1932

Abstract

Interest in 2D materials and van der Waals solids is growing exponentially across various scientific and engineering disciplines owing to their fascinating electrical, optical, chemical, and thermal properties. Whereas the micromechanical exfoliation technique has been adopted for rapid material characterization and demonstration of innovative device ideas based on these 2D systems, significant advances have recently been made in large-scale homogeneous and heterogeneous growth of these materials. This review reflects recent progress and outlines future prospects of these novel 2D materials. We provide a holistic overview of the different synthesis and characterization techniques, electronic and photonic device characteristics, and catalytic properties of transition metal dichalcogenides and their heterostructures. We also comment on the challenges that need to be overcome for full-scale commercial implementation of this novel class of layered materials.

[Erratum, Closure]

An erratum has been published for this article:
Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids
Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070214-021034
2015-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/matsci/45/1/annurev-matsci-070214-021034.html?itemId=/content/journals/10.1146/annurev-matsci-070214-021034&mimeType=html&fmt=ahah

Literature Cited

  1. Feynman RP. 1.  1959. There's plenty of room at the bottom. Caltech Eng. Sci. 23:522–36 [Google Scholar]
  2. Frindt R. 2.  1965. Optical absorption of a few unit-cell layers of MoS2. Phys. Rev. 140:A536 [Google Scholar]
  3. Frindt R. 3.  1966. Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37:1928–29 [Google Scholar]
  4. Joensen P, Frindt R, Morrison SR. 4.  1986. Single-layer MoS2. Mater. Res. Bull. 21:457–61 [Google Scholar]
  5. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y. 5.  et al. 2004. Electric field effect in atomically thin carbon films. Science 306:666–69 [Google Scholar]
  6. Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V. 6.  et al. 2005. Two-dimensional atomic crystals. PNAS 102:10451–53 [Google Scholar]
  7. Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B. 7.  et al. 2014. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. PNAS 111:6198–202 [Google Scholar]
  8. Geim A, Grigorieva I. 8.  2013. Van der Waals heterostructures. Nature 499:419–25 [Google Scholar]
  9. Wieting TJ, Schlüter M. 9.  1979. Electrons and Phonons in Layered Crystal Structures. Dordrecht, Ger./Boston/London: D. Reidel
  10. Wypych F, Schöllhorn R. 10.  1992. 1T-MoS2, a new metallic modification of molybdenum disulfide. Chem. Commun. 1992:1386–88 [Google Scholar]
  11. Sandoval SJ, Yang D, Frindt R, Irwin J. 11.  1991. Raman study and lattice dynamics of single molecular layers of MoS2. Phys. Rev. B 44:3955 [Google Scholar]
  12. Morris R, Coleman R, Bhandari R. 12.  1972. Superconductivity and magnetoresistance in NbSe2. Phys. Rev. B 5:895 [Google Scholar]
  13. Wilson JA, Di Salvo F, Mahajan S. 13.  1975. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24:117–201 [Google Scholar]
  14. Naito M, Tanaka S. 14.  1982. Electrical transport properties in 2H-NbS2, -NbSe2, -TaS2 and -TaSe2. J. Phys. Soc. Jpn. 51:219–27 [Google Scholar]
  15. Nakashima S, Tokuda Y, Mitsuishi A, Aoki R, Hamaue Y. 15.  1982. Raman scattering from 2H-NbS2 and intercalated NbS2. Solid State Commun. 42:601–04 [Google Scholar]
  16. Ge W, Kawahara K, Tsuji M, Ago H. 16.  2013. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale 5:5773–78 [Google Scholar]
  17. Mak KF, Lee C, Hone J, Shan J, Heinz TF. 17.  2010. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105:136805 [Google Scholar]
