1932

Abstract

The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare-earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high- cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultrathin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review the present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. We conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultrathin limit.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070115-032057
2016-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/matsci/46/1/annurev-matsci-070115-032057.html?itemId=/content/journals/10.1146/annurev-matsci-070115-032057&mimeType=html&fmt=ahah

Literature Cited

  1. Imada M, Fujimori A, Tokura Y. 1.  1998. Metal-insulator transitions. Rev. Mod. Phys. 70:1039–263 [Google Scholar]
  2. Zaanen J, Sawatzky GA, Allen JW. 2.  1985. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55:418–21 [Google Scholar]
  3. Nimkar S, Sarma DD, Krishnamurthy HR, Ramasesha S. 3.  1993. Mean-field results of the multiple-band extended Hubbard model for the square-planar CuO2 lattice. Phys. Rev. B 48:7355–63 [Google Scholar]
  4. Zubko P, Gariglio S, Gabay M, Ghosez P, Triscone JM. 4.  2011. Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2:141–65 [Google Scholar]
  5. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y. 5.  2012. Emergent phenomena at oxide interfaces. Nat. Mater. 11:103–13 [Google Scholar]
  6. Chakhalian J, Millis AJ, Rondinelli J. 6.  2012. Whither the oxide interface. Nat. Mater. 11:92–94 [Google Scholar]
  7. Chakhalian J, Freeland JW, Millis AJ, Panagopoulos C, Rondinelli JM. 7.  2014. Colloquium: Emergent properties in plane view: strong correlations at oxide interfaces. Rev. Mod. Phys. 86:1189–202 [Google Scholar]
  8. Bhattacharya A, May SJ. 8.  2014. Magnetic oxide heterostructures. Annu. Rev. Mater. Res. 44:65–90 [Google Scholar]
  9. Slater JC.9.  1951. Magnetic effects and the Hartee-Fock equation. Phys. Rev. 82:538 [Google Scholar]
  10. Terakura K, Oguchi T, Williams AR, Kübler J. 10.  1984. Band theory of insulating transition-metal monoxides: band-structure calculations. Phys. Rev. B 30:4734–47 [Google Scholar]
  11. Mott NF.11.  1949. The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. A 62:416–22 [Google Scholar]
  12. Mott NF.12.  1961. The transition to the metallic state. Philos. Mag. 6:287–309 [Google Scholar]
  13. Hubbard J.13.  1963. Electron correlations in narrow energy bands. Proc. R. Soc. A 276:238–57 [Google Scholar]
  14. Hubbard J.14.  1964. Electron correlations in narrow energy bands. II. The degenerate band case. Proc. R. Soc. A 277:237–59 [Google Scholar]
  15. Fujimori A, Minami F. 15.  1984. Valence-band photoemission and optical absorption in nickel compounds. Phys. Rev. B 30:957–71 [Google Scholar]
  16. Bandyopadhyay T, Sarma DD. 16.  1989. Calculation of Coulomb interaction strengths for 3d transition metals and actinides. Phys. Rev. B 39:3517–21 [Google Scholar]
  17. Mahadevan P, Shanthi N, Sarma DD. 17.  1996. Estimates of electronic interaction parameters for LaMO3 compounds (M=Ti-Ni) from ab initio approaches. Phys. Rev. B 54:11199–206 [Google Scholar]
  18. Sarma D.18.  1990. Electronic structure of transition metal compounds: photoemission experiments and model Hamiltonian calculations. J. Solid State Chem. 88:45–52 [Google Scholar]
  19. Mizokawa T, Fujimori A, Namatame H, Akeyama K, Kosugi N. 19.  1994. Electronic structure of the local-singlet insulator NaCuO2. Phys. Rev. B 49:7193–204 [Google Scholar]
  20. Nimkar S, Sarma DD, Krishnamurthy HR. 20.  1993. Electronic structure of NaCuO2. Phys. Rev. B 47:10927–30 [Google Scholar]
  21. Sarma D, Krishnamurthy H, Nimkar S, Mitra PP, Ramasesha S, Ramakrishnan T. 21.  1992. Electronic structure of the high-Tc cuprate superconductors and related compounds. Pramana 38:L531–38 [Google Scholar]
  22. Sarma D, Shanthi N, Mahadevan P. 22.  1994. Electronic structure and the metal-insulator transition in LnNiO3 (Ln=La, Pr, Nd, Sm and Ho): band structure results. J. Phys. Condens. Matter 6:10467 [Google Scholar]
  23. Barman SR, Chainani A, Sarma DD. 23.  1994. Covalency-driven unusual metal-insulator transition in nickelates. Phys. Rev. B 49:8475–78 [Google Scholar]
