1932

Abstract

Metal oxides, when electronically doped with oxygen vacancies, aliovalent dopants, or interstitial dopants, can exhibit metallic behavior due to the stabilization of a substantial charge carrier concentration within the material. As a result, localized surface plasmon resonances (LSPRs) occur in nanocrystals of conducting metal oxides. Through deliberate choice of both the host material and the defect, these resonances can be tuned across the entirety of the near- and mid-infrared regions of the electromagnetic spectrum. Optical modeling has revealed that the defects present have profound impacts on charge carrier mobility and electronic structure, and in some cases, choosing one dopant over another is an important trade-off for optimizing plasmonic performance. These materials are distinct from classical metals in that one can tune their LSPR in energy and intensity through their elemental composition independently of any particular size or nanocrystal morphology. In addition, the LSPR in these materials is highly modulable through external stimuli over substantial spectral windows. As a result, these materials uniquely provide a responsive plasmonic material that can offer optimal nanocrystal arrangements and morphology without compromising the intended resonance frequency for light concentration at any infrared wavelength.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070616-124259
2017-07-03
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/matsci/47/1/annurev-matsci-070616-124259.html?itemId=/content/journals/10.1146/annurev-matsci-070616-124259&mimeType=html&fmt=ahah

Literature Cited

  1. Maier SA.1.  2007. Plasmonics: Fundamentals and Applications Boston, MA: Springer
  2. Brongersma ML, Halas NJ, Nordlander P. 2.  2015. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10:125–34 [Google Scholar]
  3. Zhou Z, Kong B, Yu C, Shi X, Wang M. 3.  et al. 2014. Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy. Sci. Rep. 4:3653 [Google Scholar]
  4. Liu Q, Sun C, He Q, Liu D, Khalil A. 4.  et al. 2015. Ultrathin carbon layer coated MoO2 nanoparticles for high-performance near-infrared photothermal cancer therapy. Chem. Commun. 51:4910054–57 [Google Scholar]
  5. Fofang NT, Park T-H, Neumann O, Mirin NA, Nordlander P, Halas NJ. 5.  2008. Plexcitonic nanoparticles: plasmon−exciton coupling in nanoshell−j-aggregate complexes. Nano Lett 8:103481–87 [Google Scholar]
  6. Velizhanin KA, Shahbazyan TV. 6.  2014. Exciton-plasmaritons in graphene/semiconductor structures. Phys. Rev. B 90:8085403 [Google Scholar]
  7. Kundu J, Le F, Nordlander P, Halas NJ. 7.  2008. Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem. Phys. Lett. 452:1–3115–19 [Google Scholar]
  8. Abb M, Wang Y, Papasimakis N, de Groot CH, Muskens OL. 8.  2014. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett 14:1346–52 [Google Scholar]
  9. Nehl CL, Hafner JH. 9.  2008. Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. 18:212415 [Google Scholar]
  10. Chen H, Kou X, Yang Z, Ni W, Wang J. 10.  2008. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:105233–37 [Google Scholar]
  11. Martinsson E, Shahjamali MM, Enander K, Boey F, Xue C. 11.  et al. 2013. Local refractive index sensing based on edge gold-coated silver nanoprisms. J. Phys. Chem. C 117:4423148–54 [Google Scholar]
  12. Nehl CL, Liao H, Hafner JH. 12.  2006. Optical properties of star-shaped gold nanoparticles. Nano Lett 6:4683–88 [Google Scholar]