  18. Kośmider K, González J, Fernández-Rossier J. 18.  2013. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys. Rev. B 88:245436 [Google Scholar]
  19. Zhang Y, Chang T-R, Zhou B, Cui Y-T, Yan H. 19.  et al. 2014. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9:111–15 [Google Scholar]
  20. Qiu DY, Felipe H, Louie SG. 20.  2013. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111:216805 [Google Scholar]
  21. Molina-Sánchez A, Sangalli D, Hummer K, Marini A, Wirtz L. 21.  2013. Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS2. Phys. Rev. B 88:045412 [Google Scholar]
  22. Xiao D, Liu G-B, Feng W, Xu X, Yao W. 22.  2012. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108:196802 [Google Scholar]
  23. Zhu Z, Cheng Y, Schwingenschlögl U. 23.  2011. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84:153402 [Google Scholar]
  24. Terrones H, Del Corro E, Feng S, Poumirol J, Rhodes D. 24.  et al. 2014. New first order Raman-active modes in few layered transition metal dichalcogenides. Sci. Rep. 4:4215 [Google Scholar]
  25. Mak KF, He K, Shan J, Heinz TF. 25.  2012. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7:494–98 [Google Scholar]
  26. Zeng H, Dai J, Yao W, Xiao D, Cui X. 26.  2012. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7:490–93 [Google Scholar]
  27. Huang S, Ling X, Liang L, Kong J, Terrones H. 27.  et al. 2014. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 14:5500–8 [Google Scholar]
  28. Hong X, Kim J, Shi S-F, Zhang Y, Jin C. 28.  et al. 2014. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9:682–86 [Google Scholar]
  29. Lee C-H, Lee G-H, van der Zande AM, Chen W, Li Y. 29.  et al. 2014. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9:676–81 doi: 10.1038/nnano.2014.150 [Google Scholar]
  30. Gong Y, Lin J, Wang X, Shi G, Lei S. 30.  et al. 2014. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13:1135–42 [Google Scholar]
  31. Yagoda H, Fales HA. 31.  1936. The separation and determination of tungsten and molybdenum. J. Am. Chem. Soc. 58:1494–501 [Google Scholar]
  32. Eggertsen FT, Roberts RM. 32.  1959. Molybdenum disulfide of high surface area. J. Phys. Chem. 63:1981–82 [Google Scholar]
  33. Arutyunyan L, Khurshudyan EK. 33.  1966. Synthesis of molybdenum disulfide from sulfomolybdate solutions at high temperatures. Geochem. Int. 3:479–85 [Google Scholar]
  34. Das S, Chen H-Y, Penumatcha AV, Appenzeller J. 34.  2012. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13:100–5 [Google Scholar]
  35. Salvatore GA, Münzenrieder N, Barraud C, Petti L, Zysset C. 35.  et al. 2013. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. ACS Nano 7:8809–15 [Google Scholar]
  36. Mercier J. 36.  1982. Recent developments in chemical vapor transport in closed tubes. J. Cryst. Growth 56:235–44 [Google Scholar]
  37. Al-Hilli A, Evans B. 37.  1972. The preparation and properties of transition metal dichalcogenide single crystals. J. Cryst. Growth 15:93–101 [Google Scholar]
  38. Ang R, Miyata Y, Ieki E, Nakayama K, Sato T. 38.  et al. 2013. Superconductivity and bandwidth-controlled Mott metal-insulator transition in 1T-TaS2−xSex. Phys. Rev. B 88:115145 [Google Scholar]
  39. Liu Y, Ang R, Lu W, Song W, Li L, Sun Y. 39.  2013. Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS2−xSex. Appl. Phys. Lett. 102:192602 [Google Scholar]
  40. Agarwal M, Nagi Reddy K, Patel H. 40.  1979. Growth of tungstenite single crystals by direct vapour transport method. J. Cryst. Growth 46:139–42 [Google Scholar]
  41. Agarwal M, Patel H, Nagireddy K. 41.  1977. Growth of single crystals of WSe2 by sublimation method. J. Cryst. Growth 41:84–86 [Google Scholar]
