1932

Abstract

A successful working model for nanoporosity evolution during dealloying was introduced 15 years ago. Since that time, the field has rapidly expanded, with research groups from across the world studying dealloying and dealloyed materials. Dealloying has grown into a rich field, with some groups focusing on fundamentals and mechanisms of dealloying, other groups creating new porous metals and alloys, and even more groups studying their properties. Dealloying was originally considered only in the context of corrosion, but now it is considered a facile self-organization technique to fabricate high-surface-area, bicontinuous nanoporous materials. Owing to their high interfacial area and the versatility of metallic materials, nanoporous metals have found application in catalysis, sensing, actuation, electrolytic and ultracapacitor materials, high-temperature templates/scaffolds, battery anodes, and radiation damage–tolerant materials. In this review, we discuss the fundamental materials principles underlying the formation of dealloyed materials and then look at two major applications: catalysis and nanomechanics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070115-031739
2016-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/matsci/46/1/annurev-matsci-070115-031739.html?itemId=/content/journals/10.1146/annurev-matsci-070115-031739&mimeType=html&fmt=ahah

Literature Cited

  1. Calvert C, Johnson R. 1.  1866. Action of acids upon metals and alloys. J. Chem. Soc. 19:4434–54 [Google Scholar]
  2. Pickering HW.2.  1968. Volume diffusion during anodic dissolution of a binary alloy. J. Electrochem. Soc. 115:2143–47 [Google Scholar]
  3. Forty AJ.3.  1979. Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282:597–98 [Google Scholar]
  4. Snyder J, Fujita T, Chen MW, Erlebacher J. 4.  2010. Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat. Mater. 9:904–7 [Google Scholar]
  5. Xu C, Li Y, Tian F, Ding Y. 5.  2010. Dealloying to nanoporous silver and its implementation as a template material for construction of nanotubular mesoporous bimetallic nanostructures. Chem. Phys. Chem. 11:153320–28 [Google Scholar]
  6. Sun L, Chien C-L, Searson PC. 6.  2004. Fabrication of nanoporous nickel by electrochemical dealloying. Chem. Mater. 16:163125–29 [Google Scholar]
  7. Hayes JR, Hodge AM, Biener J, Hamza AV, Sieradzki K. 7.  2006. Monolithic nanoporous copper by dealloying Mn-Cu. J. Mater. Res. 21:102611–16 [Google Scholar]
  8. Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K. 8.  2001. Evolution of nanoporosity in dealloying. Nature 410:6827450–53 [Google Scholar]
  9. Lechtman H.9.  1984. Pre-Columbian surface metallurgy. Sci. Am. 250:656–63 [Google Scholar]
  10. Masing VG.10.  1921. On the theory of resistance limits in mixed crystals. Anorg. Allg. Chem. 118:1293–308 [Google Scholar]
  11. Erlebacher J, Newman RC, Sieradzki K. 11.  2012. Fundamental physics and chemistry of nanoporosity evolution during dealloying. See Ref. 12 11–29 Cambridge, UK: RSC [Google Scholar]
  12. Wittstock A, Biener J, Erlebacher J, Baumer M. 12.  2012. Nanoporous Gold Cambridge, UK: RSC
  13. Erlebacher J, Seshadri R. 13.  2009. Hard materials with tunable porosity. MRS Bull. 34:8561–68 [Google Scholar]
  14. Erlebacher J, Sieradzki K. 14.  2003. Pattern formation during dealloying. Scr. Mater. 49:10991–96 [Google Scholar]
  15. Erlebacher J.15.  2004. An atomistic description of dealloying. J. Electrochem. Soc. 151:10C614 [Google Scholar]
  16. Snyder J, Erlebacher J. 16.  2010. Kinetics of crystal etching limited by terrace dissolution. J. Electrochem. Soc. 157:3C125 [Google Scholar]
  17. Dona JM, Gonzalez-Velasco J. 17.  1993. Mechanism of surface diffusion of gold adatoms in contact with an electrolytic solution. J. Phys. Chem. 97:184714–19 [Google Scholar]
