1932

Abstract

Synthetic two-dimensional polymers (2DPs) are an emerging subclass of 2D materials that are accessible by mild and rational synthesis procedures. Because of their structure, which is reminiscent of a molecular fisherman's net, 2DPs strongly differ from conventional linear polymers. They are expected to show applications in fields such as gas separation, nonlinear optics, and miniaturization of optical devices. The article sketches the historic development that led to the first fully proven representatives, describing each case in detail and comparing the current main access routes. Insights into some application aspects are also given. Alternative synthesis routes are also presented, together with the critical analytical issues. Structure analysis is perhaps the greatest challenge in this field, which arises with regard to proving the periodic structure of a 2DP. This article intends to stimulate the interest of an interdisciplinary community to join forces to develop this promising field even more quickly.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070616-124040
2017-07-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/matsci/47/1/annurev-matsci-070616-124040.html?itemId=/content/journals/10.1146/annurev-matsci-070616-124040&mimeType=html&fmt=ahah

Literature Cited

  1. Berzelius JJ.1.  1832. Årsberättelse om Framstegen i Fysik och Kemi. Stockholm: P.A. Norstedt & Söner
  2. Staudinger H.2.  1920. Über Polymerisation. Ber. Dtsch. Chem. Ges. 53:61073–85 [Google Scholar]
  3. Mülhaupt R.3.  2004. Hermann Staudinger and the origin of macromolecular chemistry. Angew. Chem. Int. Ed. 43:91054–63 [Google Scholar]
  4. Odian G.4.  2004. Principles of Polymerization. Hoboken, NJ: John Wiley & Sons, 4th ed..
  5. 5. PlasticsEurope 2016. Plastics—the facts 2016. http://www.plasticseurope.org/Document/plastics—the-facts-2016-15787.aspx?FolID=2
  6. Lotsch BV.6.  2015. Vertical 2D heterostructures. Annu. Rev. Mater. Res. 45:85–109 [Google Scholar]
  7. Jiang S, Arguilla MQ, Cultrara ND, Goldberger JE. 7.  2015. Covalently-controlled properties by design in group IV graphene analogues. Acc. Chem. Res. 48:1144–51 [Google Scholar]
  8. Angelova P, Vieker H, Weber NE, Matei D, Reimer O. 8.  et al. 2013. A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes. ACS Nano 7:86489–97 [Google Scholar]
  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y. 9.  et al. 2004. Electric field effect in atomically thin carbon films. Science 306:5696666–69 [Google Scholar]
  10. Lee C, Wei X, Kysar JW, Hone J. 10.  2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:5887385–88 [Google Scholar]
  11. Engineering ToolBox. 11.  2016. Modulus of elasticity or Young's modulus—and tensile modulus for common materials http://www.engineeringtoolbox.com/young-modulus-d_417.html
  12. Kuzmenko AB, Van Heumen E, Carbone F, Van Der Marel D. 12.  2008. Universal optical conductance of graphite. Phys. Rev. Lett. 100:11117401 [Google Scholar]
  13. Geim AK, Novoselov KS. 13.  2007. The rise of graphene. Nat. Mater. 6:183–91 [Google Scholar]
  14. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D. 14.  et al. 2008. Superior thermal conductivity of single-layer graphene. Nano Lett 8:3902–7 [Google Scholar]
  15. Miró P, Audiffred M, Heine T. 15.  2014. An atlas of two-dimensional materials. Chem. Soc. Rev. 43:186537 [Google Scholar]
  16. Tran TT, Bray K, Ford MJ, Toth M, Aharonovich I. 16.  2015. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11:1–12 [Google Scholar]
  17. Ugeda MM, Bradley AJ, Shi S-F, da Jornada FH, Zhang Y. 17.  et al. 2014. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13:121091–95 [Google Scholar]
