1932

Abstract

Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070214-020901
2015-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/matsci/45/1/annurev-matsci-070214-020901.html?itemId=/content/journals/10.1146/annurev-matsci-070214-020901&mimeType=html&fmt=ahah

Literature Cited

  1. Ahn J-H, Hong BH. 1.  2014. Graphene for displays that bend. Nat. Nanotechnol. 9:737–38 [Google Scholar]
  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y. 2.  et al. 2004. Electric field effect in atomically thin carbon films. Science 306:666–69 [Google Scholar]
  3. Novoselov KS, McCann E, Morozov SV, Fal'ko VI, Katsnelson MI. 3.  et al. 2006. Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene. Nat. Phys. 2:177–80 [Google Scholar]
  4. Jiang Z, Zhang Y, Tan YW, Stormer HL, Kim P. 4.  2007. Quantum Hall effect in graphene. Solid State Commun. 143:14–19 [Google Scholar]
  5. Jiang Z, Zhang Y, Stormer HL, Kim P. 5.  2007. Quantum Hall states near the charge-neutral Dirac point in graphene. Phys. Rev. Lett. 99:106802 [Google Scholar]
  6. Zhang Y, Tan Y-W, Stormer HL, Kim P. 6.  2005. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438:201–4 [Google Scholar]
  7. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL. 7.  et al. 2007. Room-temperature quantum Hall effect in graphene. Science 315:1379 [Google Scholar]
  8. Geim AK, Novoselov KS. 8.  2007. The rise of graphene. Nat. Mater. 6:183–91 [Google Scholar]
  9. Katsnelson MI. 9.  2007. Graphene: carbon in two dimensions. Mater. Today 10:20–27 [Google Scholar]
  10. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ. 10.  et al. 2006. Graphene-based composite materials. Nature 442:282–86 [Google Scholar]
  11. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A. 11.  et al. 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–65 [Google Scholar]
  12. Jung I, Dikin DA, Piner RD, Ruoff RS. 12.  2008. Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett. 8:4283–87 [Google Scholar]
  13. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M. 13.  et al. 2009. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47:145–52 [Google Scholar]
  14. Berger C, Song Z, Li X, Wu X, Brown N. 14.  et al. 2006. Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–96 [Google Scholar]
  15. de Heer WA, Berger C, Wu X, First PN, Conrad EH. 15.  et al. 2007. Epitaxial graphene. Solid State Commun. 143:92–100 [Google Scholar]
  16. Hass J, de Heer WA, Conrad EH. 16.  2008. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20:323202 [Google Scholar]
  17. Lin Y-M, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu H-Y. 17.  et al. 2010. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662 [Google Scholar]
  18. Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM. 18.  2010. Growth of graphene from solid carbon sources. Nature 468:549–52 [Google Scholar]
  19. Byun S-J, Lim H, Shin G-Y, Han T-H, Oh SH. 19.  et al. 2011. Graphenes converted from polymers. Phys. Chem. Lett. 2:493–97 [Google Scholar]
  20. Li X, Cai W, An J, Kim S, Nah J. 20.  et al. 2009. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–14 [Google Scholar]
  21. Kwon S-Y, Ciobanu CV, Petrova V, Shenoy VB, Bareño J. 21.  et al. 2009. Growth of semiconducting graphene on palladium. Nano Lett. 9:3985–90 [Google Scholar]
  22. Sutter PW, Flege J-I, Sutter EA. 22.  2008. Epitaxial graphene on ruthenium. Nat. Mater. 7:406–11 [Google Scholar]
  23. Coraux J, N'Diaye AT, Busse C, Michely T. 23.  2008. Structural coherency of graphene on Ir(111). Nano Lett. 8:565–70 [Google Scholar]
  24. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM. 24.  et al. 2009. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–10 [Google Scholar]
  25. Shin H-A-S, Ryu J, Cho S-P, Lee E-K, Cho S. 25.  et al. 2014. Highly uniform growth of monolayer graphene by chemical vapor deposition on Cu-Ag alloy catalysts. Phys. Chem. Chem. Phys. 16:3087–94 [Google Scholar]
  26. Dai B, Fu L, Zou Z, Wang M, Xu H. 26.  et al. 2011. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2:522 [Google Scholar]
  27. Chen S, Brown L, Levendorf M, Cai W, Ju S-Y. 27.  et al. 2011. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5:1321–27 [Google Scholar]
  28. Bae S, Kim H, Lee Y, Xu X, Park J-S. 28.  et al. 2010. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5:574–78 [Google Scholar]