  18. Dieluweit S, Giesen M. 18.  2002. Determination of step and kink energies on Au(100) electrodes in sulfuric acid. J. Electroanal. Chem. 121:27–42 [Google Scholar]
  19. Rost MJ, van Gastel R, Frenken JWM. 19.  2000. Anomalous shape and decay of islands on Au(110). Phys. Rev. Lett. 84:91966–69 [Google Scholar]
  20. Alonso C, Salvarezza RC, Vara JM, Arvia AJ, Vazquez L. 20.  et al. 1990. The evaluation of surface diffusion coefficients of gold and platinum atoms at electrochemical interfaces from combined STM-SEM imaging and electrochemical techniques. J. Electrochem. Soc. 137:72161–66 [Google Scholar]
  21. Vazquez L, Bartolome A, Baro AM, Alonso C, Salvarezza RC, Arvia AJ. 21.  1989. STM-SEM combination study on the electrochemical growth mechanism and structure of gold overlayers. Surf. Sci. 215:1–2171–89 [Google Scholar]
  22. Pickering HW, Byrne PJ. 22.  1971. On preferential anodic dissolution of alloys in the low-current region and the nature of the critical potential. J. Electrochem. Soc. 118:2209–15 [Google Scholar]
  23. Sieradzki K, Corderman RR, Shukla K, Newman RC. 23.  1989. Computer simulations of corrosion: selective dissolution of binary alloys. Philos. Mag. A 59:4713–46 [Google Scholar]
  24. Artymowicz DM, Erlebacher J, Newman RC. 24.  2009. Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold. Philos. Mag. 89:211663–93 [Google Scholar]
  25. Rugolo J, Erlebacher J, Sieradzki K. 25.  2006. Length scales in alloy dissolution and measurement of absolute interfacial free energy. Nat. Mater. 5:12946–49 [Google Scholar]
  26. Dursun A, Pugh DV, Corcoran SG. 26.  2003. A steady-state method for determining the dealloying critical potential. Electrochem. Solid State Lett. 6:8B32 [Google Scholar]
  27. Tang L, Han B, Persson K, Friesen C, He T. 27.  et al. 2010. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 132:2596–600 [Google Scholar]
  28. McCue I, Snyder J, Li X, Chen Q, Sieradzki K, Erlebacher J. 28.  2012. Apparent inverse Gibbs-Thomson effect in dealloyed nanoporous nanoparticles. Phys. Rev. Lett. 108:22225503 [Google Scholar]
  29. Snyder J, McCue I, Livi K, Erlebacher J. 29.  2012. Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J. Am. Chem. Soc. 134:208633–45 [Google Scholar]
  30. Li X, Chen Q, McCue I, Snyder J, Crozier P. 30.  et al. 2014. Dealloying of noble-metal alloy nanoparticles. Nano Lett. 14:52569–77 [Google Scholar]
  31. Baldizzone C, Gan L, Hodnik N, Keeley GP, Kostka A. 31.  et al. 2015. Stability of dealloyed porous Pt/Ni nanoparticles. ACS Catal. 5:95000–7 [Google Scholar]
  32. Kertis F, Snyder J, Govada L, Khurshid S, Chayen N, Erlebacher J. 32.  2010. Structure/processing relationships in the fabrication of nanoporous gold. JOM 62:650–56 [Google Scholar]
  33. Ding Y, Kim YJ, Erlebacher J. 33.  2004. Nanoporous gold leaf: “ancient technology”/advanced material. Adv. Mater. 16:211897–900 [Google Scholar]
  34. Qian LH, Chen MW. 34.  2007. Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 91:8083105 [Google Scholar]
  35. Ye X-L, Lu N, Li X-J, Du K, Tan J, Jin H-J. 35.  2014. Primary and secondary dealloying of Au(Pt)-Ag: structural and compositional evolutions, and volume shrinkage. J. Electrochem. Soc. 161:12C517–26 [Google Scholar]
  36. Herring C.36.  1950. Effect of change of scale on sintering phenomena. J. Appl. Phys. 21:4301–3 [Google Scholar]
  37. Mendoza R, Thornton K, Savin I, Voorhees PW. 37.  2006. The evolution of interfacial topology during coarsening. Acta Mater. 54:3743–50 [Google Scholar]
  38. Chen-Wiegart YCK, Wang S, Lee WK, McNulty I, Voorhees PW, Dunand DC. 38.  2013. In situ imaging of dealloying during nanoporous gold formation by transmission X-ray microscopy. Acta Mater. 61:41118–25 [Google Scholar]