  18. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV. 18.  et al. 2005. Two-dimensional atomic crystals. PNAS 102:3010451–53 [Google Scholar]
  19. Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F. 19.  2011. 2D materials: to graphene and beyond. Nanoscale 3:120–30 [Google Scholar]
  20. Liu G, Komatsu N. 20.  2016. Efficient and scalable production of 2D material dispersions using hexahydroxytriphenylene as a versatile exfoliant and dispersant. ChemPhysChem 17:1557–67 [Google Scholar]
  21. Jin C, Lin F, Suenaga K, Iijima S. 21.  2009. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102:19195505 [Google Scholar]
  22. Ma R, Sasaki T. 22.  2010. Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22:455082–104 [Google Scholar]
  23. Li X, Zhu H. 23.  2015. Two-dimensional MoS2: properties, preparation, and applications. J. Mater. 1:133–44 [Google Scholar]
  24. Kim SJ, Choi K, Lee B, Kim Y, Hong BH. 24.  2015. Materials for flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Res. 45:63–84 [Google Scholar]
  25. Reina A, Jia X, Ho J, Nezich D, Son H. 25.  et al. 2009. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:130–35 [Google Scholar]
  26. Lee YH, Zhang XQ, Zhang W, Chang MT, Lin C-T. 26.  et al. 2012. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24:172320–25 [Google Scholar]
  27. Yu J, Li J, Zhang W, Chang H. 27.  2015. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6:6705–16 [Google Scholar]
  28. Englert JM, Dotzer C, Yang G, Schmid M, Papp C. 28.  et al. 2011. Covalent bulk functionalization of graphene. Nat. Chem. 3:4279–86 [Google Scholar]
  29. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH. 29.  2012. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57:71061–105 [Google Scholar]
  30. Kemp KC, Georgakilas V, Otyepka M, Bourlinos AB, Chandra V. 30.  et al. 2012. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112:116156–214 [Google Scholar]
  31. Gee G, Rideal EK. 31.  1935. Reactions in monolayers of drying oils. I. The oxidation of the maleic anhydride compound of β-elaeostearin. Proc. R. Soc. A 153:116–28 [Google Scholar]
  32. Gee G.32.  1935. Reactions in monolayers of drying oils. II. Polymerization of the oxidized forms of the maleic anhydride compound of β-elaeostearin. Proc. R. Soc. A 153:129–41 [Google Scholar]
  33. Sakamoto J, Van Heijst J, Lukin O, Schlüter AD. 33.  2009. Two-dimensional polymers: just a dream of synthetic chemists?. Angew. Chem. Int. Ed. 48:61030–69 [Google Scholar]
  34. Kunitake T.34.  1992. Synthetic bilayer membranes: molecular design, self-organization, and application. Angew. Chem. Int. Ed. 31:709–26 [Google Scholar]
  35. Stupp SI, Son S, Li LS, Lin HC, Keser M. 35.  1995. Bulk synthesis of two-dimensional polymers: the molecular recognition approach. J. Am. Chem. Soc. 117:5212–27 [Google Scholar]
  36. Michl J, Magnera TF. 36.  2002. Two-dimensional supramolecular chemistry with molecular tinkertoys. PNAS 99:84788–92 [Google Scholar]
  37. Hoffmann R.37.  1993. How should chemists think?. Sci. Am. 268:266–73 [Google Scholar]
  38. Schlüter AD.38.  1990. Aufbruch in die zweite Dimension. Nachr. Chem. Tech. Lab. 38:18–13 [Google Scholar]
  39. Chen L, Hernandez Y, Feng X, Müllen K. 39.  2012. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51:317640–54 [Google Scholar]
  40. Narita A, Wang X-Y, Feng X, Müllen K. 40.  2015. New advances in nanographene chemistry. Chem. Soc. Rev. 44:186616–43 [Google Scholar]
  41. Kissel P, Erni R, Schweizer WB, Rossell MD, King BT. 41.  et al. 2012. A two-dimensional polymer prepared by organic synthesis. Nat. Chem. 4:4287–91 [Google Scholar]