  29. Kobayashi T, Bando M, Kimura N, Shimizu K, Kadono K. 29.  et al. 2013. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102:023112 [Google Scholar]
  30. Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L. 30.  et al. 2008. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19:305604 [Google Scholar]
  31. Malesevic A, Kemps R, Vanhulsel A, Chowdhury MP, Volodin A, Van Haesendonck C. 31.  2008. Field emission from vertically aligned few-layer graphene. J. Appl. Phys. 104:084301 [Google Scholar]
  32. Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A. 32.  et al. 2008. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18:3506–14 [Google Scholar]
  33. Kim Y-J, Kim SJ, Jung MH, Choi KY, Bae S. 33.  et al. 2012. Low-temperature growth and direct transfer of graphene-graphitic carbon films on flexible plastic substrates. Nanotechnology 23:344016 [Google Scholar]
  34. Lee Y, Bae S, Jang H, Jang S, Zhu S-E. 34.  et al. 2010. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10:490–93 [Google Scholar]
  35. Kang J, Hwang S, Kim JH, Kim MH, Ryu J. 35.  et al. 2012. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS Nano 6:5360–65 [Google Scholar]
  36. Güneş F, Shin H-J, Biswas C, Han GH, Kim ES. 36.  et al. 2010. Layer-by-layer doping of few-layer graphene film. ACS Nano 4:4595–600 [Google Scholar]
  37. Kasry A, Kuroda MA, Martyna GJ, Tulevski GS, Bol AA. 37.  2010. Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. ACS Nano 4:3839–44 [Google Scholar]
  38. Li X, Zhu Y, Cai W, Borysiak M, Han B. 38.  et al. 2009. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9:4359–63 [Google Scholar]
  39. Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M. 39.  et al. 2010. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 10:1542–48 [Google Scholar]
  40. Bi H, Sun S, Huang F, Xie X, Jiang M. 40.  2012. Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications. J. Mater. Chem. 22:411–16 [Google Scholar]
  41. Kim H, Song I, Park C, Son M, Hong M. 41.  et al. 2013. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 7:6575–82 [Google Scholar]
  42. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G. 42.  et al. 2008. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146:351–55 [Google Scholar]
  43. Lee C, Wei X, Kysar JW, Hone J. 43.  2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–88 [Google Scholar]
  44. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ. 44.  et al. 2008. Fine structure constant defines visual transparency of graphene. Science 320:1308 [Google Scholar]
  45. Park J, Lee WH, Huh S, Sim SH, Kim SB. 45.  et al. 2011. Work-function engineering of graphene electrodes by self-assembled monolayers for high-performance organic field-effect transistors. J. Phys. Chem. Lett. 2:841–45 [Google Scholar]
  46. Park J, Jo SB, Yu Y-J, Kim Y, Yang JW. 46.  et al. 2012. Single-gate bandgap opening of bilayer graphene by dual molecular doping. Adv. Mater. 24:407–11 [Google Scholar]
  47. Wu J, Xie L, Li Y, Wang H, Ouyang Y. 47.  et al. 2011. Controlled chlorine plasma reaction for noninvasive graphene doping. J. Am. Chem. Soc. 133:19668–71 [Google Scholar]
  48. Guo B, Liu Q, Chen E, Zhu H, Fang L, Gong JR. 48.  2010. Controllable N-doping of graphene. Nano Lett. 10:4975–80 [Google Scholar]
  49. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. 49.  2009. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9:1752–58 [Google Scholar]
  50. Chen W, Chen S, Qi DC, Gao XY, Wee ATS. 50.  2007. Surface transfer p-type doping of epitaxial graphene. J. Am. Chem. Soc. 129:10418–22 [Google Scholar]
  51. Medina H, Lin Y-C, Obergfell D, Chiu P-W. 51.  2011. Tuning of charge densities in graphene by molecule doping. Adv. Funct. Mater. 21:2687–92 [Google Scholar]
  52. Kim SJ, Ryu J, Son S, Yoo JM, Park JB. 52.  et al. 2014. Simultaneous etching and doping by Cu-stabilizing agent for high-performance graphene-based transparent electrodes. Chem. Mater. 26:2332–36 [Google Scholar]
  53. Bonaccorso F, Sun Z, Hasan T, Ferrari AC. 53.  2010. Graphene photonics and optoelectronics. Nature Photonics 4:611–22 [Google Scholar]
  54. Ellmer K. 54.  2012. Past achievements and future challenges in the development of optically transparent electrodes. Nature Photonics 6:809–17 [Google Scholar]