  42. Donley M, Murray P, McDevitt N. 42.  1988. Synthesis and characterization of MoS2 thin films grown by pulsed laser evaporation. MRS Proc. 140:277–82 [Google Scholar]
  43. Skrabalak SE, Suslick KS. 43.  2005. Porous MoS2 synthesized by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 127:9990–91 [Google Scholar]
  44. Regula M, Ballif C, Moser J, Lévy F. 44.  1996. Structural, chemical, and electrical characterisation of reactively sputtered WSx thin films. Thin Solid Films 280:67–75 [Google Scholar]
  45. Spalvins T. 45.  1992. Lubrication with sputtered MoS2 films: principles, operation, and limitations. J. Mater. Eng. Perform. 1:347–51 [Google Scholar]
  46. Pütz J, Aegerter MA. 46.  1999. Spin deposition of MoSx thin films. Thin Solid Films 351:119–24 [Google Scholar]
  47. Tan LK, Liu B, Teng JH, Guo S, Low HY, Loh KP. 47.  2014. Atomic layer deposition of a MoS2 film. Nanoscale 6:10584–88 [Google Scholar]
  48. Hadouda H, Pouzet J, Bernede J, Barreau A. 48.  1995. MoS2 thin film synthesis by soft sulfurization of a molybdenum layer. Mater. Chem. Phys. 42:291–97 [Google Scholar]
  49. Khelil A, Essaidi H, Bernede J, Bouacheria A, Pouzet J. 49.  1994. WSe2 thin-film realization by synthesis and by tarnishing. J. Phys. Condens. Matter 6:8527 [Google Scholar]
  50. Ohuchi F, Shimada T, Parkinson B, Ueno K, Koma A. 50.  1991. Growth of MoSe2 thin films with Van der Waals epitaxy. J. Cryst. Growth 111:1033–37 [Google Scholar]
  51. Boscher ND, Blackman CS, Carmalt CJ, Parkin IP, Prieto AG. 51.  2007. Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. Appl. Surf. Sci. 253:6041–46 [Google Scholar]
  52. Chung J-W, Dai Z, Ohuchi F. 52.  1998. WS2 thin films by metal organic chemical vapor deposition. J. Cryst. Growth 186:137–50 [Google Scholar]
  53. Hofmann WK. 53.  1988. Thin films of molybdenum and tungsten disulphides by metal organic chemical vapour deposition. J. Mater. Sci. 23:3981–86 [Google Scholar]
  54. Boscher ND, Carmalt CJ, Palgrave RG, Gil-Tomas JJ, Parkin IP. 54.  2006. Atmospheric pressure CVD of molybdenum diselenide films on glass. Chem. Vapor Depos. 12:692–98 [Google Scholar]
  55. Carmalt CJ, Parkin IP, Peters ES. 55.  2003. Atmospheric pressure chemical vapour deposition of WS2 thin films on glass. Polyhedron 22:1499–505 [Google Scholar]
  56. Imanishi N, Kanamura K, Takehara Zi. 56.  1992. Synthesis of MoS2 thin film by chemical vapor deposition method and discharge characteristics as a cathode of the lithium secondary battery. J. Electrochem. Soc. 139:2082–87 [Google Scholar]
  57. Liu K-K, Zhang W, Lee Y-H, Lin Y-C, Chang M-T. 57.  et al. 2012. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12:1538–44 [Google Scholar]
  58. Ugeda MM, Bradley AJ, Shi S-F, da Jornada FH, Zhang Y. 58.  et al. 2014. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13:1091–95 [Google Scholar]
  59. Gutiérrez HR, Perea-López N, Elías AL, Berkdemir A, Wang B. 59.  et al. 2012. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13:3447–54 [Google Scholar]
  60. Lee YH, Zhang XQ, Zhang W, Chang MT, Lin CT. 60.  et al. 2012. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24:2320–25 [Google Scholar]
  61. Yu Y, Li C, Liu Y, Su L, Zhang Y, Cao L. 61.  2013. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3:1866 [Google Scholar]
  62. Levendorf MP, Kim C-J, Brown L, Huang PY, Havener RW. 62.  et al. 2012. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488:627–32 [Google Scholar]
  63. Eichfeld SM, Eichfeld CM, Lin Y-C, Hossain L, Robinson JA. 63.  2014. Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry. APL Mater. 2:092508 [Google Scholar]