  13. Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C. 13.  2010. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5:2161–67 [Google Scholar]
  14. Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li Z-Y. 14.  et al. 2007. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7:41032–36 [Google Scholar]
  15. Mattox TM, Ye X, Manthiram K, Schuck PJ, Alivisatos AP, Urban JJ. 15.  2015. Chemical control of plasmons in metal chalcogenide and metal oxide nanostructures. Adv. Mater. 27:385830–37 [Google Scholar]
  16. Runnerstrom EL, Bergerud A, Agrawal A, Johns RW, Dahlman CJ. 16.  et al. 2016. Defect engineering in plasmonic metal oxide nanocrystals. Nano Lett 16:53390–98 [Google Scholar]
  17. Lounis SD, Runnerstrom EL, Llordés A, Milliron DJ. 17.  2014. Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals. J. Phys. Chem. Lett. 5:91564–74 [Google Scholar]
  18. Cooper BR, Ehrenreich H, Philipp HR. 18.  1965. Optical properties of noble metals. II. Phys. Rev. 138:2AA494–507 [Google Scholar]
  19. Gordon TR, Paik T, Klein DR, Naik GV, Caglayan H. 19.  et al. 2013. Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). Nano Lett 13:62857–63 [Google Scholar]
  20. Donovan BF, Sachet E, Maria J-P, Hopkins PE. 20.  2016. Interplay between mass-impurity and vacancy phonon scattering effects on the thermal conductivity of doped cadmium oxide. Appl. Phys. Lett. 108:2021901 [Google Scholar]
  21. Greenberg BL, Ganguly S, Held JT, Kramer NJ, Mkhoyan KA. 21.  et al. 2015. Nonequilibrium-plasma-synthesized ZnO nanocrystals with plasmon resonance tunable via Al doping and quantum confinement. Nano Lett 15:128162–69 [Google Scholar]
  22. Schimpf AM, Gunthardt CE, Rinehart JD, Mayer JM, Gamelin DR. 22.  2013. Controlling carrier densities in photochemically reduced colloidal ZnO nanocrystals: size dependence and role of the hole quencher. J. Am. Chem. Soc. 135:4416569–77 [Google Scholar]
  23. Mattox TM, Bergerud A, Agrawal A, Milliron DJ. 23.  2014. Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals. Chem. Mater. 26:51779–84 [Google Scholar]
  24. Buonsanti R, Llordes A, Aloni S, Helms BA, Milliron DJ. 24.  2011. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett 11:114706–10 [Google Scholar]
  25. Garcia G, Buonsanti R, Runnerstrom EL, Mendelsberg RJ, Llordes A. 25.  et al. 2011. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett 11:104415–20 [Google Scholar]
  26. Kim J, Agrawal A, Krieg F, Bergerud A, Milliron DJ. 26.  2016. The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals. Nano Lett 16:63879–84 [Google Scholar]
  27. Li SQ, Guo P, Zhang L, Zhou W, Odom TW. 27.  et al. 2011. Infrared plasmonics with indium-tin-oxide nanorod arrays. ACS Nano 5:119161–70 [Google Scholar]
  28. Garcia G, Buonsanti R, Llordes A, Runnerstrom EL, Bergerud A, Milliron DJ. 28.  2013. Near-infrared spectrally selective plasmonic electrochromic thin films. Adv. Opt. Mater. 1:3215–20 [Google Scholar]
  29. Bühler G, Thölmann D, Feldmann C. 29.  2007. One-pot synthesis of highly conductive indium tin oxide nanocrystals. Adv. Mater. 19:172224–27 [Google Scholar]
  30. Kanehara M, Koike H, Yoshinaga T, Teranishi T. 30.  2009. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc. 131:4917736–37 [Google Scholar]
  31. Yang Y, Jin Y, He H, Wang Q, Tu Y. 31.  et al. 2010. Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide. J. Am. Chem. Soc. 132:3813381–94 [Google Scholar]
  32. Della Gaspera E, Chesman ASR, van Embden J, Jasieniak JJ. 32.  2014. Non-injection synthesis of doped zinc oxide plasmonic nanocrystals. ACS Nano 8:99154–63 [Google Scholar]