  55. Hecht DS, Hu L, Irvin G. 55.  2011. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23:1482–513 [Google Scholar]
  56. Sierros KA, Morris NJ, Kukureka SN, Cairns DR. 56.  2009. Dry and wet sliding wear of ITO-coated PET components used in flexible optoelectronic applications. Wear 267:625–31 [Google Scholar]
  57. Cairns DR, Witte RP, Sparacin DK, Sachsman SM, Paine DC. 57.  et al. 2000. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 76:1425–27 [Google Scholar]
  58. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. 58.  2008. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–70 [Google Scholar]
  59. He Q, Wu S, Gao S, Cao X, Yin Z. 59.  et al. 2011. Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5:5038–44 [Google Scholar]
  60. Wu S, Yin Z, He Q, Huang X, Zhou X, Zhang H. 60.  2010. Electrochemical deposition of semiconductor oxides on reduced graphene oxide–based flexible, transparent, and conductive electrodes. J. Phys. Chem. C 114:11816–21 [Google Scholar]
  61. Eda G, Fanchini G, Chhowalla M. 61.  2008. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3:270–74 [Google Scholar]
  62. Wang J, Liang M, Fang Y, Qiu T, Zhang J, Zhi L. 62.  2012. Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24:2874–78 [Google Scholar]
  63. Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP. 63.  2009. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21:2950–56 [Google Scholar]
  64. Ryu J, Kim Y, Won D, Kim N, Park JS. 64.  et al. 2013. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 8:950–56 [Google Scholar]
  65. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI. 65.  et al. 2005. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200 [Google Scholar]
  66. Lu C-C, Lin Y-C, Yeh C-H, Huang J-C, Chiu P-W. 66.  2012. High mobility flexible graphene field-effect transistors with self-healing gate dielectrics. ACS Nano 6:4469–74 [Google Scholar]
  67. Park J-U, Nam S, Lee M-S, Lieber CM. 67.  2012. Synthesis of monolithic graphene–graphite integrated electronics. Nat. Mater. 11:120–25 [Google Scholar]
  68. Sire C, Ardiaca F, Lepilliet S, Seo J-WT, Hersam MC. 68.  et al. 2012. Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett. 12:1184–88 [Google Scholar]
  69. Kim BJ, Jang H, Lee S-K, Hong BH, Ahn J-H, Cho JH. 69.  2010. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 10:3464–66 [Google Scholar]
  70. Lee S-K, Kim BJ, Jang H, Yoon SC, Lee C. 70.  et al. 2011. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11:4642–46 [Google Scholar]
  71. Kim BJ, Lee S-K, Kang MS, Ahn J-H, Cho JH. 71.  2012. Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano 6:8646–51 [Google Scholar]
  72. Han MY, Özyilmaz B, Zhang Y, Kim P. 72.  2007. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98:206805 [Google Scholar]
  73. Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX. 73.  2008. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2:2301–5 [Google Scholar]
  74. Zhang Y, Tang T-T, Girit C, Hao Z, Martin MC. 74.  et al. 2009. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820–23 [Google Scholar]
  75. Zhou SY, Gweon GH, Fedorov AV, First PN, de Heer WA. 75.  et al. 2007. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6:770–75 [Google Scholar]
  76. Yoon J, Park W, Bae G-Y, Kim Y, Jang HS. 76.  et al. 2013. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9:3295–300 [Google Scholar]
  77. Xu H, Wu J, Feng Q, Mao N, Wang C, Zhang J. 77.  2014. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 10:2300–6 [Google Scholar]
  78. Lee G-H, Yu Y-J, Cui X, Petrone N, Lee C-H. 78.  et al. 2013. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7:7931–36 [Google Scholar]
  79. Georgiou T, Jalil R, Belle BD, Britnell L, Gorbachev RV. 79.  et al. 2013. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8:100–3 [Google Scholar]
  80. Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD. 80.  et al. 2013. Strong light-matter interactions in heterostructures of atomically thin films. Science 340:1311–14 [Google Scholar]
  81. Das S, Gulotty R, Sumant AV, Roelofs A. 81.  2014. All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14:2861–66 [Google Scholar]
  82. Splendiani A, Sun L, Zhang Y, Li T, Kim J. 82.  et al. 2010. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10:1271–75 [Google Scholar]
  83. Wilson JA, Yoffe AD. 83.  1969. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18:193–335 [Google Scholar]
