar]
  49. Louvis E, Fox P, Sutcliffe CJ. 49.  2011. Selective laser melting of aluminium components. J. Mater. Proc. Technol. 211:275–84 [Google Scholar]
  50. Singh S, Roy D, Mitra R, Rao RS, Dayal R. 50.  et al. 2009. Studies on laser sintering of mechanically alloyed Al50Ti40Si10 composite. Mater. Sci. Eng. A 501:242–47 [Google Scholar]
  51. Brandl E, Heckenberger U, Holzinger V, Buchbinder D. 51.  2012. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34:159–69 [Google Scholar]
  52. Pinto MA, Cheung N, Ierardi MCF, Garcia A. 52.  2003. Microstructural and hardness investigation of an aluminum–copper alloy processed by laser surface melting. Mater. Charact. 50:249–53 [Google Scholar]
  53. Gaytan S, Murr L, Martinez E, Martinez J, Machado B. 53.  et al. 2010. Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metall. Mater. Trans. A 41:3216–27 [Google Scholar]
  54. Takaichi A, Nakamoto T, Joko N, Nomura N, Tsutsumi Y. 54.  et al. 2013. Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications. J. Mech. Behav. Biomed. Mater. 21:67–76 [Google Scholar]
  55. Frenk A, Kurz W. 55.  1993. High speed laser cladding: solidification conditions and microstructure of a cobalt-based alloy. Mater. Sci. Eng. A 173:339–42 [Google Scholar]
  56. D'Oliveira ASC, da Silva PSC, Vilar RM. 56.  2002. Microstructural features of consecutive layers of Stellite 6 deposited by laser cladding. Surf. Coat. Technol. 153:203–9 [Google Scholar]
  57. Mingxi L, Yizhu H, Guoxiong S. 57.  2004. Microstructure and wear resistance of laser clad cobalt-based alloy multi-layer coatings. Appl. Surf. Sci. 230:201–6 [Google Scholar]
  58. Lin W, Chen C. 58.  2006. Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding. Surf. Coat. Technol. 200:4557–63 [Google Scholar]
  59. Ram GJ, Esplin C, Stucker B. 59.  2008. Microstructure and wear properties of LENS® deposited medical grade CoCrMo. J. Mater. Sci. Mater. Med. 19:2105–11 [Google Scholar]
  60. Tang Y, Loh H, Wong Y, Fuh J, Lu L, Wang X. 60.  2003. Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts. J. Mater. Proc. Technol. 140:368–72 [Google Scholar]
  61. Bhattacharya S, Dinda G, Dasgupta A, Natu H, Dutta B, Mazumder J. 61.  2011. Microstructural evolution and mechanical, and corrosion property evaluation of Cu–30Ni alloy formed by direct metal deposition process. J. Alloys Compd. 509:6364–73 [Google Scholar]
  62. Gu D, Shen Y. 62.  2009. Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater. Des. 30:2903–10 [Google Scholar]
  63. O'Neill W, Sutcliffe C, Morgan R, Landsborough A, Hon K. 63.  1999. Investigation on multi-layer direct metal laser sintering of 316L stainless steel powder beds. CIRP Ann. Manuf. Technol. 48:151–54 [Google Scholar]
  64. Pohl H, Simchi A, Issa M, Dias HC. 64.  2001. Thermal stresses in direct metal laser sintering Presented at Solid Freeform Fabrication Symposium, 12th, Austin
  65. Simchi A, Pohl H. 65.  2003. Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater. Sci. Eng. A 359:119–28 [Google Scholar]
  66. Simchi A, Asgharzadeh H. 66.  2004. Densification and microstructural evaluation during laser sintering of M2 high speed steel powder. Mater. Sci. Technol. 20:1462–68 [Google Scholar]
  67. Simchi A.67.  2006. Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater. Sci. Eng. A 428:148–58 [Google Scholar]
  68. Morgan R, Papworth A, Sutcliffe C, Fox P, O'Neill W. 68.  2002. High density net shape components by direct laser re-melting of single-phase powders. J. Mater. Sci. 37:3093–100 [Google Scholar]
  69. Morgan R, Sutcliffe C, O'Neill W. 69.  2004. Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives. J. Mater. Sci. 39:1195–205 [Google Scholar]
  70. Xie J, Fox P, O'Neill W, Sutcliffe C. 70.  2005. Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels. J. Mater. Proc. Technol. 170:516–23 [Google Scholar]