  42. Xiang Z, Cao D, Dai L. 42.  2015. Well-defined two-dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications. Polym. Chem. 6:111896–911 [Google Scholar]
  43. Rodríguez-San-Miguel D, Amo-Ochoa P, Zamora F. 43.  2016. MasterChem: cooking 2D-polymers. Chem. Commun. 52:224113–27 [Google Scholar]
  44. Zhuang X, Mai Y, Wu D, Zhang F, Feng X. 44.  2015. Two-dimensional soft nanomaterials: a fascinating world of materials. Adv. Mater. 27:3403–27 [Google Scholar]
  45. Boott CE, Nazemi A, Manners I. 45.  2015. Synthetic covalent and non-covalent 2D materials. Angew. Chem. Int. Ed. 54:4713876–94 [Google Scholar]
  46. Colson JW, Dichtel WR. 46.  2013. Rationally synthesized two-dimensional polymers. Nat. Chem. 5:6453–65 [Google Scholar]
  47. Lackinger M.47.  2015. On-surface polymerization—a versatile synthetic route to two-dimensional polymers. Polym. Int. 64:91073–78 [Google Scholar]
  48. Zang Y, Aoki T, Teraguchi M, Kaneko T, Ma L, Jia H. 48.  2015. Two-dimensional and related polymers: concepts, synthesis, and their potential application as separation membrane materials. Polym. Rev. 55:57–89 [Google Scholar]
  49. Baek K, Hwang I, Roy I, Shetty D, Kim K. 49.  2015. Self-assembly of nanostructured materials through irreversible covalent bond formation. Acc. Chem. Res. 48:82221–29 [Google Scholar]
  50. Cai SL, Zhang WG, Zuckermann RN, Li ZT, Zhao X, Liu Y. 50.  2015. The organic flatland—recent advances in synthetic 2D organic layers. Adv. Mater. 27:385762–70 [Google Scholar]
  51. Sakamoto R, Iwashima T, Tsuchiya M, Toyoda R, Matsuoka R. 51.  et al. 2015. New aspects in bis and tris(dipyrrinato)metal complexes: bright luminescence, self-assembled nanoarchitectures, and materials applications. J. Mater. Chem. A 3:3015357–71 [Google Scholar]
  52. Sakamoto J, Shinkai S. 52.  2016. Rational synthesis of 2D polymers towards designer nanosheets. Kobunshi Ronbunshu 73:42–54 [Google Scholar]
  53. Bhola R, Payamyar P, Murray DJ, Kumar B, Teator AJ. 53.  et al. 2013. A two-dimensional polymer from the anthracene dimer and triptycene motifs. J. Am. Chem. Soc. 135:3814134–41 [Google Scholar]
  54. Kissel P, Murray DJ, Wulftange WJ, Catalano VJ, King BT. 54.  2014. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6:9774–78 [Google Scholar]
  55. Kory MJ, Wörle M, Weber T, Payamyar P, van de Poll SW. 55.  et al. 2014. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 6:9779–84 [Google Scholar]
  56. Murray DJ, Patterson DD, Payamyar P, Bhola R, Song W. 56.  et al. 2015. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137:103450–53 [Google Scholar]
  57. Lee J, Farha OK, Roberts J, Scheidt K, Nguyen ST. 57.  et al. 2009. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38:51450–59 [Google Scholar]
  58. Zhang M, Feng G, Song Z, Zhou YP, Chao HY. 58.  et al. 2014. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136:207241–44 [Google Scholar]
  59. Fujita M, Kwon J. 59.  1994. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine. J. Am. Chem. Soc. 116:1151–52 [Google Scholar]
  60. Kondo M, Furukawa S, Hirai K, Kitagawa S. 60.  2010. Coordinatively immobilized monolayers on porous coordination polymer crystals. Angew. Chem. Int. Ed. 49:315327–30 [Google Scholar]
  61. Seo J, Whang D, Lee H, Jun S, Oh J. 61.  et al. 2000. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404:982–86 [Google Scholar]
  62. Xu SQ, Zhan TG, Wen Q, Pang ZF, Zhao X. 62.  2016. Diversity of covalent organic frameworks (COFs): a 2D COF containing two kinds of triangular micropores of different sizes. ACS Macro Lett 5:199–102 [Google Scholar]