  39. Chen-Wiegart YCK, Wang S, Chu YS, Liu W, McNulty I. 39.  et al. 2012. Structural evolution of nanoporous gold during thermal coarsening. Acta Mater. 60:124972–81 [Google Scholar]
  40. Chen YCK, Chu YS, Yi J, McNulty I, Shen Q. 40.  et al. 2010. Morphological and topological analysis of coarsened nanoporous gold by X-ray nanotomography. Appl. Phys. Lett. 96:4213–15 [Google Scholar]
  41. Chen-Wiegart YCK, Wang S, McNulty I, Dunand DC. 41.  2013. Effect of Ag-Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation. Acta Mater. 61:155561–70 [Google Scholar]
  42. Chen-Wiegart YK, Wada T, Butakov N, Xiao X, De Carlo F. 42.  et al. 2013. 3D morphological evolution of porous titanium by X-ray micro- and nano-tomography. J. Mater. Res. 28:172444–52 [Google Scholar]
  43. Erlebacher J, McCue I. 43.  2012. Geometric characterization of nanoporous metals. Acta Mater. 60:176164–74 [Google Scholar]
  44. Fujita T, Qian LH, Inoke K, Erlebacher J, Chen MW. 44.  2008. Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett. 92:2590–93 [Google Scholar]
  45. Erlebacher J.45.  2011. Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys. Rev. Lett. 106:22225504 [Google Scholar]
  46. Kolluri K, Demkowicz MJ. 46.  2011. Coarsening by network restructuring in model nanoporous gold. Acta Mater. 59:207645–53 [Google Scholar]
  47. Rösner H, Parida S, Kramer D, Volkert CA, Weissmüller J. 47.  2007. Reconstructing a nanoporous metal in three dimensions: an electron tomography study of dealloyed gold leaf. Adv. Eng. Mater. 9:7535–41 [Google Scholar]
  48. Snyder J, Asanithi P, Dalton AB, Erlebacher J. 48.  2008. Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater. 20:244883–86 [Google Scholar]
  49. Vega AA, Newman RC. 49.  2013. Nanoporous metals fabricated through electrochemical dealloying of Ag-Au-Pt with systematic variation of Au:Pt ratio. J. Electrochem. Soc. 161:1C1–10 [Google Scholar]
  50. Chen Q, Sieradzki K. 50.  2013. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat. Mater. 12:121102–6 [Google Scholar]
  51. Chen Q, Sieradzki K. 51.  2013. Mechanisms and morphology evolution in dealloying. J. Electrochem. Soc. 160:6C226–31 [Google Scholar]
  52. Chen Q.52.  2014. Bi-continuous nanoporous structure formation via compound decomposition. J. Electrochem. Soc. 161:10H643–46 [Google Scholar]
  53. Harrison J, Wagner C. 53.  1959. The attack of solid alloys by liquid metals and salt melts. Acta Metall. 7:11722–35 [Google Scholar]
  54. Wada T, Yubuta K, Inoue A, Kato H. 54.  2011. Dealloying by metallic melt. Mater. Lett. 65:71076–78 [Google Scholar]
  55. Okman O, Kysar JW. 55.  2011. Fabrication of crack-free blanket nanoporous gold thin films by galvanostatic dealloying. J. Alloys Compd. 509:226374–81 [Google Scholar]
  56. Sun Y, Balk TJ. 56.  2008. A multi-step dealloying method to produce nanoporous gold with no volume change and minimal cracking. Scr. Mater. 58:9727–30 [Google Scholar]
  57. Wittstock A, Biener J, Bäumer M. 57.  2010. Nanoporous gold: a new material for catalytic and sensor applications. Phys. Chem. Chem. Phys. 12:4012919–30 [Google Scholar]
  58. Ahl S, Cameron PJ, Liu J, Knoll W, Erlebacher J, Yu F. 58.  2008. A comparative plasmonic study of nanoporous and evaporated gold films. Plasmonics 3:113–20 [Google Scholar]
  59. Qi Z, Weissmüller J. 59.  2013. Hierarchical nested-network nanostructure by dealloying. ACS Nano 7:75948–54 [Google Scholar]
  60. Ding Y, Erlebacher J. 60.  2003. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc. 125:267772–73 [Google Scholar]
  61. Biener J, Nyce GW, Hodge AM, Biener MM, Hamza AV, Maier SA. 61.  2008. Nanoporous plasmonic metamaterials. Adv. Mater. 20:61211–17 [Google Scholar]