  24. Sarma DD, Shanthi N, Barman SR, Hamada N, Sawada H, Terakura K. 24.  1995. Band theory for ground-state properties and excitation spectra of perovskite LaMO3 (M=Mn, Fe, Co, Ni). Phys. Rev. Lett. 75:1126–29 [Google Scholar]
  25. Medarde ML.25.  1997. Structural, magnetic and electronic properties of RNiO3 perovskites (R=rare earth). J. Phys. Condens. Matter 9:1679 [Google Scholar]
  26. Catalan G.26.  2008. Progress in perovskite nickelate research. Phase Transit. 81:729–49 [Google Scholar]
  27. Ha SD, Jaramillo R, Silevitch DM, Schoofs F, Kerman K. 27.  et al. 2013. Hall effect measurements on epitaxial SmNiO3 thin films and implications for antiferromagnetism. Phys. Rev. B 87:125150 [Google Scholar]
  28. Eguchi R, Chainani A, Taguchi M, Matsunami M, Ishida Y. 28.  et al. 2009. Fermi surfaces, electron-hole asymmetry, and correlation kink in a three-dimensional Fermi liquid LaNiO3. Phys. Rev. B 79:115122 [Google Scholar]
  29. Katsufuji T, Okimoto Y, Arima T, Tokura Y, Torrance JB. 29.  1995. Optical spectroscopy of the metal-insulator transition in NdNiO3. Phys. Rev. B 51:4830–35 [Google Scholar]
  30. Catalan G, Bowman RM, Gregg JM. 30.  2000. Metal-insulator transitions in NdNiO3 thin films. Phys. Rev. B 62:7892–900 [Google Scholar]
  31. Allen SJ, Hauser AJ, Mikheev E, Zhang JY, Moreno NE. 31.  et al. 2015. Gaps and pseudogaps in perovskite rare earth nickelates. APL Mater. 3:062503 [Google Scholar]
  32. Scagnoli V, Staub U, Janousch M, Mulders AM, Shi M. 32.  et al. 2005. Charge disproportionation and search for orbital ordering in NdNiO3 by use of resonant X-ray diffraction. Phys. Rev. B 72:155111 [Google Scholar]
  33. Scagnoli V, Staub U, Mulders AM, Janousch M, Meijer GI. 33.  et al. 2006. Role of magnetic and orbital ordering at the metal-insulator transition in NdNiO3. Phys. Rev. B 73:100409 [Google Scholar]
  34. García-Muñoz JL, Rodríguez-Carvajal J, Lacorre P. 34.  1994. Neutron-diffraction study of the magnetic ordering in the insulating regime of the perovskites RNiO3 (R=Pr and Nd). Phys. Rev. B 50:978–92 [Google Scholar]
  35. Scagnoli V, Staub U, Bodenthin Y, García-Fernández M, Mulders AM. 35.  et al. 2008. Induced noncollinear magnetic order of Nd3+ in NdNiO3 observed by resonant soft X-ray diffraction. Phys. Rev. B 77:115138 [Google Scholar]
  36. Alonso JA, García-Muñoz JL, Fernández-Díaz MT, Aranda MAG, Martínez-Lope MJ, Casais MT. 36.  1999. Charge disproportionation in RNiO3 perovskites: simultaneous metal-insulator and structural transition in YNiO3. Phys. Rev. Lett. 82:3871–74 [Google Scholar]
  37. Vobornik I, Perfetti L, Zacchigna M, Grioni M, Margaritondo G. 37.  et al. 1999. Electronic-structure evolution through the metal-insulator transition in RNiO3. Phys. Rev. B 60:R8426–29 [Google Scholar]
  38. Rodríguez-Carvajal J, Rosenkranz S, Medarde M, Lacorre P, Fernández-Díaz MT. 38.  et al. 1998. Neutron-diffraction study of the magnetic and orbital ordering in 154SmNiO3 and 153EuNiO3. Phys. Rev. B 57:456–64 [Google Scholar]
  39. Bodenthin Y, Staub U, Piamonteze C, García-Fernández M, Martínez-Lope MJ, Alonso JA. 39.  2011. Magnetic and electronic properties of RNiO3 (R=Pr, Nd, Eu, Ho and Y) perovskites studied by resonant soft X-ray magnetic powder diffraction. J. Phys. Condens. Matter 23:036002 [Google Scholar]
  40. Mizokawa T, Khomskii DI, Sawatzky GA. 40.  2000. Spin and charge ordering in self-doped Mott insulators. Phys. Rev. B 61:11263 [Google Scholar]
  41. Lacorre P, Torrance J, Pannetier J, Nazzal A, Wang P, Huang T. 41.  1991. Synthesis, crystal structure, and properties of metallic PrNiO3: comparison with metallic NdNiO3 and semiconducting SmNiO3. J. Solid State Chem. 91:225–37 [Google Scholar]
  42. Alonso JA, Munoz A, Largeteau A, Demazeau G. 42.  2004. Crystal growth of NdNiO3 perovskite under high oxygen pressure. J. Phys. Condens. Matter 16:S1277–81 [Google Scholar]
  43. Prasad KVR, Varma KBR, Raju AR, Satyalakshmi KM, Mallya RM, Hegde MS. 43.  1993. Growth and ferroelectric properties of Bi2VO5.5 thin films with metallic LaNiO3 electrodes. Appl. Phys. Lett. 63:1898–900 [Google Scholar]
  44. Yang C, Chen M, Hong T, Wu C, Wu J, Wu T. 44.  1995. Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3. Appl. Phys. Lett. 66:2643 [Google Scholar]