  64. Späh R, Lux-Steiner M, Obergfell M, Bucher E, Wagner S. 64.  1985. n-MoSe2/p-WSe2 heterojunctions. Appl. Phys. Lett. 47:871–73 [Google Scholar]
  65. Britnell L, Gorbachev R, Jalil R, Belle B, Schedin F. 65.  et al. 2012. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335:947–50 [Google Scholar]
  66. Gao G, Gao W, Cannuccia E, Taha-Tijerina J, Balicas L. 66.  et al. 2012. Artificially stacked atomic layers: toward new van der Waals solids. Nano Lett. 12:3518–25 [Google Scholar]
  67. Roy T, Tosun M, Kang JS, Sachid AB, Desai S. 67.  et al. 2014. Field-effect transistors built from all two-dimensional material components. ACS Nano 8:6259–64 [Google Scholar]
  68. Agarwal M, Vashi M, Jani A. 68.  1985. Growth and characterization of layer compounds in the series WSxSe2−x. J. Cryst. Growth 71:415–20 [Google Scholar]
  69. Haigh S, Gholinia A, Jalil R, Romani S, Britnell L. 69.  et al. 2012. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11:764–67 [Google Scholar]
  70. Wang W, Leung K, Fong W, Wang S, Hui Y. 70.  et al. 2012. Molecular beam epitaxy growth of high quality p-doped SnS van der Waals epitaxy on a graphene buffer layer. J. Appl. Phys. 111:093520 [Google Scholar]
  71. Liu Z, Song L, Zhao S, Huang J, Ma L. 71.  et al. 2011. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11:2032–37 [Google Scholar]
  72. Shi Y, Zhou W, Lu A-Y, Fang W, Lee Y-H. 72.  et al. 2012. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12:2784–91 [Google Scholar]
  73. Li X, Cai W, An J, Kim S, Nah J. 73.  et al. 2009. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–14 [Google Scholar]
  74. De Heer WA, Berger C, Wu X, First PN, Conrad EH. 74.  et al. 2007. Epitaxial graphene. Solid State Commun. 143:92–100 [Google Scholar]
  75. Brodie BC. 75.  1859. On the atomic weight of graphite. Philos. Trans. R. Soc.249–59
  76. Vinod S, Tiwary CS, da Silva Autreto PA, Taha-Tijerina J, Ozden S. 76.  et al. 2014. Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers. Nat. Commun. 5:4541 [Google Scholar]
  77. Agarwal M, Patel P, Joshi R. 77.  1986. Growth conditions and structural characterization of MoSexTe2−x (0 ≤ x ≤ 2) single crystals. J. Mater. Sci. Lett. 5:66–68 [Google Scholar]
  78. Agarwal M, Talele L. 78.  1986. Transport properties of molybdenum sulphoselenide (MoSxSe2−x, 0 ≤ x ≤ 2). Solid State Commun. 59:549–51 [Google Scholar]
  79. Palit D, Srivastava S, Chakravorti M. 79.  1996. Synthesis and characterization of molybdenum-tungsten mixed sulphoselenide, Mo0.5W05SxSe2−x (O ≤ x ≤ 2). J. Mater. Sci. Lett. 15:1115–18 [Google Scholar]
  80. Huang C, Wu S, Sanchez AM, Peters JJ, Beanland R. 80.  et al. 2014. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13:1096–101 [Google Scholar]
  81. Lin Z, Thee MT, Elías AL, Feng S, Zhou C. 81.  et al. 2014. Facile synthesis of MoS2 and MoxW1−xS2 triangular monolayers. APL Mater. 2:092804 [Google Scholar]
  82. Feng Q, Zhu Y, Hong J, Zhang M, Duan W. 82.  et al. 2014. Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys. Adv. Mater. 26:2648–53 [Google Scholar]
  83. Gong Y, Liu Z, Lupini AR, Shi G, Lin J. 83.  et al. 2013. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 14:442–49 [Google Scholar]
  84. Chen J, Wang C. 84.  1974. Second order Raman spectrum of MoS2. Solid State Commun. 14:857–60 [Google Scholar]
  85. Sekine T, Izumi M, Nakashizu T, Uchinokura K, Matsuura E. 85.  1980. Raman scattering and infrared reflectance in 2H-MoSe2. J. Phys. Soc. Jpn. 49:1069–77 [Google Scholar]
  86. Stacy A, Hodul D. 86.  1985. Raman spectra of IVB and VIB transition metal disulfides using laser energies near the absorption edges. J. Phys. Chem. Solids 46:405–09 [Google Scholar]