  62. Hakamada M, Mabuchi M. 62.  2009. Preparation of nanoporous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Cu-Mn alloys. J. Alloys Compd. 485:1–2583–87 [Google Scholar]
  63. Chen LY, Fujita T, Ding Y, Chen MW. 63.  2010. A three-dimensional gold-decorated nanoporous copper core-shell composite for electrocatalysis and nonenzymatic biosensing. Adv. Funct. Mater. 20:142279–85 [Google Scholar]
  64. Scaglione F, Celegato F, Rizzi P, Battezzati L. 64.  2015. A comparison of de-alloying crystalline and amorphous multicomponent Au alloys. Intermetallics 66:82–87 [Google Scholar]
  65. Scaglione F, Rizzi P, Battezzati L. 65.  2012. De-alloying kinetics of an Au-based amorphous alloys. J. Alloys Compd. 536:Suppl. 160–64 [Google Scholar]
  66. Wang JQ, Chen N, Liu P, Wang Z, Louzguine-Luzgin DV. 66.  et al. 2014. The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater. 79:30–36 [Google Scholar]
  67. Wang YM, Zhang W, Inoue A. 67.  2012. Nanoporous Cu wide ribbons with good mechanical integrity. Mater. Sci. Eng. B 177:7532–35 [Google Scholar]
  68. Parks BW, Fritz JD, Pickering HW. 68.  1989. The difference in the electrochemical behavior of the ordered and disordered phases of Cu3Au. Scr. Metall. 23:6951–56 [Google Scholar]
  69. Kameoka S, Tsai AP. 69.  2008. Co oxidation over a fine porous gold catalyst fabricated by selective leaching from an ordered AuCu3 intermetallic compound. Catal. Lett. 121:3–4337–41 [Google Scholar]
  70. Wittstock A, Biener J, Baumer M. 70.  2012. Surface chemistry and catalysis. See Ref. 12 167–98
  71. Zielasek V, Jürgens B, Schulz C, Biener J, Biener MM. 71.  et al. 2006. Gold catalysts: nanoporous gold foams. Angew. Chemie Int. Ed. 45:488241–44 [Google Scholar]
  72. Bion N, Epron F, Moreno M, Mariño F, Duprez D. 72.  2008. Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over noble metals and transition metal oxides: advantages and drawbacks. Top. Catal. 51:1–476–88 [Google Scholar]
  73. Haruta M, Kobayashi T, Sano H, Yamada N. 73.  1987. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem. Lett. 16:2405–8 [Google Scholar]
  74. Hvolbæk B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Nørskov JK. 74.  2007. Catalytic activity of Au nanoparticles. Nano Today 2:414–18 [Google Scholar]
  75. Bond G, Thompson D. 75.  2000. Gold-catalysed oxidation of carbon monoxide. Gold Bull. 33:241–50 [Google Scholar]
  76. Xu C, Su J, Xu X, Liu P, Zhao H. 76.  et al. 2007. Low temperature Co oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 129:142–43 [Google Scholar]
  77. Ding Y, Chen M. 77.  2009. Nanoporous metals for catalytic and optical applications. MRS Bull. 34:8569–76 [Google Scholar]
  78. Wittstock A, Neumann B, Schaefer A, Dumbuya K, Kübel C. 78.  et al. 2009. Nanoporous Au: an unsupported pure gold catalyst?. J. Phys. Chem. C 113:145593–600 [Google Scholar]
  79. Fujita T, Guan P, McKenna K, Lang X, Hirata A. 79.  et al. 2012. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11:9775–80 [Google Scholar]
  80. Zhang X, Ding Y. 80.  2013. Unsupported nanoporous gold for heterogeneous catalysis. Catal. Sci. Technol. 3:112862–68 [Google Scholar]
  81. Biener MM, Biener J, Wichmann A, Wittstock A, Baumann TF. 81.  et al. 2011. ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity. Nano Lett. 11:83085–90 [Google Scholar]
  82. Erlebacher J.82.  2009. Materials science of proton exchange membrane fuel cell catalysts. Solid State Phys. 61:77–141 [Google Scholar]
  83. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN. 83.  et al. 2007. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:5811493–97 [Google Scholar]