  45. DeNatale JF, Kobrin PH. 45.  1996. Lattice distortion effects on electrical switching in epitaxial thin film NdNiO3. J. Mater. Res. 12:2992–95 [Google Scholar]
  46. Novojilov MA, Gorbenko OY, Graboy IE, Kaul AR, Zandbergen HW. 46.  et al. 2000. Perovskite rare-earth nickelates in the thin-film epitaxial state. Appl. Phys. Lett. 76:2041–43 [Google Scholar]
  47. Catalan G, Bowman RM, Gregg JM. 47.  2000. Transport properties of NdNiO3 thin films made by pulsed-laser deposition. J. Appl. Phys. 87:606–8 [Google Scholar]
  48. Son J, Moetakef P, LeBeau JM, Ouellette D, Balents L. 48.  et al. 2010. Low-dimensional Mott material: transport in ultrathin epitaxial LaNiO3 films. Appl. Phys. Lett. 96:062114 [Google Scholar]
  49. Nikolaev KR, Bhattacharya A, Kraus PA, Vas'ko VA, Cooley WK, Goldman AM. 49.  1999. Indications of antiferromagnetic interlayer coupling in La2/3Ba1/3MnO3/LaNiO3 multilayers. Appl. Phys. Lett. 75:118–20 [Google Scholar]
  50. Kaul AR, Gorbenko OY, Kamenev AA. 50.  2004. The role of heteroepitaxy in the development of new thin-film oxide-based functional materials. Russ. Chem. Rev. 73:861 [Google Scholar]
  51. Gorbenko OY, Samoilenkov S, Graboy I, Kaul A. 51.  2002. Epitaxial stabilization of oxides in thin films. Chem. Mater. 14:4026–43 [Google Scholar]
  52. Chen J, Zhou Y, Middey S, Jiang J, Chen N. 52.  et al. 2015. Self-limited kinetics of electron doping in correlated oxides. Appl. Phys. Lett. 107:031905 [Google Scholar]
  53. Ha SD, Otaki M, Jaramillo R, Podpirka A, Ramanathan S. 53.  2012. Stable metal-insulator transition in epitaxial SmNiO3 thin films. J. Solid State Chem. 190:233–37 [Google Scholar]
  54. Kareev M, Prosandeev S, Gray B, Liu J, Ryan P. 54.  et al. 2011. Sub-monolayer nucleation and growth of complex oxides at high supersaturation and rapid flux modulation. J. Appl. Phys. 109:114303 [Google Scholar]
  55. Feigl L, Schultz B, Ohya S, Ouellette D, Kozhanov A, Palmstram C. 55.  2013. Structural and transport properties of epitaxial PrNiO3 thin films grown by molecular beam epitaxy. J. Cryst. Growth 366:51–54 [Google Scholar]
  56. Liu J, Kareev M, Gray B, Kim JW, Ryan P. 56.  et al. 2010. Strain-mediated metal-insulator transition in epitaxial ultrathin films of NdNiO3. Appl. Phys. Lett. 96:233110 [Google Scholar]
  57. Meyers D, Moon EJ, Kareev M, Tung I, Gray BA. 57.  et al. 2013. Epitaxial stabilization of ultra-thin films of EuNiO3. J. Phys. D 46:385303 [Google Scholar]
  58. Hauser AJ, Mikheev E, Moreno NE, Hwang J, Zhang JY, Stemmer S. 58.  2015. Correlation between stoichiometry, strain, and metal-insulator transitions of NdNiO3 films. Appl. Phys. Lett. 106:092104 [Google Scholar]
  59. Jaramillo R, Schoofs F, Ha SD, Ramanathan R. 59.  2013. High pressure synthesis of SmNiO3 thin films and implications for thermodynamics of the nickelates. J. Mater. Chem. C 1:2455 [Google Scholar]
  60. Bristowe NC, Ghosez P, Littlewood PB, Artacho E. 60.  2014. The origin of two-dimensional electron gases at oxide interfaces: insights from theory. J. Phys. Condens. Matter 26:143201 [Google Scholar]
  61. Liu J, Kareev M, Prosandeev S, Gray B, Ryan P. 61.  et al. 2010. Effect of polar discontinuity on the growth of LaNiO3/LaAlO3 superlattices. Appl. Phys. Lett. 96:133111 [Google Scholar]
  62. Detemple E, Ramasse QM, Sigle W, Cristiani G, Habermeier HU. 62.  et al. 2011. Polarity-driven nickel oxide precipitation in LaNiO3-LaAlO3 superlattices. Appl. Phys. Lett. 99:211903 [Google Scholar]
  63. Rondinelli JM, May SJ, Freeland JW. 63.  2012. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37:261–70 [Google Scholar]
  64. Moon EJ, Gray BA, Kareev M, Liu J, Altendorf SG. 64.  et al. 2011. Strain-dependent transport properties of the ultra-thin correlated metal, LaNiO3. New J. Phys. 13:073037 [Google Scholar]
  65. Moon EJ, Rondinelli JM, Prasai N, Gray BA, Kareev M. 65.  et al. 2012. Strain-controlled band engineering and self-doping in ultrathin LaNiO3 films. Phys. Rev. B 85:121106 [Google Scholar]
  66. May SJ, Kim JW, Rondinelli JM, Karapetrova E, Spaldin NA. 66.  et al. 2010. Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B 82:014110 [Google Scholar]
  67. Tung IC, Balachandran PV, Liu J, Gray BA, Karapetrova EA. 67.  et al. 2013. Connecting bulk symmetry and orbital polarization in strained RNiO3 ultrathin films. Phys. Rev. B 88:205112 [Google Scholar]