  87. Mead D, Irwin J. 87.  1977. Long wavelength optic phonons in WSe2. Can. J. Phys. 55:379–82 [Google Scholar]
  88. Luo X, Zhao Y, Zhang J, Toh M, Kloc C. 88.  et al. 2013. Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2. Phys. Rev. B 88:195313 [Google Scholar]
  89. Tonndorf P, Schmidt R, Böttger P, Zhang X, Börner J. 89.  et al. 2013. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21:4908–16 [Google Scholar]
  90. Berkdemir A, Gutiérrez HR, Botello-Méndez AR, Perea-López N, Elías AL. 90.  et al. 2013. Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3:1755 [Google Scholar]
  91. Zhang X, Han W, Wu J, Milana S, Lu Y. 91.  et al. 2013. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 87:115413 [Google Scholar]
  92. del Corro E, Terrones H, Elias AL, Fantini C, Feng S. 92.  et al. 2014. Excited excitonic states in 1L, 2L, 3L and bulk WSe2 observed by resonant Raman spectroscopy. ACS Nano 8:9629–35 [Google Scholar]
  93. Chiritescu C, Cahill DG, Nguyen N, Johnson D, Bodapati A. 93.  et al. 2007. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315:351–53 [Google Scholar]
  94. Muratore C, Varshney V, Gengler J, Hu J, Bultman J. 94.  et al. 2013. Cross-plane thermal properties of transition metal dichalcogenides. Appl. Phys. Lett. 102:081604 [Google Scholar]
  95. Muratore C, Varshney V, Gengler J, Hu J, Bultman J. 95.  et al. 2014. Thermal anisotropy in nano-crystalline MoS2 thin films. Phys. Chem. Chem. Phys. 16:1008–14 [Google Scholar]
  96. Lin YF, Xu Y, Wang ST, Li SL, Yamamoto M. 96.  et al. 2014. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 26:3263–69 [Google Scholar]
  97. Hwang WS, Remskar M, Yan R, Protasenko V, Tahy K. 97.  et al. 2012. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 101:013107 [Google Scholar]
  98. Liu D, Guo Y, Fang L, Robertson J. 98.  2013. Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl. Phys. Lett. 103:183113 [Google Scholar]
  99. Chuang S, Battaglia C, Azcatl A, McDonnell S, Kang JS. 99.  et al. 2014. MoS2p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14:1337–42 doi: 10.1021/nl4043505 [Google Scholar]
  100. Das S, Prakash A, Salazar R, Appenzeller J. 100.  2014. Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. ACS Nano 8:1681–89 [Google Scholar]
  101. Chuang H-J, Tan X, Ghimire NJ, Perera MM, Chamlagain B. 101.  et al. 2014. High mobility WSe2 p-and n-type field effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 14:3594–601 [Google Scholar]
  102. Das S, Gulotty R, Sumant AV, Roelofs A. 102.  2014. All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14:2861–66 [Google Scholar]
  103. Kappera R, Voiry D, Yalcin SE, Branch B, Gupta G. 103.  et al. 2014. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13:1128–34 [Google Scholar]
  104. Larentis S, Fallahazad B, Tutuc E. 104.  2012. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101:223104 [Google Scholar]
  105. Fathipour S, Ma N, Hwang WS, Protasenko V, Vishwanath S. 105.  et al. 2014. Exfoliated multilayer MoTe2 field-effect transistors. Appl. Phys. Lett. 105:192101 [Google Scholar]
  106. Pradhan NR, Rhodes D, Feng S, Xin Y, Memaran S. 106.  et al. 2014. Field-effect transistors based on few-layered α-MoTe2. ACS Nano 8:5911–20 [Google Scholar]
  107. Das S, Appenzeller J. 107.  2013. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 103:103501 [Google Scholar]
  108. Das S, Dubey M, Roelofs A. 108.  2014. High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors. Appl. Phys. Lett. 105:083511 [Google Scholar]
  109. Liu W, Kang J, Sarkar D, Khatami Y, Jena D, Banerjee K. 109.  2013. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13:1983–90 [Google Scholar]