  71. Rombouts M, Kruth J-P, Froyen L, Mercelis P. 71.  2006. Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann. Manuf. Technol. 55:187–92 [Google Scholar]
  72. Yadroitsev I, Bertrand P, Smurov I. 72.  2007. Parametric analysis of the selective laser melting process. Appl. Surf. Sci. 253:8064–69 [Google Scholar]
  73. Kruth J-P, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B. 73.  2004. Selective laser melting of iron-based powder. J. Mater. Proc. Technol. 149:616–22 [Google Scholar]
  74. Xue Y, Pascu A, Horstemeyer M, Wang L, Wang P. 74.  2010. Microporosity effects on cyclic plasticity and fatigue of LENS™-processed steel. Acta Mater. 58:4029–38 [Google Scholar]
  75. Zheng B, Zhou Y, Smugeresky J, Schoenung J, Lavernia E. 75.  2008. Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping. Part II. Experimental investigation and discussion. Metall. Mater. Trans. A 39:2237–45 [Google Scholar]
  76. Wanjara P, Brochu M, Jahazi M. 76.  2007. Electron beam freeforming of stainless steel using solid wire feed. Mater. Des. 28:2278–86 [Google Scholar]
  77. Pollock TM, Tin S. 77.  2006. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propul. Power 22:361–74 [Google Scholar]
  78. Das S, Wohlert M, Beaman JJ, Bourell DL. 78.  1998. Producing metal parts with selective laser sintering/hot isostatic pressing. JOM 50:17–20 [Google Scholar]
  79. Das S, Fuesting TP, Danyo G, Brown LE, Beaman JJ. 79.  et al. 1998. Direct Laser Fabrication of Gas Turbine Engine Component—Microstructure and Properties. Part I. Presented at International Solid Freeform Fabrication Symposium, 9th, Austin
  80. Sateesh N, Kumar GM, Prasad K, Srinivasa C, Vinod A. 80.  2014. Microstructure and mechanical characterization of laser sintered Inconel-625 superalloy. Procedia Mater. Sci. 5:772–79 [Google Scholar]
  81. Amato K, Gaytan S, Murr L, Martinez E, Shindo P. 81.  et al. 2012. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 60:2229–39 [Google Scholar]
  82. Wang Z, Guan K, Gao M, Li X, Chen X, Zeng X. 82.  2012. The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J. Alloys Compd. 513:518–23 [Google Scholar]
  83. Jia Q, Gu D. 83.  2014. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties. J. Alloys Compd. 585:713–21 [Google Scholar]
  84. Mumtaz KA, Erasenthiran P, Hopkinson N. 84.  2008. High density selective laser melting of Waspaloy®. J. Mater. Proc. Technol. 195:77–87 [Google Scholar]
  85. Ramos JA, Murphy J, Lappo K, Wood K, Bourell DL, Beaman JJ. 85.  2002. Single-layer deposits of nickel base superalloy by means of selective laser melting. Solid Freeform Fabrication Proceedings211–23 Boston: Kluwer Acad. [Google Scholar]
  86. Carter LN, Martin C, Withers PJ, Attallah MM. 86.  2014. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J. Alloys Compd. 615:338–47 [Google Scholar]
  87. Acharya R, Das S. 87.  2015. Additive manufacturing of IN100 superalloy through scanning laser epitaxy for turbine engine hot-section component repair: process development, modeling, microstructural characterization, and process control. Metall. Mater. Trans. A 46:3864–75 [Google Scholar]
  88. Acharya R, Bansal R, Gambone JJ, Kaplan MA, Fuchs GE. 88.  et al. 2015. Additive manufacturing and characterization of René 80 superalloy processed through scanning laser epitaxy for turbine engine hot-section component repair. Adv. Eng. Mater. 17:942–50 [Google Scholar]
  89. Basak A, Acharya R, Das S. 89.  2015. Computational modeling and experimental validation of melting and solidification in equiaxed superalloys processed through scanning laser epitaxy Presented at International Solid Freeform Fabrication Symposium, Austin
  90. Das S, Acharya R, Bansal R, Gambone JJ. 90.  2015. Scanning laser epitaxy process development for additive manufacturing of turbine engine hot-section components Presented at TMS Annual Meeting and Exhibition, 144th, Orlando, FL