  84. Zeis R, Lei T, Sieradzki K, Snyder J, Erlebacher J. 84.  2008. Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J. Catal. 253:1132–38 [Google Scholar]
  85. Ding Y, Chen M, Erlebacher J. 85.  2004. Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc. 126:226876–77 [Google Scholar]
  86. Erlebacher J, Snyder J. 86.  2009. Dealloyed nanoporous metals for PEM fuel cell catalysis. ECS Electrochem. Lett. 25:1603–12 [Google Scholar]
  87. Zeis R, Mathur A, Fritz G, Lee J, Erlebacher J. 87.  2007. Platinum-plated nanoporous gold: an efficient, low Pt loading electrocatalyst for PEM fuel cells. J. Power Sources 165:165–72 [Google Scholar]
  88. Koh S, Strasser P. 88.  2007. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129:4212624–25 [Google Scholar]
  89. Lai F-J, Su W-N, Sarma LS, Liu D-G, Hsieh C-A. 89.  et al. 2010. Chemical dealloying mechanism of bimetallic Pt-Co nanoparticles and enhancement of catalytic activity toward oxygen reduction. Chemistry 16:154602–11 [Google Scholar]
  90. Mani P, Srivastava R, Strasser P. 90.  2008. Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J. Phys. Chem. C 112:72770–78 [Google Scholar]
  91. Rudi S, Gan L, Cui C, Strasser P. 91.  2013. Dealloying of Pt bimetallic catalysts at constant electrode potentials. ECS Trans. 58:1581–86 [Google Scholar]
  92. Wang D, Yu Y, Zhu J, Liu S, Muller DA, Abruña HD. 92.  2015. Morphology and activity tuning of Cu3Pt/C ordered intermetallic nanoparticles by selective electrochemical dealloying. Nano Lett. 15:21343–48 [Google Scholar]
  93. Chen S, Sheng W, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y. 93.  2009. Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J. Phys. Chem. C 113:31109–25 [Google Scholar]
  94. Snyder J, Erlebacher J. 94.  2011. The active surface area of nanoporous metals during oxygen reduction. ECS Trans. 41:11021–30 [Google Scholar]
  95. Cullen DA, Lopez-Haro M, Bayle-Guillemaud P, Guetaz L, Debe MK, Steinbach AJ. 95.  2015. Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts. J. Mater. Chem. A 3:2111660–67 [Google Scholar]
  96. Snyder J, Livi K, Erlebacher J. 96.  2013. Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous NiPt alloy nanoparticles. Adv. Funct. Mater. 23:445494–501 [Google Scholar]
  97. Wang D, Zhao P, Li Y. 97.  2011. General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts. Sci. Rep. 1:1–5 [Google Scholar]
  98. Yeager E, Razaq M, Gervasio D, Razaq A, Tryk D. 98.  1993. The electrolyte factor in O2 reduction electrocatalysis. Proc. Work. Struct. Eff. Electrocatal. Oxyg. Electrochem. 92–11:440–73 [Google Scholar]
  99. Benn E, Uvegi H, Erlebacher J. 99.  2015. Characterization of nanoporous metal–ionic liquid composites for the electrochemical oxygen reduction reaction. J. Electrochem. Soc. 162:10H759–66 [Google Scholar]
  100. Luo H, Baker GA, Lee JS, Pagni RM, Dai S. 100.  2009. Ultrastable superbase-derived protic ionic liquids. J. Phys. Chem. B 113:134181–83 [Google Scholar]
  101. Chen C, Kang Y, Huo Z, Zhu Z, Huang W. 101.  et al. 2014. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:61771339–43 [Google Scholar]
  102. Hemker KJ, Nix WD. 102.  2008. Nanoscale deformation: Seeing is believing. Nat. Mater. 7:97–98 [Google Scholar]
  103. Meza LR, Das S, Greer JR. 103.  2014. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345:62021322–26 [Google Scholar]
  104. Wang K, Weissmüller J. 104.  2013. Composites of nanoporous gold and polymer. Adv. Mater. 25:91280–84 [Google Scholar]
  105. Wang K, Kobler A, Kübel C, Jelitto H, Schneider G, Weissmüller J. 105.  2015. Nanoporous-gold-based composites: toward tensile ductility. NPG Asia Mater. 7:6e187 [Google Scholar]
  106. McCue I, Ryan S, Hemker K, Xu X, Li N. 106.  et al. 2016. Size effects in the mechanical properties of bulk bicontinuous Ta/Cu nanocomposites made by liquid metal dealloying. Adv. Eng. Mater. 1846–50