  110. Wang Y, Zheng J, Ni Z, Fei R, Liu Q. 110.  et al. 2012. Half-metallic silicene and germanene nanoribbons: towards high-performance spintronics device. Nano 7:1250037 [Google Scholar]
  111. Late DJ, Liu B, Luo J, Yan A, Matte H. 111.  et al. 2012. GaS and GaSe ultrathin layer transistors. Adv. Mater. 24:3549–54 [Google Scholar]
  112. Su Y, Ebrish MA, Olson EJ, Koester SJ. 112.  2013. SnSe2 field-effect transistors with high drive current. Appl. Phys. Lett. 103:263104 [Google Scholar]
  113. Jacobs-Gedrim RB, Shanmugam M, Jain N, Durcan CA, Murphy MT. 113.  et al. 2013. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano 8:514–21 [Google Scholar]
  114. Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M, Roelofs A. 114.  2014. Tunable transport gap in phosphorene. Nano Lett. 14:5733–39 [Google Scholar]
  115. Li L, Yu Y, Ye GJ, Ge Q, Ou X. 115.  et al. 2014. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9:372–77 [Google Scholar]
  116. Liu H, Neal AT, Zhu Z, Luo Z, Xu X. 116.  et al. 2014. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8:4033–41 [Google Scholar]
  117. Das S, Appenzeller J. 117.  2013. Screening and interlayer coupling in multilayer MoS2. Phys. Status Solid. RRL 7:268–73 [Google Scholar]
  118. Lee G-H, Yu Y-J, Cui X, Petrone N, Lee C-H. 118.  et al. 2013. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7:7931–36 [Google Scholar]
  119. Zou X, Wang J, Chiu CH, Wu Y, Xiao X. 119.  et al. 2014. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv. Mater. 26:6255–61 [Google Scholar]
  120. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. 120.  2011. Single-layer MoS2 transistors. Nat. Nanotechnol. 6:147–50 [Google Scholar]
  121. Wang H, Yu L, Lee Y-H, Shi Y, Hsu A. 121.  et al. 2012. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12:4674–80 [Google Scholar]
  122. Yu L, Lee Y-H, Ling X, Santos EJ, Shin YC. 122.  et al. 2014. Graphene-MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14:3055–63 [Google Scholar]
  123. Tosun M, Chuang S, Fang H, Sachid AB, Hettick M. 123.  et al. 2014. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 8:4948–53 [Google Scholar]
  124. Tan Z, Tian H, Feng T, Zhao L, Xie D. 124.  et al. 2013. A small-signal generator based on a multi-layer graphene/molybdenum disulfide heterojunction. Appl. Phys. Lett. 103:263506 [Google Scholar]
  125. Lee HS, Min SW, Park MK, Lee YT, Jeon PJ. 125.  et al. 2012. MoS2 nanosheets for top-gate nonvolatile memory transistor channel. Small 8:3111–15 [Google Scholar]
  126. Wang J, Zou X, Xiao X, Xu L, Wang C. 126.  et al. 2014. Floating gate memory-based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics. Small 11:208–13 [Google Scholar]
  127. Gong C, Zhang H, Wang W, Colombo L, Wallace RM, Cho K. 127.  2013. Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103:053513 [Google Scholar]
  128. Georgiou T, Jalil R, Belle BD, Britnell L, Gorbachev RV. 128.  et al. 2013. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8:100–3 [Google Scholar]
  129. Pu J, Yomogida Y, Liu K-K, Li L-J, Iwasa Y, Takenobu T. 129.  2012. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12:4013–17 [Google Scholar]
  130. Wang L, Wang Y, Wong JI, Palacios T, Kong J, Yang HY. 130.  2014. Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 10:1101–5 [Google Scholar]
  131. Huo N, Yang S, Wei Z, Li S-S, Xia J-B, Li J. 131.  2014. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 4:5209 [Google Scholar]
  132. Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F. 132.  et al. 2014. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett. 104:031112 [Google Scholar]