  68. Chakhalian J, Rondinelli JM, Liu J, Gray BA, Kareev M. 68.  et al. 2011. Asymmetric orbital-lattice interactions in ultrathin correlated oxide films. Phys. Rev. Lett. 107:116805 [Google Scholar]
  69. Liu J, Kargarian M, Kareev M, Gray B, Ryan PJ. 69.  et al. 2013. Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films. Nat. Commun. 4:2714 [Google Scholar]
  70. Meyers D, Middey S, Kareev M, van Veenendaal M, Moon EJ. 70.  et al. 2013. Strain-modulated Mott transition in EuNiO3 ultrathin films. Phys. Rev. B 88:075116 [Google Scholar]
  71. Bruno FY, Rushchanskii KZ, Valencia S, Dumont Y, Carrétéro C. 71.  et al. 2013. Rationalizing strain engineering effects in rare-earth nickelates. Phys. Rev. B 88:195108 [Google Scholar]
  72. Hepting M, Minola M, Frano A, Cristiani G, Logvenov G. 72.  et al. 2014. Tunable charge and spin order in PrNiO3 thin films and superlattices. Phys. Rev. Lett. 113:227206 [Google Scholar]
  73. Catalano S, Gibert M, Bisogni V, Peil OE, He F. 73.  et al. 2014. Electronic transitions in strained SmNiO3 thin films. APL Mater. 2:116110 [Google Scholar]
  74. Yoo HK, Hyun SI, Moreschini L, Kim HD, Chang YJ. 74.  et al. 2015. Latent instabilities in metallic LaNiO3 films by strain control of Fermi-surface topology. Sci. Rep. 5:8746 [Google Scholar]
  75. King PDC, Wei HI, Nie YF, Uchida M, Adamo C. 75.  et al. 2014. Atomic-scale control of competing electronic phases in ultrathin LaNiO3. Nat. Nanotechnol. 9:443–47 [Google Scholar]
  76. Stewart MK, Liu J, Kareev M, Chakhalian J, Basov DN. 76.  2011. Mott physics near the insulator-to-metal transition in NdNiO3. Phys. Rev. Lett. 107:176401 [Google Scholar]
  77. Stewart MK, Yee CH, Liu J, Kareev M, Smith RK. 77.  et al. 2011. Optical study of strained ultrathin films of strongly correlated LaNiO3. Phys. Rev. B 83:075125 [Google Scholar]
  78. Stewart MK, Brownstead D, Liu J, Kareev M, Chakhalian J, Basov DN. 78.  2012. Heterostructuring and strain effects on the infrared optical properties of nickelates. Phys. Rev. B 86:205102 [Google Scholar]
  79. Tebano A, Aruta C, Sanna S, Medaglia PG, Balestrino G. 79.  et al. 2008. Evidence of orbital reconstruction at interfaces in ultrathin La0.67Sr0.33MnO3 films. Phys. Rev. Lett. 100:137401 [Google Scholar]
  80. Peil OE, Ferrero M, Georges A. 80.  2014. Orbital polarization in strained LaNiO3: structural distortions and correlation effects. Phys. Rev. B 90:045128 [Google Scholar]
  81. Upton MH, Choi Y, Park H, Liu J, Meyers D. 81.  et al. 2015. Novel electronic behavior driving NdNiO3 metal-insulator transition. Phys. Rev. Lett. 115:036401 [Google Scholar]
  82. Sarma DD, Shanthi N, Mahadevan P. 82.  1996. Electronic excitation spectra from ab initio band-structure results for LaMO3 (M=Cr,Mn,Fe,Co,Ni). Phys. Rev. B 54:1622–28 [Google Scholar]
  83. Scherwitzl R, Zubko P, Lezama IG, Ono S, Morpurgo AF. 83.  et al. 2010. Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv. Mater. 22:5517–20 [Google Scholar]
  84. Caviglia AD, Scherwitzl R, Popovich P, Hu W, Bromberger H. 84.  et al. 2012. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108:136801 [Google Scholar]
  85. Hauser AJ, Mikheev E, Moreno NE, Cain TA, Hwang J. 85.  et al. 2013. Temperature-dependence of the Hall coefficient of NdNiO3 thin films. Appl. Phys. Lett. 103:182105 [Google Scholar]
  86. Mikheev E, Hauser AJ, Himmetoglu B, Moreno NE, Janotti A. 86.  et al. 2015. Tuning bad metal and non–Fermi liquid behavior in a Mott material: rare earth nickelate thin films. Sci. Adv. 1:e1500797 [Google Scholar]
  87. Zhou JS, Goodenough JB, Dabrowski B. 87.  2005. Pressure-induced non-Fermi-liquid behavior of PrNiO3. Phys. Rev. Lett. 94:226602 [Google Scholar]
  88. Kobayashi H, Ikeda S, Yoda Y, Hirao N, Ohishi Y. 88.  et al. 2015. Pressure-induced unusual metallic state in EuNiO3. Phys. Rev. B 91:195148 [Google Scholar]
  89. Jaramillo R, Ha SD, Silevitch DM, Ramanathan S. 89.  2014. Origins of bad-metal conductivity and the insulator-metal transition in the rare-earth nickelates. Nat. Phys. 10:304–7 [Google Scholar]
  90. Meyers D, Liu J, Freeland JW, Middey S, Kareev M. 90.  et al. 2015. Selective interface control of order parameters in complex oxides. arXiv 1505.07451 [cond-mat.str-el]