  91. Acharya R, Bansal R, Gambone JJ, Das S. 91.  2014. A microstructure evolution model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (part II). Metall. Mater. Trans. B 45:2279–90 [Google Scholar]
  92. Basak A, Acharya R, Das S. 92.  2015. Modeling and characterization of microstructure evolution in single crystal superalloys processed through scanning laser epitaxy. Presented at International Solid Freeform Fabrication Symposium, Austin
  93. Dinda G, Dasgupta A, Mazumder J. 93.  2009. Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater. Sci. Eng. A 509:98–104 [Google Scholar]
  94. Santos EC, Kida K, Carroll P, Vilar R. 94.  2011. Optimization of laser deposited Ni-based single crystal superalloys microstructure. Adv. Mater. Res. 154:1405–14 [Google Scholar]
  95. Liu Z, Qi H. 95.  2015. Effects of processing parameters on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy. J. Mater. Process. Technol. 216:19–27 [Google Scholar]
  96. Zhao X, Chen J, Lin X, Huang W. 96.  2008. Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater. Sci. Eng. A 478:119–24 [Google Scholar]
  97. Li J, Wang H. 97.  2010. Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy René 41 by laser melting deposition manufacturing. Mater. Sci. Eng. A 527:4823–29 [Google Scholar]
  98. Liu W, DuPont J. 98.  2005. Direct laser deposition of a single-crystal Ni3Al-based IC221W alloy. Metall. Mater. Trans. A 36:3397–406 [Google Scholar]
  99. Bezencon C, Schnell A, Kurz W. 99.  2003. Epitaxial deposition of MCrAlY coatings on a Ni-base superalloy by laser cladding. Scr. Mater. 49:705–9 [Google Scholar]
  100. Vilar R, Santos E, Ferreira P, Franco N, Da Silva R. 100.  2009. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding. Acta Mater. 57:5292–302 [Google Scholar]
  101. Bi G, Sun C-N, Chen H-c, Ng FL, Ma CCK. 101.  2014. Microstructure and tensile properties of superalloy IN100 fabricated by micro-laser aided additive manufacturing. Mater. Des. 60:401–8 [Google Scholar]
  102. Krause S. 102.  2001. An advanced repair technique: laser powder build-up welding. Sulzer Tech. Rev. 4:4–6 [Google Scholar]
  103. Ramsperger M, Mújica Roncery L, Lopez-Galilea I, Singer RF, Theisen W, Körner C. 103.  2015. Solution heat treatment of the single crystal nickel-base superalloy CMSX-4 fabricated by selective electron beam melting. Adv. Eng. Mater. 17:1486–93 [Google Scholar]
  104. Clark D, Bache M, Whittaker M. 104.  2008. Shaped metal deposition of a nickel alloy for aero engine applications. J. Mater. Proc. Technol. 203:439–48 [Google Scholar]
  105. Horii T, Kirihara S, Miyamoto Y. 105.  2009. Freeform fabrication of superalloy objects by 3D micro welding. Mater. Des. 30:1093–97 [Google Scholar]
  106. Niinomi M.106.  2003. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mater. 4:445–54 [Google Scholar]
  107. Das S, Wohlert M, Beaman JJ, Bourell DL. 107.  1999. Processing of titanium net shapes by SLS/HIP. Mater. Des. 20:115–21 [Google Scholar]
  108. Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth J-P. 108.  2010. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58:3303–12 [Google Scholar]
  109. Blackwell P, Wisbey A. 109.  2005. Laser-aided manufacturing technologies; their application to the near-net shape forming of a high-strength titanium alloy. J. Mater. Proc. Technol. 170:268–76 [Google Scholar]
  110. Kobryn P, Semiatin S. 110.  2003. Microstructure and texture evolution during solidification processing of Ti–6Al–4V. J. Mater. Proc. Technol. 135:330–39 [Google Scholar]
  111. Wu X, Liang J, Mei J, Mitchell C, Goodwin P, Voice W. 111.  2004. Microstructures of laser-deposited Ti–6Al–4V. Mater. Des. 25:137–44 [Google Scholar]