  133. Nan H, Wang Z, Wang W, Liang Z, Lu Y. 133.  et al. 2014. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8:5738–45 [Google Scholar]
  134. Mouri S, Miyauchi Y, Matsuda K. 134.  2013. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13:5944–48 [Google Scholar]
  135. Wang Y, Ou JZ, Balendhran S, Chrimes AF, Mortazavi M. 135.  et al. 2013. Electrochemical control of photoluminescence in two-dimensional MoS2 nanoflakes. ACS Nano 7:10083–93 [Google Scholar]
  136. Shi H, Yan R, Bertolazzi S, Brivio J, Gao B. 136.  et al. 2013. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7:1072–80 [Google Scholar]
  137. Roy K, Padmanabhan M, Goswami S, Sai TP, Ramalingam G. 137.  et al. 2013. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8:826–30 [Google Scholar]
  138. Zhang W, Huang JK, Chen CH, Chang YH, Cheng YJ, Li LJ. 138.  2013. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 25:3456–61 [Google Scholar]
  139. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. 139.  2013. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8:497–501 [Google Scholar]
  140. Baugher BW, Churchill HO, Yang Y, Jarillo-Herrero P. 140.  2014. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9:262–67 [Google Scholar]
  141. Pospischil A, Furchi MM, Mueller T. 141.  2014. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9:257–61 [Google Scholar]
  142. Ross JS, Klement P, Jones AM, Ghimire NJ, Yan J. 142.  et al. 2014. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9:268–72 [Google Scholar]
  143. Jariwala D, Sangwan VK, Wu C-C, Prabhumirashi PL, Geier ML. 143.  et al. 2013. Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode. PNAS 110:18076–80 [Google Scholar]
  144. Yu WJ, Liu Y, Zhou H, Yin A, Li Z. 144.  et al. 2013. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8:952–58 [Google Scholar]
  145. Nørskov JK, Bligaard T, Logadottir A, Kitchin J, Chen J. 145.  et al. 2005. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152:J23–26 [Google Scholar]
  146. Li T, Galli G. 146.  2007. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111:16192–96 [Google Scholar]
  147. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. 147.  2007. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–2 [Google Scholar]
  148. Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H. 148.  2013. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5:263–75 [Google Scholar]
  149. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH. 149.  et al. 2005. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127:5308–9 [Google Scholar]
  150. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. 150.  2012. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11:963–69 [Google Scholar]
  151. Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF. 151.  2011. Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11:4168–75 [Google Scholar]
  152. Huang X, Zeng Z, Bao S, Wang M, Qi X. 152.  et al. 2013. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4:1444 [Google Scholar]
  153. Zeng Z, Tan C, Huang X, Bao S, Zhang H. 153.  2014. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 7:797–803 [Google Scholar]
  154. Gopalakrishnan D, Damien D, Shaijumon MM. 154.  2014. MoS2 quantum dot–interspersed exfoliated MoS2 nanosheets. ACS Nano 8:5297–303 [Google Scholar]
  155. Wang H, Lu Z, Xu S, Kong D, Cha JJ. 155.  et al. 2013. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. PNAS 110:19701–6 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070214-021034
Loading
/content/journals/10.1146/annurev-matsci-070214-021034
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error