  63. Smith BJ, Overholts AC, Hwang N, Dichtel WR. 63.  2016. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chem. Commun. 52:3690–93 [Google Scholar]
  64. Côté AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM. 64.  2007. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 129:4312914–15 [Google Scholar]
  65. Dalapati S, Addicoat M, Jin S, Sakurai T, Gao J. 65.  et al. 2015. Rational design of crystalline supermicro-porous covalent organic frameworks with triangular topologies. Nat. Commun. 6:7786 [Google Scholar]
  66. Cohen BMD, Schmidt GMJ. 66.  1964. Topochemistry. I. A survey. J. Chem. Soc. 1964:1996–2000 [Google Scholar]
  67. Schmidt GMJ.67.  1971. Photodimerization in the solid state. Pure Appl. Chem. 27:647–78 [Google Scholar]
  68. Ramamurthy V, Venkatesan K. 68.  1987. Photochemical reactions of organic crystals. Chem. Rev. 87:433–81 [Google Scholar]
  69. Biradha K, Santra R. 69.  2013. Crystal engineering of topochemical solid state reactions. Chem. Soc. Rev. 42:3950–67 [Google Scholar]
  70. Wegner G.70.  1969. Polymerisation von Derivaten des 2.4-Hexadiin-1,6-diols im kristallinen Zustand. Z. Naturforsch. 24B:824–32 [Google Scholar]
  71. Hasegawa M, Suzuki Y. 71.  1967. Four-center type photopolymerization in the solid state: poly-2,5-distrylpyrazine. J. Polym. Sci. B Polym. Lett. 5:9813–15 [Google Scholar]
  72. Enkelmann V.72.  1998. Single-crystal-to-single-crystal transformations: the long wavelength tail irradiation technique. Mol. Cryst. Liq. Cryst. Sci. Technol. 313:115–23 [Google Scholar]
  73. Giacovazzo C, Monaco HL, Artioli G, Viterbo F, Ferraris G. 73.  et al. 2002. Fundamentals of Crystallography. Oxford, UK: Oxford Univ. Press, 2nd ed..
  74. Woodward RB, Hoffmann R. 74.  1969. The conservation of orbital symmetry. Angew. Chem. Int. Ed. 8:11781–853 [Google Scholar]
  75. Kory MJ, Bergeler M, Reiher M, Schlüter AD. 75.  2014. Facile synthesis and theoretical conformation analysis of a triazine-based double-decker rotor molecule with three anthracene blades. Chem. Eur. J. 20:236934–38 [Google Scholar]
  76. Lange RZ, Hofer G, Weber T, Schlüter AD. 76.  2017. A two-dimensional polymer synthesized through topochemical [2+2]-cycloaddition on the multigram scale. J. Am. Chem. Soc. 139:52053–59 [Google Scholar]
  77. Novak K, Enkelmann V, Wegner G, Wagener KB. 77.  1993. Crystallographic study of a single crystal to single crystal photodimerization and its thermal reverse reaction. Angew. Chem. Int. Ed. 32:111614–16 [Google Scholar]
  78. Khorasani S, Botes DS, Fernandes MA, Levendis DC. 78.  2015. A single-crystal-to-single-crystal Diels-Alder reaction with mixed topochemical and topotactic behaviour. CrystEngComm 17:468933–45 [Google Scholar]
  79. Servalli M, Trapp N, Wörle M, Klärner FG. 79.  2016. Anthraphane: an anthracene-based, propeller-shaped D3h-symmetric hydrocarbon cyclophane and its layered single crystal structures. J. Org. Chem. 81:62572–80 [Google Scholar]
  80. Langmuir I.80.  1920. The mechanism of the surface phenomena of flotation. Trans. Faraday Soc. 15:62–74 [Google Scholar]
  81. Langmuir I.81.  1917. The constitution and fundamental properties of solids and liquids. II. Liquids. J. Am. Chem. Soc. 39:91848–906 [Google Scholar]
  82. Braslau A, Deutsch M, Pershan PS, Weiss AH, Als-Nielsen J, Bohr J. 82.  1985. Surface roughness of water measured by X-ray reflectivity. Phys. Rev. Lett. 54:2114–17 [Google Scholar]
  83. Rapaport H, Kuzmenko I, Kjaer K, Als-nielsen J, Lahav M. 83.  et al. 1999. Crystalline architectures at the air-liquid interface: from nucleation to engineering. Synchrotron Radiat. News 12:25–33 [Google Scholar]