  112. Ahsan MN, Pinkerton AJ, Moat RJ, Shackleton J. 112.  2011. A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti–6Al–4V powders. Mater. Sci. Eng. A 528:7648–57 [Google Scholar]
  113. Brandl E, Schoberth A, Leyens C. 113.  2012. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Mater. Sci. Eng. A 532:295–307 [Google Scholar]
  114. Puebla K, Murr LE, Gaytan SM, Martinez E, Medina F, Wicker RB. 114.  2012. Effect of melt scan rate on microstructure and macrostructure for electron beam melting of Ti-6Al-4V. Sci. Res. 3:259–64 [Google Scholar]
  115. Antonysamy A, Meyer J, Prangnell P. 115.  2013. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti–6Al–4V by selective electron beam melting. Mater. Charact. 84:153–68 [Google Scholar]
  116. Facchini L, Magalini E, Robotti P, Molinari A. 116.  2009. Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp. J. 15:171–78 [Google Scholar]
  117. Gockel J, Beuth J, Taminger K. 117.  2014. Integrated control of solidification microstructure and melt pool dimensions in electron beam wire feed additive manufacturing of Ti-6Al-4V. Addit. Manuf. 1:119–26 [Google Scholar]
  118. Baufeld B, Van der Biest O, Gault R. 118.  2010. Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties. Mater. Des. 31:S106–11 [Google Scholar]
  119. Wang F, Williams S, Rush M. 119.  2011. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int. J. Adv. Manuf. Technol. 57:597–603 [Google Scholar]
  120. Baufeld B, Brandl E, Van der Biest O. 120.  2011. Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition. J. Mater. Proc. Technol. 211:1146–58 [Google Scholar]
  121. Martina F, Mehnen J, Williams SW, Colegrove P, Wang F. 121.  2012. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V. J. Mater. Proc. Technol. 212:1377–86 [Google Scholar]
  122. Zhu H, Lu L, Fuh J. 122.  2003. Development and characterisation of direct laser sintering Cu-based metal powder. J. Mater. Proc. Technol. 140:314–17 [Google Scholar]
  123. Simchi A, Petzoldt F, Pohl H. 123.  2003. On the development of direct metal laser sintering for rapid tooling. J. Mater. Proc. Technol. 141:319–28 [Google Scholar]
  124. Gu D, Shen Y, Fang S, Xiao J. 124.  2007. Metallurgical mechanisms in direct laser sintering of Cu–CuSn–CuP mixed powder. J. Alloys Compd. 438:184–89 [Google Scholar]
  125. Chen X, Xie J, Fox P. 125.  2004. Direct laser remelting of iron with addition of boron. Mater. Sci. Technol. 20:715–19 [Google Scholar]
  126. Simchi A, Pohl H. 126.  2004. Direct laser sintering of iron–graphite powder mixture. Mater. Sci. Eng. A 383:191–200 [Google Scholar]
  127. Kruth J-P, Kumar S, Van Vaerenbergh J. 127.  2005. Study of laser-sinterability of ferro-based powders. Rapid Prototyp. J. 11:287–92 [Google Scholar]
  128. Wang Y, Bergström J, Burman C. 128.  2006. Characterization of an iron-based laser sintered material. J. Mater. Proc. Technol. 172:77–87 [Google Scholar]
  129. Gu D, Shen Y. 129.  2009. Effects of processing parameters on consolidation and microstructure of W–Cu components by DMLS. J. Alloys Compd. 473:107–15 [Google Scholar]
  130. Qu H, Wang H. 130.  2007. Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys. Mater. Sci. Eng. A 466:187–94 [Google Scholar]
  131. Lin X, Yue T, Yang H, Huang W. 131.  2009. Phase evolution in laser rapid forming of compositionally graded Ti–Ni alloys. J. Eng. Mater. Technol. 131:041002 [Google Scholar]
  132. Collins P, Banerjee R, Banerjee S, Fraser H. 132.  2003. Laser deposition of compositionally graded titanium–vanadium and titanium–molybdenum alloys. Mater. Sci. Eng. A 352:118–28 [Google Scholar]
  133. Anderson T, DuPont J, DebRoy T. 133.  2010. Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling. Acta Mater. 58:1441–54 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070115-031728
Loading
/content/journals/10.1146/annurev-matsci-070115-031728
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error