  91. Staub U, Meijer GI, Fauth F, Allenspach R, Bednorz JG. 91.  et al. 2002. Direct observation of charge order in an epitaxial NdNiO3 film. Phys. Rev. Lett. 88:126402 [Google Scholar]
  92. Lorenzo JE, Hodeau JL, Paolasini L, Lefloch S, Alonso JA, Demazeau G. 92.  2005. Resonant X-ray scattering experiments on electronic orderings in NdNiO3 single crystals. Phys. Rev. B 71:045128 [Google Scholar]
  93. Meyers D, Middey S, Kareev M, Liu J, Kim JW. 93.  et al. 2015. Charge order and antiferromagnetism in epitaxial ultrathin films of EuNiO3. Phys. Rev. B 92:235126 [Google Scholar]
  94. Balachandran PV, Rondinelli JM. 94.  2013. Interplay of octahedral rotations and breathing distortions in charge-ordering perovskite oxides. Phys. Rev. B 88:054101 [Google Scholar]
  95. Lee SB, Chen R, Balents L. 95.  2011. Landau theory of charge and spin ordering in the nickelates. Phys. Rev. Lett. 106:016405 [Google Scholar]
  96. Lee SB, Chen R, Balents L. 96.  2011. Metal-insulator transition in a two-band model for the perovskite nickelates. Phys. Rev. B 84:165119 [Google Scholar]
  97. Scherwitzl R, Gariglio S, Gabay M, Zubko P, Gibert M, Triscone JM. 97.  2011. Metal-insulator transition in ultrathin LaNiO3 films. Phys. Rev. Lett. 106:246403 [Google Scholar]
  98. Liu J, Okamoto S, van Veenendaal M, Kareev M, Gray B. 98.  et al. 2011. Quantum confinement of Mott electrons in ultrathin LaNiO3/LaAlO3 superlattices. Phys. Rev. B 83:161102 [Google Scholar]
  99. Boris AV, Matiks Y, Benckiser E, Frano A, Popovich P. 99.  et al. 2011. Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332:937–40 [Google Scholar]
  100. Sakai E, Tamamitsu M, Yoshimatsu K, Okamoto S, Horiba K. 100.  et al. 2013. Gradual localization of Ni 3d states in LaNiO3 ultrathin films induced by dimensional crossover. Phys. Rev. B 87:075132 [Google Scholar]
  101. Kumah DP, Disa AS, Ngai JH, Chen H, Malashevich A. 101.  et al. 2014. Tuning the structure of nickelates to achieve two-dimensional electron conduction. Adv. Mater. 26:1935–40 [Google Scholar]
  102. Gray AX, Janotti A, Son J, LeBeau JM, Ueda S. 102.  et al. 2011. Insulating state of ultrathin epitaxial LaNiO3 thin films detected by hard X-ray photoemission. Phys. Rev. B 84:075104 [Google Scholar]
  103. Kaiser AM, Gray AX, Conti G, Son J, Greer A. 103.  et al. 2011. Suppression of near-Fermi level electronic states at the interface in a LaNiO3/(SrTiO3) superlattice. Phys. Rev. Lett. 107:116402 [Google Scholar]
  104. Hwang J, Son J, Zhang JY, Janotti A, Van de Walle CG, Stemmer S. 104.  2013. Structural origins of the properties of rare earth nickelate superlattices. Phys. Rev. B 87:060101 [Google Scholar]
  105. Frano A, Schierle E, Haverkort MW, Lu Y, Wu M. 105.  et al. 2013. Orbital control of noncollinear magnetic order in nickel oxide heterostructures. Phys. Rev. Lett. 111:106804 [Google Scholar]
  106. Berner G, Sing M, Pfaff F, Benckiser E, Wu M. 106.  et al. 2015. Dimensionality-tuned electronic structure of nickelate superlattices explored by soft-X-ray angle-resolved photoelectron spectroscopy. Phys. Rev. B 92:125130 [Google Scholar]
  107. Benckiser E, Haverkort MW, Brück S, Goering E, Macke S. 107.  et al. 2011. Orbital reflectometry of oxide heterostructures. Nat. Mater. 10:189–93 [Google Scholar]
  108. Wu M, Benckiser E, Haverkort MW, Frano A, Lu Y. 108.  et al. 2013. Strain and composition dependence of orbital polarization in nickel oxide superlattices. Phys. Rev. B 88:125124 [Google Scholar]
  109. Chaloupka J, Khaliullin G. 109.  2008. Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys. Rev. Lett. 100:016404 [Google Scholar]
  110. Hansmann P, Yang X, Toschi A, Khaliullin G, Andersen OK, Held K. 110.  2009. Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. Phys. Rev. Lett. 103:016401 [Google Scholar]
  111. Han MJ, Marianetti CA, Millis AJ. 111.  2010. Chemical control of orbital polarization in artificially structured transition-metal oxides: La2NiXO6 (X=B, Al, Ga, In) from first principles. Phys. Rev. B 82:134408 [Google Scholar]
  112. Han MJ, Wang X, Marianetti CA, Millis AJ. 112.  2011. Dynamical mean-field theory of nickelate superlattices. Phys. Rev. Lett. 107:206804 [Google Scholar]
  113. Freeland JW, Liu J, Kareev M, Gray B, Kim JW. 113.  et al. 2011. Orbital control in strained ultra-thin LaNiO3/LaAlO3 superlattices. Europhys. Lett. 96:57004 [Google Scholar]