  84. Brezesinski G, Scalas E, Struth B, Moehwald H, Bringezu F. 84.  et al. 1995. Relating lattice and domain structures of monoglyceride monolayers. J. Phys. Chem. 99:218758–62 [Google Scholar]
  85. Kenn RM, Boehm C, Bibo AM, Peterson IR, Moehwald H. 85.  et al. 1991. Mesophases and crystalline phases in fatty acid monolayers. J. Phys. Chem. 95:52092–97 [Google Scholar]
  86. Leveiller F, Jacquemain D, Leiserowitz L, Kjaer K, Als-Nielsen J. 86.  1992. Toward a determination at near atomic resolution of two-dimensional crystal structures of amphiphilic molecules on the water surface: a study based on grazing incidence synchrotron X-ray diffraction and lattice energy calculations. J. Phys. Chem. 96:2510380–89 [Google Scholar]
  87. Kaindl T, Oelke J, Pasc A, Kaufmann S, Konovalov OV. 87.  et al. 2010. Regulation of adhesion behavior of murine macrophage using supported lipid membranes displaying tunable mannose domains. J. Phys. Condens. Matter 22:28285102 [Google Scholar]
  88. Bauer T, Zheng Z, Renn A, Enning R, Stemmer A. 88.  et al. 2011. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew. Chem. Int. Ed. 50:347879–84 [Google Scholar]
  89. Zheng Z, Ruiz-Vargas CS, Bauer T, Rossi A, Payamyar P. 89.  et al. 2013. Square-micrometer-sized, free-standing organometallic sheets and their square-centimeter-sized multilayers on solid substrates. Macromol. Rapid Commun. 34:1670–80 [Google Scholar]
  90. Sakamoto R, Hoshiko K, Liu Q, Yagi T, Nagayama T. 90.  et al. 2015. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nat. Commun. 6:6713 [Google Scholar]
  91. Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M. 91.  et al. 2013. Π-Conjugated nickel bis (dithiolene) complex nanosheet. J. Am. Chem. Soc. 135:72462–65 [Google Scholar]
  92. Takada K, Sakamoto R, Yi ST, Katagiri S, Kambe T, Nishihara H. 92.  2015. Electrochromic bis (terpyridine)metal complex nanosheets. J. Am. Chem. Soc. 137:144681–89 [Google Scholar]
  93. Makiura R, Konovalov O. 93.  2013. Interfacial growth of large-area single-layer metal-organic framework nanosheets. Sci. Rep. 3:1–8 [Google Scholar]
  94. Payamyar P, Kaja K, Ruiz-Vargas C, Stemmer A, Murray DJ. 94.  et al. 2014. Synthesis of a covalent monolayer sheet by photochemical anthracene dimerization at the air/water interface and its mechanical characterization by AFM indentation. Adv. Mater. 26:132052–58 [Google Scholar]
  95. Kissel P, Van Heijst J, Enning R, Stemmer A, Schlüter AD, Sakamoto J. 95.  2010. Macrocyclic amphiphiles with 1,8-anthrylene fluorophores: synthesis and attempts toward two-dimensional organization. Org. Lett. 12:122778–81 [Google Scholar]
  96. Opilik L, Payamyar P, Szczerbinsk J, Schutz AP, Servalli M. 96.  et al. 2015. Minimally invasive characterization of covalent mono layer sheets using tip-enhanced Raman spectroscopy. ACS Nano 9:44252–59 [Google Scholar]
  97. Chen Y, Li M, Payamyar P, Zheng Z, Sakamoto J, Schlüter AD. 97.  2014. Room temperature synthesis of a covalent monolayer sheet at air/water interface using a shape-persistent photoreactive amphiphilic monomer. ACS Macro Lett 3:2153–58 [Google Scholar]
  98. Payamyar P, Servalli M, Hungerland T, Schütz AP, Zheng Z. 98.  et al. 2015. Approaching two-dimensional copolymers: photoirradiation of anthracene- and diaza-anthracene-bearing monomers in Langmuir monolayers. Macromol. Rapid Commun. 36:2151–58 [Google Scholar]
  99. Ockwig NW, Cote AP, Keeffe MO, Matzger AJ, Yaghi OM. 99.  2005. Porous, crystalline, covalent organic frameworks. Science 310:1166–71 [Google Scholar]
  100. Han SS, Furukawa H, Yaghi OM, III Goddard WA. 100.  2008. Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130:11580–81 [Google Scholar]