  107. Li R, Sieradzki. 107.  1992. Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 68:81168–71 [Google Scholar]
  108. Gibson LJ, Ashby MF. 108.  1997. Cellular Solids: Structure and Properties Cambridge, UK: Cambridge Univ. Press
  109. Sun X-Y, Xu G-K, Li X, Feng X-Q, Gao H. 109.  2013. Mechanical properties and scaling laws of nanoporous gold. J. Appl. Phys. 113:2023505 [Google Scholar]
  110. Hodge AM, Biener J, Hayes JR, Bythrow PM, Volkert CA, Hamza AV. 110.  2007. Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55:1343–49 [Google Scholar]
  111. Biener J, Hodge A, Hayes J, Volkert CA, Zepeda-Ruiz L. 111.  et al. 2006. Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6:102379–82 [Google Scholar]
  112. Weissmüller J, Newman RC, Jin H, Hodge AM, Kysar JW. 112.  2009. Nanoporous metals by alloy corrosion: formation and mechanical properties. MRS Bull. 34:8577–86 [Google Scholar]
  113. Cheng IC, Hodge AM. 113.  2013. Strength scale behavior of nanoporous Ag, Pd and Cu foams. Scr. Mater. 69:4295–98 [Google Scholar]
  114. Biener J, Hodge AM, Hamza AV. 114.  2005. Microscopic failure behavior of nanoporous gold. Appl. Phys. Lett. 87:12121908 [Google Scholar]
  115. Biener J, Hodge AM, Hamza AV, Hsiung LM, Satcher JH. 115.  2005. Nanoporous Au: a high yield strength material. J. Appl. Phys. 97:2024301 [Google Scholar]
  116. Zepeda-Ruiz LA, Sadigh B, Biener J, Hodge AM, Hamza AV. 116.  2007. Mechanical response of freestanding Au nanopillars under compression. Appl. Phys. Lett. 91:10101907 [Google Scholar]
  117. Hodge A, Hayes J, Caro J, Biener J, Hamza A. 117.  2006. Characterization and mechanical behavior of nanoporous gold. Adv. Eng. Mater. 8:9853–57 [Google Scholar]
  118. Jin H-J, Kramer D, Ivanisenko Y, Weissmüller J. 118.  2007. Macroscopically strong nanoporous Pt prepared by dealloying. Adv. Eng. Mater. 9:10849–54 [Google Scholar]
  119. Jin H-J, Kurmanaeva L, Schmauch J, Rösner H, Ivanisenko Y, Weissmüller J. 119.  2009. Deforming nanoporous metal: role of lattice coherency. Acta Mater. 57:2665–72 [Google Scholar]
  120. Volkert CA, Lilleodden ET, Kramer D, Weissmüller J. 120.  2006. Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89:6061920 [Google Scholar]
  121. Balk TJ, Eberl C, Sun Y, Hemker KJ, Gianola D. 121.  2009. Tensile and compressive microspecimen testing of bulk nanoporous gold. JOM 61:1226–31 [Google Scholar]
  122. Abdolrahim N, Bahr DF, Revard B, Reilly C, Ye J. 122.  et al. 2012. The mechanical response of core-shell structures for nanoporous metallic materials. Philos. Mag. 93:7736–48 [Google Scholar]
  123. Sun Y, Ye J, Shan Z, Minor AM, Balk TJ. 123.  2007. The mechanical behavior of nanoporous gold thin films. JOM 59:954–58 [Google Scholar]
  124. Briot NJ, Kennerknecht T, Eberl C, Balk TJ. 124.  2014. Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing. Philos. Mag. 94:Jan.847–66 [Google Scholar]
  125. Farkas D, Caro A, Bringa E, Crowson D. 125.  2013. Mechanical response of nanoporous gold. Acta Mater. 61:93249–56 [Google Scholar]
  126. Bao-Nam ND, Stukowski A, Mameka N, Markmann J, Karsten A, Weissmüller J. 126.  2015. Anomalous compliance and early yielding of nanoporous gold. Acta Mater. 93:144–55 [Google Scholar]
  127. Huber N, Viswanath RN, Mameka N, Markmann J, Weissmüller J. 127.  2014. Scaling laws of nanoporous metals under uniaxial compression. Acta Mater. 67:252–65 [Google Scholar]
  128. Fan HL, Fang DN. 128.  2009. Modeling and limits of strength of nanoporous foams. Mater. Des. 30:51441–44 [Google Scholar]
  129. Briot NJ.129.  2015. Nanomechanical and scaling behavior of nanoporous gold PhD Thesis, Dep. Chem. Mater. Eng., Univ. Ky.