  114. Disa AS, Kumah DP, Malashevich A, Chen H, Arena DA. 114.  et al. 2015. Orbital engineering in symmetry-breaking polar heterostructures. Phys. Rev. Lett. 114:026801 [Google Scholar]
  115. Blanca-Romero A, Pentcheva R. 115.  2011. Confinement-induced metal-to-insulator transition in strained LaNiO3/LaAlO3 superlattices. Phys. Rev. B 84:195450 [Google Scholar]
  116. Wu M, Benckiser E, Audehm P, Goering E, Wochner P. 116.  et al. 2015. Orbital reflectometry of PrNiO3/PrAlO3 superlattices. Phys. Rev. B 91:195130 [Google Scholar]
  117. May SJ, Santos TS, Bhattacharya A. 117.  2009. Onset of metallic behavior in strained (LaNiO3)n/(SrMnO3)2 superlattices. Phys. Rev. B 79:115127 [Google Scholar]
  118. Gibert M, Zubko P, Scherwitzl R, Íñiguez J, Triscone JM. 118.  2012. Exchange bias in LaNiO3-LaMnO3 superlattices. Nat. Mater. 11:195–98 [Google Scholar]
  119. Hoffman J, Tung IC, Nelson-Cheeseman BB, Liu M, Freeland JW, Bhattacharya A. 119.  2013. Charge transfer and interfacial magnetism in (LaNiO3)n/(LaMnO3)2 superlattices. Phys. Rev. B 88:144411 [Google Scholar]
  120. Grutter AJ, Yang H, Kirby BJ, Fitzsimmons MR, Aguiar JA. 120.  et al. 2013. Interfacial ferromagnetism in LaNiO3/CaMnO3 superlattices. Phys. Rev. Lett. 111:087202 [Google Scholar]
  121. Di Pietro P, Hoffman J, Bhattacharya A, Lupi S, Perucchi A. 121.  2015. Spectral weight redistribution in (LaNiO3)n/(LaMnO3)2 superlattices from optical spectroscopy. Phys. Rev. Lett. 114:156801 [Google Scholar]
  122. Piamonteze C, Gibert M, Heidler J, Dreiser J, Rusponi S. 122.  et al. 2015. Interfacial properties of LaMnO3/LaNiO3 superlattices grown along (001) and (111) orientations. Phys. Rev. B 92:014426 [Google Scholar]
  123. Chen H, Millis AJ, Marianetti CA. 123.  2013. Engineering correlation effects via artificially designed oxide superlattices. Phys. Rev. Lett. 111:116403 [Google Scholar]
  124. Cao Y, Liu X, Kareev M, Choudhury D, Middey S. 124.  et al. 2016. Engineered Mott ground state in a LaTiO3+δ/LaNiO3heterostructure. Nat. Commun. 7:10418
  125. Hoffman J, Kirby BJ, Kwon J, Freeland JW, Martin I. 125.  et al. 2014. Oscillatory non-collinear magnetism induced by interfacial charge transfer in metallic oxide superlattices. arXiv 1411.4344 [cond-mat.mtrl-sci]
  126. Chen H, Kumah DP, Disa AS, Walker FJ, Ahn CH, Ismail-Beigi S. 126.  2013. Modifying the electronic orbitals of nickelate heterostructures via structural distortions. Phys. Rev. Lett. 110:186402 [Google Scholar]
  127. Xiao D, Zhu W, Ran Y, Nagaosa N, Okamoto S. 127.  2011. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2:596 [Google Scholar]
  128. Rüegg A, Fiete GA. 128.  2011. Topological insulators from complex orbital order in transition-metal oxides heterostructures. Phys. Rev. B 84:201103 [Google Scholar]
  129. Yang KY, Zhu W, Xiao D, Okamoto S, Wang Z, Ran Y. 129.  2011. Possible interaction-driven topological phases in (111) bilayers of LaNiO3. Phys. Rev. B 84:201104 [Google Scholar]
  130. Wang F, Ran Y. 130.  2011. Nearly flat band with Chern number C=2 on the dice lattice. Phys. Rev. B 84:241103 [Google Scholar]
  131. Rüegg A, Mitra C, Demkov AA, Fiete GA. 131.  2012. Electronic structure of (LaNiO3)2/(LaAlO3)N heterostructures grown along [111]. Phys. Rev. B 85:245131 [Google Scholar]
  132. Rüegg A, Mitra C, Demkov AA, Fiete GA. 132.  2013. Lattice distortion effects on topological phases in (LaNiO3)2/(LaAlO3)N heterostructures grown along the [111] direction. Phys. Rev. B 88:115146 [Google Scholar]
  133. Doennig D, Pickett WE, Pentcheva R. 133.  2014. Confinement-driven transitions between topological and Mott phases in (LaNiO3)N/(LaAlO3)M (111) superlattices. Phys. Rev. B 89:121110 [Google Scholar]
  134. Middey S, Rivero P, Meyers D, Kareev M, Liu X. 134.  et al. 2014. Polarity compensation in ultra-thin films of complex oxides: the case of a perovskite nickelate. Sci. Rep. 4:6819 [Google Scholar]
  135. Middey S, Meyers D, Kareev M, Moon EJ, Gray BA. 135.  et al. 2012. Epitaxial growth of (111)-oriented LaAlO3/LaNiO3 ultra-thin superlattices. Appl. Phys. Lett. 101:261602 [Google Scholar]
  136. Middey S, Meyers D, Doennig D, Kareev M, Liu X. 136.  et al. 2016. Mott electrons in an artificial graphenelike crystal of rare-earth nickelate. Phys. Rev. Lett.. 116:056801