  101. Han SS, Mendoza-Cortes JL, III Goddard WA. 101.  2009. Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. Chem. Soc. Rev. 38:51460–76 [Google Scholar]
  102. Lehn J-M.102.  1999. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chemistry 5:92455–63 [Google Scholar]
  103. Rowan SJ, Cantrill SJ, Cousins GRL, Sanders JKM, Stoddart JF. 103.  2002. Dynamic covalent chemistry. Angew. Chem. Int. Ed. Engl. 41:6898–952 [Google Scholar]
  104. Jin Y, Yu C, Denman RJ, Zhang W. 104.  2013. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 42:166634–54 [Google Scholar]
  105. Koo BT, Dichtel WR, Clancy P. 105.  2012. A classification scheme for the stacking of two-dimensional boronate ester-linked covalent organic frameworks. J. Mater. Chem. 22:3417460 [Google Scholar]
  106. Berlanga I, Ruiz-González ML, González-Calbet JM, Fierro JLG, Mas-Ballesté R, Zamora F. 106.  2011. Delamination of layered covalent organic frameworks. Small 7:91207–11 [Google Scholar]
  107. Bunck DN, Dichtel WR. 107.  2013. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 135:4014952–55 [Google Scholar]
  108. Colson JW, Woll AR, Mukherjee A, Levendorf MP, Spitler EL. 108.  et al. 2011. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332:228–32 [Google Scholar]
  109. Zhang YB, Su J, Furukawa H, Yun Y, Gándara F. 109.  et al. 2013. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 135:4416336–39 [Google Scholar]
  110. Beaudoin D, Maris T, Wuest JD. 110.  2013. Constructing monocrystalline covalent organic networks by polymerization. Nat. Chem. 5:10830–34 [Google Scholar]
  111. Smith BJ, Dichtel WR. 111.  2014. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J. Am. Chem. Soc. 136:248783–89 [Google Scholar]
  112. Ascherl L, Sick T, Margraf JT, Lapidus SH, Calik M. 112.  et al. 2016. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nat. Chem. 8:4310–16 [Google Scholar]
  113. Dai W, Shao F, Szczerbiński J, McCaffrey R, Zenobi R. 113.  et al. 2016. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew. Chem. Int. Ed. 55:1213–17 [Google Scholar]
  114. Yang X, Dou X, Rouhanipour A, Zhi L, Ra HJ, Mu K. 114.  2008. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130:4216–17 [Google Scholar]
  115. Dössel L, Gherghel L, Feng X, Müllen K. 115.  2011. Graphene nanoribbons by chemists: nanometer-sized, soluble, and defect-free. Angew. Chem. Int. Ed. 50:112540–43 [Google Scholar]
  116. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T. 116.  et al. 2010. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–73 [Google Scholar]
  117. Lackinger M, Heckl WM. 117.  2011. A STM perspective on covalent intermolecular coupling reactions on surfaces. J. Phys. D Appl. Phys. 44:464011 [Google Scholar]
  118. Fan Q, Gottfried JM, Zhu J. 118.  2015. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Acc. Chem. Res. 48:82484–94 [Google Scholar]
  119. Guan C-Z, Wang D, Wan L-J. 119.  2012. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48:242943–45 [Google Scholar]
  120. Liu X, Guan C, Ding S, Wang W, Yan H. 120.  et al. 2013. On-surface synthesis of single-layered 2D covalent organic frameworks via solid-vapor interface reactions. J. Am. Chem. Soc. 135:10470–74 [Google Scholar]
  121. Xu L, Cao L, Guo Z, Zha Z, Lei S. 121.  2015. Side-functionalized two-dimensional polymers synthesized via on-surface Schiff-base coupling. Chem. Commun. 51:418664–67 [Google Scholar]
  122. Sun J, Zhou X, Lei S. 122.  2016. Host-guest architectures with a surface confined imine covalent organic framework as two-dimensional host networks. Chem. Commun. 52:8691–94 [Google Scholar]