  130. Dou R, Derby B. 130.  2011. Deformation mechanisms in gold nanowires and nanoporous gold. Philos. Mag. 91:7–91070–83 [Google Scholar]
  131. Wada T, Setyawan AD, Yubuta K, Kato H. 131.  2011. Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt. Scr. Mater. 65:6532–35 [Google Scholar]
  132. Lee D, Wei X, Chen X, Zhao M, Jun SC. 132.  et al. 2007. Microfabrication and mechanical properties of nanoporous gold at the nanoscale. Scr. Mater. 56:5437–40 [Google Scholar]
  133. Hakamada M, Mabuchi M. 133.  2007. Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56:111003–6 [Google Scholar]
  134. Dou R, Derby B. 134.  2009. A universal scaling law for the strength of metal micropillars and nanowires. Scr. Mater. 61:5524–27 [Google Scholar]
  135. El-Awady JA.135.  2015. Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6:5926 [Google Scholar]
  136. Jin HJ, Weissmüller J. 136.  2010. Bulk nanoporous metal for actuation. Adv. Eng. Mater. 12:8714–23 [Google Scholar]
  137. Jin H, Weissmuller J. 137.  2011. A material with electrically tunable strength and flow stress. Science 332:60341179–82 [Google Scholar]
  138. Ye X-L, Jin H-J. 138.  2013. Electrochemical control of creep in nanoporous gold. Appl. Phys. Lett. 103:20201912 [Google Scholar]
  139. Zhang S-M, Jin H-J. 139.  2014. Multilayer-structured gold/nanoporous gold composite for high performance linear actuation. Appl. Phys. Lett. 104:10101905 [Google Scholar]
  140. Mathur A, Erlebacher J. 140.  2007. Size dependence of effective Young's modulus of nanoporous gold. Appl. Phys. Lett. 90:6061910 [Google Scholar]
  141. Volkert CA, Lilleodden ET. 141.  2006. Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86:33–355567–79 [Google Scholar]
  142. Liu R, Antoniou A. 142.  2013. A relationship between the geometrical structure of a nanoporous metal foam and its modulus. Acta Mater. 61:72390–402 [Google Scholar]
  143. Biener MM, Ye J, Baumann TF, Wang YM, Shin SJ. 143.  et al. 2014. Ultra-strong and low-density nanotubular bulk materials with tunable feature sizes. Adv. Mater. 26:284808–13 [Google Scholar]
  144. Senior NA, Newman RC. 144.  2006. Synthesis of tough nanoporous metals by controlled electrolytic dealloying. Nanotechnology 17:92311–16 [Google Scholar]
  145. Gu R, Ngan AHW. 145.  2012. Effects of pre-straining and coating on plastic deformation of aluminum micropillars. Acta Mater. 60:176102–11 [Google Scholar]
  146. Ding Y, Mathur A, Chen M, Erlebacher J. 146.  2005. Epitaxial casting of nanotubular mesoporous platinum. Angew. Chem. 117:264070–74 [Google Scholar]
  147. Ito Y, Tanabe Y, Qiu HJ, Sugawara K, Heguri S. 147.  et al. 2014. High-quality three-dimensional nanoporous graphene. Angew. Chem. Int. Ed. 53:194822–26 [Google Scholar]
  148. Ito Y, Tanabe Y, Han J, Fujita T, Tanigaki K, Chen M. 148.  2015. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27:294302–7 [Google Scholar]
  149. Wada T, Kato H. 149.  2013. Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel. Scr. Mater. 68:9723–26 [Google Scholar]
  150. Wada T, Ichitsubo T, Yubuta K, Segawa H, Yoshida H, Kato H. 150.  2014. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. Nano Lett. 14:84505–10 [Google Scholar]
  151. Kim JW, Tsuda M, Wada T, Yubuta K, Kim SG, Kato H. 151.  2015. Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors. Acta Mater. 84:497–505 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070115-031739
Loading
/content/journals/10.1146/annurev-matsci-070115-031739
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error