  137. Kinyanjui MK, Lu Y, Gauquelin N, Wu M, Frano A. 137.  et al. 2014. Lattice distortions and octahedral rotations in epitaxially strained LaNiO3/LaAlO3 superlattices. Appl. Phys. Lett. 104:221909 [Google Scholar]
  138. Mazin II, Khomskii DI, Lengsdorf R, Alonso JA, Marshall WG. 138.  et al. 2007. Charge ordering as alternative to Jahn-Teller distortion. Phys. Rev. Lett. 98:176406 [Google Scholar]
  139. Park H, Millis AJ, Marianetti CA. 139.  2014. Total energy calculations using DFT + DMFT: computing the pressure phase diagram of the rare earth nickelates. Phys. Rev. B 89:245133 [Google Scholar]
  140. Park H, Millis AJ, Marianetti CA. 140.  2014. Computing total energies in complex materials using charge self-consistent DFT + DMFT. Phys. Rev. B 90:235103 [Google Scholar]
  141. He Z, Millis AJ. 141.  2015. Strain control of electronic phase in rare earth nickelates. Phys. Rev. B 91:195138 [Google Scholar]
  142. Prosandeev S, Bellaiche L, Iniguez J. 142.  2012. Ab initio study of the factors affecting the ground state of rare-earth nickelates. Phys. Rev. B 85:214431 [Google Scholar]
  143. Puggioni D, Filippetti A, Fiorentini V. 143.  2012. Ordering and multiple phase transitions in ultrathin nickelate superlattices. Phys. Rev. B 86:195132 [Google Scholar]
  144. Zhang FC, Rice TM. 144.  1988. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37:3759–61 [Google Scholar]
  145. de’ Medici L, Wang X, Capone M, Millis AJ. 145.  2009. Correlation strength, gaps, and particle-hole asymmetry in high-Tc cuprates: a dynamical mean field study of the three-band copper-oxide model. Phys. Rev. B 80:054501 [Google Scholar]
  146. Wang X, de’ Medici L, Millis AJ. 146.  2011. Role of oxygen-oxygen hopping in the three-band copper-oxide model: quasiparticle weight, metal insulator and magnetic phase boundaries, gap values and optical conductivity. Phys. Rev. B 83:094501 [Google Scholar]
  147. Park H, Millis AJ, Marianetti CA. 147.  2012. Site-selective Mott transition in rare-earth-element nickelates. Phys. Rev. Lett. 109:156402 [Google Scholar]
  148. Liechtenstein AI, Anisimov VI, Zaanen J. 148.  1995. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52:R5467–70 [Google Scholar]
  149. Karolak M, Ulm G, Wehling T, Mazurenko V, Poteryaev A, Lichtenstein A. 149.  2010. Double counting in LDA plus DMFT—the example of NiO. J. Electron Spectrosc. Relat. Phenom. 181:11–15 [Google Scholar]
  150. Johnston S, Mukherjee A, Elfimov I, Berciu M, Sawatzky GA. 150.  2014. Charge disproportionation without charge transfer in the rare-earth-element nickelates as a possible mechanism for the metal-insulator transition. Phys. Rev. Lett. 112:106404 [Google Scholar]
  151. Subedi A, Peil OE, Georges A. 151.  2015. Low-energy description of the metal-insulator transition in the rare-earth nickelates. Phys. Rev. B 91:075128 [Google Scholar]
  152. Zhang Z, Greenblatt M, Goodenough J. 152.  1994. Synthesis, structure, and properties of the layered perovskite La3Ni2O7−δ. J. Solid State Chem. 108:402 [Google Scholar]
  153. Yoshizawa H, Kakeshita T, Kajimoto R, Tanabe T, Katsufuji T, Tokura Y. 153.  2000. Stripe order at low temperatures in La2−xSrxNiO4 with 0.289 < x < 0.5. Phys. Rev. B 61:R854–57 [Google Scholar]
  154. Poltavets VV, Greenblatt M, Fecher GH, Felser C. 154.  2009. Electronic properties, band structure, and Fermi surface instabilities of Ni1+/Ni2+ nickelate La3Ni2O6, isoelectronic with superconducting cuprates. Phys. Rev. Lett. 102:046405 [Google Scholar]
  155. Poltavets VV, Lokshin KA, Nevidomskyy AH, Croft M, Tyson TA. 155.  et al. 2010. Bulk magnetic order in a two-dimensional Ni1+/Ni2+ (d9/d8) nickelate, isoelectronic with superconducting cuprates. Phys. Rev. Lett. 104:206403 [Google Scholar]
  156. Cheng JG, Zhou JS, Goodenough JB, Zhou HD, Matsubayashi K. 156.  et al. 2012. Pressure effect on the structural transition and suppression of the high-spin state in the triple-layer T’′-La4Ni3O8. Phys. Rev. Lett. 108:236403 [Google Scholar]
  157. Nelson-Cheeseman BB, Zhou H, Balachandran PV, Fabbris G, Hoffman J. 157.  et al. 2014. Polar cation ordering: a route to introducing >10% bond strain into layered oxide films. Adv. Funct. Mater. 24:6884–91 [Google Scholar]