  123. Yu Y, Lin J-B, Wang Y, Zeng Q, Lei S. 123.  2016. Room temperature on-surface synthesis of two-dimensional imine polymers at the solid/liquid interface: Concentration takes control. Chem. Commun. 52:6609–12 [Google Scholar]
  124. Baek K, Yun G, Kim Y, Kim D, Hota R. 124.  et al. 2013. Free-standing, single-monomer-thick two-dimensional polymers through covalent self-assembly in solution. J. Am. Chem. Soc. 135:176523–28 [Google Scholar]
  125. Zhou T, Lin F, Li Z, Zhao X. 125.  2013. Single-step solution-phase synthesis of free-standing two-dimensional polymers and their evolution into hollow spheres. Macromolecules 46:7745–52 [Google Scholar]
  126. Zhou T-Y, Qi Q-Y, Zhao Q-L, Fu J, Liu Y. 126.  et al. 2015. Highly thermally stable hydrogels derived from monolayered two-dimensional supramolecular polymers. Polym. Chem. 6:163018–23 [Google Scholar]
  127. Xu SQ, Zhang X, Nie CB, Pang ZF, Xu XN, Zhao X. 127.  2015. The construction of a two-dimensional supramolecular organic framework with parallelogram pores and stepwise fluorescence enhancement. Chem. Commun. 51:9116417–20 [Google Scholar]
  128. Zhang KD, Tian J, Hanifi D, Zhang Y, Sue AC. 128.  et al. 2013. Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water. J. Am. Chem. Soc. 135:4717913–18 [Google Scholar]
  129. Nam KT, Shelby SA, Choi PH, Marciel AB, Chen R. 129.  et al. 2010. Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat. Mater. 9:454–60 [Google Scholar]
  130. Vybornyi M, Rudnev AV, Langenegger SM, Wandlowski T, Calzaferri G, Häner R. 130.  2013. Formation of two-dimensional supramolecular polymers by amphiphilic pyrene oligomers. Angew. Chem. Int. Ed. 52:4411488–93 [Google Scholar]
  131. Vybornyi M, Rudnev A, Häner R. 131.  2015. Assembly of extra-large nanosheets by supramolecular polymerization of amphiphilic pyrene oligomers in aqueous solution. Chem. Mater. 27:41426–31 [Google Scholar]
  132. Vybornyi M, Bur-Cecilio Hechevarria Y, Glauser M, Rudnev AV, Häner R. 132.  2015. Tubes or sheets: divergent aggregation pathways of an amphiphilic 2,7-substituted pyrene trimer. Chem. Commun. 51:16191–93 [Google Scholar]
  133. Wang L, Gao Y, Wen B, Han Z, Taniguchi T. 133.  et al. 2015. Fractional fractal quantum hall effect in graphene superlattices. Science 350:62651231–34 [Google Scholar]
  134. Celebi K, Buchheim J, Wyss RM, Droudian A, Gasser P. 134.  et al. 2014. Ultimate permeation across atomically thin porous graphene. Science 344:6181289–92 [Google Scholar]
  135. Vargas M, Naris S, Valougeorgis D, Pantazis S, Jousten K. 135.  2014. Time-dependent rarefied gas flow of single gases and binary gas mixtures into vacuum. Vacuum 109:385–96 [Google Scholar]
  136. Günter P.136.  2000. Nonlinear Optical Effects and Materials. Berlin/Heidelberg, Ger.: Springer-Verlag540
  137. Pelletier JDA, Basset J-M. 137.  2016. Catalysis by design: well-defined single-site heterogeneous catalysts. Acc. Chem. Res. 49:664–77 [Google Scholar]
  138. Kuhn P, Antonietti M, Thomas A. 138.  2008. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47:183450–53 [Google Scholar]
  139. Bojdys MJ, Jeromenok J, Thomas A, Antonietti M. 139.  2010. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity. Adv. Mater. 22:192202–5 [Google Scholar]
  140. Ren S, Bojdys MJ, Dawson R, Laybourn A, Khimyak YZ. 140.  et al. 2012. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater. 24:172357–61 [Google Scholar]
  141. Schlüter AD, Payamyar P, Öttinger HC. 141.  2016. How the world changes by going from one- to two-dimensional polymers in solution. Macromol. Rapid Commun. 37:1638–50 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070616-124040
Loading
/content/journals/10.1146/annurev-matsci-070616-124040
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error