  84. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. 84.  2011. Single-layer MoS2 transistors. Nat Nanotechnol. 6:147–50 [Google Scholar]
  85. Zeng Z, Yin Z, Huang X, Li H, He Q. 85.  et al. 2011. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50:11093–97 [Google Scholar]
  86. Coleman JN, Lotya M, O'Neill A, Bergin SD, King PJ. 86.  et al. 2011. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–71 [Google Scholar]
  87. Wang X, Feng H, Wu Y, Jiao L. 87.  2013. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135:5304–7 [Google Scholar]
  88. Lee Y, Lee J, Bark H, Oh I-K, Ryu GH. 88.  et al. 2014. Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale 6:2821–26 [Google Scholar]
  89. Liu K-K, Zhang W, Lee Y-H, Lin Y-C, Chang M-T. 89.  et al. 2012. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12:1538–44 [Google Scholar]
  90. Zhang J, Yu H, Chen W, Tian X, Liu D. 90.  et al. 2014. Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 8:6024–30 [Google Scholar]
  91. Song I, Park C, Hong M, Baik J, Shin H-J, Choi HC. 91.  2014. Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition. Angew. Chem. Int. Ed. 53:1266–69 [Google Scholar]
  92. Duan X, Wang C, Shaw JC, Cheng R, Chen Y. 92.  et al. 2014. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9:1024–30 [Google Scholar]
  93. Chung K, Lee C-H, Yi G-C. 93.  2010. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 330:655–57 [Google Scholar]
  94. 94.  2011. Semiconductors: LEDs lift off. NPG Asia Mater. doi: 10.1038/asiamat.2011.10
  95. Ponce FA, Bour DP. 95.  1997. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386:351–59 [Google Scholar]
  96. Lee C-H, Kim Y-J, Hong YJ, Jeon S-R, Bae S. 96.  et al. 2011. Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films. Adv. Mater. 23:4614–19 [Google Scholar]
  97. Jeong YJ, Jang J, Nam S, Kim K, Kim LH. 97.  et al. 2014. High-performance organic complementary inverters using monolayer graphene electrodes. ACS Appl. Mater. Interfaces 6:6816–24 [Google Scholar]
  98. Ha J, Park S, Kim D, Ryu J, Lee C. 98.  et al. 2013. High-performance polymer light emitting diodes with interface-engineered graphene anodes. Org. Electron. 14:2324–30 [Google Scholar]
  99. Matyba P, Yamaguchi H, Eda G, Chhowalla M, Edman L, Robinson ND. 99.  2010. Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4:637–42 [Google Scholar]
  100. Kim D, Lee D, Lee Y, Jeon DY. 100.  2013. Work-function engineering of graphene anode by bis(trifluoromethanesulfonyl)amide doping for efficient polymer light-emitting diodes. Adv. Funct. Mater. 23:5049–55 [Google Scholar]
  101. Chang H, Wang G, Yang A, Tao X, Liu X. 101.  et al. 2010. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Adv. Funct. Mater. 20:2893–902 [Google Scholar]
  102. Han T-H, Lee Y, Choi M-R, Woo S-H, Bae S-H. 102.  et al. 2012. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photonics 6:105–10 [Google Scholar]
  103. Hyun WJ, Park OO, Chin BD. 103.  2013. Foldable graphene electronic circuits based on paper substrates. Adv. Mater. 25:4729–34 [Google Scholar]
  104. Mei Q, Zhang K, Guan G, Liu B, Wang S, Zhang Z. 104.  2010. Highly efficient photoluminescent graphene oxide with tunable surface properties. Chem. Commun. 46:7319–21 [Google Scholar]
  105. Loh KP, Bao Q, Eda G, Chhowalla M. 105.  2010. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2:1015–24 [Google Scholar]
  106. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I. 106.  et al. 2012. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24:5333–38 [Google Scholar]
  107. Lee BR, Kim J-W, Kang D, Lee DW, Ko S-J. 107.  et al. 2012. Highly efficient polymer light-emitting diodes using graphene oxide as a hole transport layer. ACS Nano 6:2984–91 [Google Scholar]
  108. Kwon W, Kim Y-H, Lee C-L, Lee M, Choi HC. 108.  et al. 2014. Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite. Nano Lett. 14:1306–11 [Google Scholar]
  109. Son DI, Kwon BW, Park DH, Seo W-S, Yi Y. 109.  et al. 2012. Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7:465–71 [Google Scholar]
  110. Yoo DY, Tu NDK, Lee SJ, Lee E, Jeon S-R. 110.  et al. 2014. Graphene oxide nanosheet wrapped white-emissive conjugated polymer nanoparticles. ACS Nano 8:4248–56 [Google Scholar]