  158. Reynaud F, Mertz D, Celestini F, Debierre JM, Ghorayeb AM. 158.  et al. 2001. Orbital frustration at the origin of the magnetic behavior in LiNiO2. Phys. Rev. Lett. 86:3638–41 [Google Scholar]
  159. Kang JS, Lee SS, Kim G, Lee HJ, Song HK. 159.  et al. 2007. Valence and spin states in delafossite AgNiO2 and the frustrated Jahn-Teller system ANiO2 (A=Li, Na). Phys. Rev. B 76:195122 [Google Scholar]
  160. Zhang J, Averitt RD. 160.  2014. Dynamics and control in complex transition metal oxides. Annu. Rev. Mater. Res. 44:19–43 [Google Scholar]
  161. Ruello P, Zhang S, Laffez P, Perrin B, Gusev V. 161.  2007. Ultrafast electronic dynamics in the metal-insulator transition compound NdNiO3. Phys. Rev. B 76:165107 [Google Scholar]
  162. Ruello P, Zhang S, Laffez P, Perrin B, Gusev V. 162.  2009. Laser-induced coherent acoustical phonons mechanisms in the metal-insulator transition compound NdNiO3: thermal and nonthermal processes. Phys. Rev. B 79:094303 [Google Scholar]
  163. Caviglia AD, Först M, Scherwitzl R, Khanna V, Bromberger H. 163.  et al. 2013. Photoinduced melting of magnetic order in the correlated electron insulator NdNiO3. Phys. Rev. B 88:220401 [Google Scholar]
  164. Först M, Manzoni C, Kaiser S, Tomioka Y, Tokura Y. 164.  et al. 2011. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7:854 [Google Scholar]
  165. Kampfrath T, Tanaka K, Nelson KA. 165.  2013. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics 7:680 [Google Scholar]
  166. Rini M, Tobey R, Dean N, Itatani J, Tomioka Y. 166.  et al. 2007. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449:72–74 [Google Scholar]
  167. Fausti D, Tobey RI, Dean N, Kaiser S, Dienst A. 167.  et al. 2011. Light-induced superconductivity in a stripe-ordered cuprate. Science 331:189–91 [Google Scholar]
  168. Först M, Caviglia AD, Scherwitzl R, Mankowsky R, Zubko P. 168.  et al. 2015. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface. Nat. Mater. 14:883–88 [Google Scholar]
  169. Subedi A, Cavalleri A, Georges A. 169.  2014. Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89:220301 [Google Scholar]
  170. Ahn CH, Di Ventra M, Eckstein JN, Frisbie CD, Gershenson ME. 170.  et al. 2006. Electrostatic modification of novel materials. Rev. Mod. Phys. 78:1185–212 [Google Scholar]
  171. Ueno K, Shimotani H, Iwasa Y, Kawasaki M. 171.  2010. Electrostatic charge accumulation versus electrochemical doping in SrTiO3 electric double layer transistors. Appl. Phys. Lett. 96:252107 [Google Scholar]
  172. Asanuma S, Xiang PH, Yamada H, Sato H, Inoue IH. 172.  et al. 2010. Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films. Appl. Phys. Lett. 97:142110 [Google Scholar]
  173. Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S. 173.  et al. 2012. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487:459–62 [Google Scholar]
  174. Shi J, Zhou Y, Ramanathan S. 174.  2014. Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping. Nat. Commun. 5:4860 [Google Scholar]
  175. Ha SD, Vetter U, Shi J, Ramanathan S. 175.  2013. Electrostatic gating of metallic and insulating phases in SmNiO3 ultrathin films. Appl. Phys. Lett. 102:183102 [Google Scholar]
  176. Bubel S, Hauser AJ, Glaudell AM, Mates TE, Stemmer S, Chabinyc ML. 176.  2015. The electrochemical impact on electrostatic modulation of the metal-insulator transition in nickelates. Appl. Phys. Lett. 106:122102 [Google Scholar]
  177. Yang Z, Zhou Y, Ramanathan S. 177.  2012. Studies on room-temperature electric-field effect in ionic-liquid gated VO2 three-terminal devices. J. Appl. Phys. 111:014506 [Google Scholar]
  178. Jeong J, Aetukuri N, Graf T, Schladt TD, Samant MG, Parkin SSP. 178.  2013. Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation. Science 339:1402–5 [Google Scholar]
  179. Shi J, Ha SD, Zhou Y, Schoofs F, Ramanathan S. 179.  2013. A correlated nickelate synaptic transistor. Nat. Commun. 4:2676 [Google Scholar]
  180. Ha S, Shi J, Meroz Y, Mahadevan L, Ramanathan S. 180.  2014. Neuromimetic circuits with synaptic devices based on strongly correlated electron systems. Phys. Rev. Appl. 2:64003 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070115-032057
Loading
/content/journals/10.1146/annurev-matsci-070115-032057
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error