  111. Armand M, Tarascon JM. 111.  2008. Building better batteries. Nature 451:652–57 [Google Scholar]
  112. Gwon H, Kim H-S, Lee KU, Seo D-H, Park YC. 112.  et al. 2011. Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 4:1277–83 [Google Scholar]
  113. Lee S-Y, Choi K-H, Choi W-S, Kwon YH, Jung H-R. 113.  et al. 2013. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ. Sci. 6:2414–23 [Google Scholar]
  114. Li S, Luo Y, Lv W, Yu W, Wu S. 114.  et al. 2011. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv. Energy Mater. 1:486–90 [Google Scholar]
  115. Li N, Chen Z, Ren W, Li F, Cheng H-M. 115.  2012. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. PNAS 109:17360–65 [Google Scholar]
  116. Huang X, Qi X, Boey F, Zhang H. 116.  2012. Graphene-based composites. Chem. Soc. Rev. 41:666–86 [Google Scholar]
  117. Zhao X, Hayner CM, Kung MC, Kung HH. 117.  2011. In-plane vacancy-enabled high-power Si–graphene composite electrode for lithium-ion batteries. Adv. Energy Mater. 1:1079–84 [Google Scholar]
  118. David L, Bhandavat R, Singh G. 118.  2014. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–70 [Google Scholar]
  119. Zhang LL, Zhao XS. 119.  2009. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38:2520–31 [Google Scholar]
  120. Lu Q, Chen JG, Xiao JQ. 120.  2013. Nanostructured electrodes for high-performance pseudocapacitors. Angew. Chem. Int. Ed. 52:1882–89 [Google Scholar]
  121. El-Kady MF, Strong V, Dubin S, Kaner RB. 121.  2012. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–30 [Google Scholar]
  122. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W. 122.  et al. 2011. Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–41 [Google Scholar]
  123. Strong V, Dubin S, El-Kady MF, Lech A, Wang Y. 123.  et al. 2012. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6:1395–403 [Google Scholar]
  124. Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H. 124.  et al. 2012. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12:1806–12 [Google Scholar]
  125. Meng Y, Zhao Y, Hu C, Cheng H, Hu Y. 125.  et al. 2013. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25:2326–31 [Google Scholar]
  126. Chen T, Xue Y, Roy AK, Dai L. 126.  2014. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8:1039–46 [Google Scholar]
  127. Zhao Y, Liu J, Hu Y, Cheng H, Hu C. 127.  et al. 2013. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 25:591–95 [Google Scholar]
  128. Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG. 128.  et al. 2011. Ultrathin planar graphene supercapacitors. Nano Lett. 11:1423–27 [Google Scholar]
  129. El-Kady MF, Kaner RB. 129.  2013. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4:1475 [Google Scholar]
  130. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C. 130.  2010. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–73 [Google Scholar]
  131. Liu Z, Li J, Yan F. 131.  2013. Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25:4296–301 [Google Scholar]
  132. Li S-S, Tu K-H, Lin C-C, Chen C-W, Chhowalla M. 132.  2010. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169–74 [Google Scholar]
  133. Park H, Brown PR, Bulović V, Kong J. 133.  2011. Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Lett. 12:133–40 [Google Scholar]
  134. Kim JK, Park MJ, Kim SJ, Wang DH, Cho SP. 134.  et al. 2013. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells. ACS Nano 7:7207–12 [Google Scholar]
  135. Choi D, Choi M-Y, Choi WM, Shin H-J, Park H-K. 135.  et al. 2010. Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 22:2187–92 [Google Scholar]
  136. Xue X, Deng P, He B, Nie Y, Xing L. 136.  et al. 2014. Flexible self-charging power cell for one-step energy conversion and storage. Adv. Energy Mater. 4:1301329 [Google Scholar]
  137. Kwon J, Seung W, Sharma BK, Kim S-W, Ahn J-H. 137.  2012. A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ. Sci. 5:8970–75 [Google Scholar]
  138. Park K-I, Xu S, Liu Y, Hwang G-T, Kang S-JL. 138.  et al. 2010. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10:4939–43 [Google Scholar]
  139. Park K-I, Lee M, Liu Y, Moon S, Hwang G-T. 139.  et al. 2012. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 24:2999–3004 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070214-020901
Loading
/content/journals/10.1146/annurev-matsci-070214-020901
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error