  33. Goings JJ, Schimpf AM, May JW, Johns RW, Gamelin DR, Li X. 33.  2014. Theoretical characterization of conduction-band electrons in photodoped and aluminum-doped zinc oxide (AZO) quantum dots. J. Phys. Chem. C 118:4626584–90 [Google Scholar]
  34. Mendelsberg RJ, Zhu Y, Anders A. 34.  2012. Determining the nonparabolicity factor of the CdO conduction band using indium doping and the Drude theory. J. Phys. Appl. Phys. 45:42425302 [Google Scholar]
  35. Brewer SH, Franzen S. 35.  2004. Calculation of the electronic and optical properties of indium tin oxide by density functional theory. Chem. Phys. 300:1–3285–93 [Google Scholar]
  36. Ye X, Fei J, Diroll BT, Paik T, Murray CB. 36.  2014. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping. J. Am. Chem. Soc. 136:3311680–86 [Google Scholar]
  37. Agrawal A, Kriegel I, Milliron DJ. 37.  2015. Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals. J. Phys. Chem. C 119:116227–38 [Google Scholar]
  38. Manthiram K, Alivisatos AP. 38.  2012. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 134:93995–98 [Google Scholar]
  39. Wang LV, Wu H-i. 39.  2007. Biomedical Optics: Principles and Imaging Hoboken, NJ: Wiley Intersci.
  40. Deng K, Hou Z, Deng X, Yang P, Li C, Lin J. 40.  2015. Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W18O49 nanostructure. Adv. Funct. Mater. 25:477280–90 [Google Scholar]
  41. Song G, Shen J, Jiang F, Hu R, Li W. 41.  et al. 2014. Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells. ACS Appl. Mater. Interfaces 6:63915–22 [Google Scholar]
  42. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP. 42.  et al. 2007. Renal clearance of quantum dots. Nat. Biotechnol. 25:101165–70 [Google Scholar]
  43. Boriskina SV, Tong JK, Huang Y, Zhou J, Chiloyan V, Chen G. 43.  2015. Enhancement and tunability of near-field radiative heat transfer mediated by surface plasmon polaritons in thin plasmonic films. Photonics 2:2659–83 [Google Scholar]
  44. Furube A, Yoshinaga T, Kanehara M, Eguchi M, Teranishi T. 44.  2012. Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film. Angew. Chem. Int. Ed. 51:112640–42 [Google Scholar]
  45. Lee HW, Papadakis G, Burgos SP, Chander K, Kriesch A. 45.  et al. 2014. Nanoscale conducting oxide PlasMOStor. Nano Lett 14:116463–68 [Google Scholar]
  46. Mendelsberg RJ, McBride PM, Duong JT, Bailey MJ, Llordes A. 46.  et al. 2015. Dispersible plasmonic doped metal oxide nanocrystal sensors that optically track redox reactions in aqueous media with single-electron sensitivity. Adv. Opt. Mater. 3:91293–1300 [Google Scholar]
  47. Schimpf AM, Lounis SD, Runnerstrom EL, Milliron DJ, Gamelin DR. 47.  2015. Redox chemistries and plasmon energies of photodoped In2O3 and Sn-doped In2O3 (ITO) nanocrystals. J. Am. Chem. Soc. 137:1518–24 [Google Scholar]
  48. Kim J, Ong GK, Wang Y, LeBlanc G, Williams TE. 48.  et al. 2015. Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett 15:85574–79 [Google Scholar]
  49. Llordés A, Garcia G, Gazquez J, Milliron DJ. 49.  2013. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500:7462323–26 [Google Scholar]
  50. Dahlman CJ, Tan Y, Marcus MA, Milliron DJ. 50.  2015. Spectroelectrochemical signatures of capacitive charging and ion insertion in doped anatase titania nanocrystals. J. Am. Chem. Soc. 137:289160–66 [Google Scholar]
  51. Faucheaux JA, Jain PK. 51.  2013. Plasmons in photocharged ZnO nanocrystals revealing the nature of charge dynamics. J. Phys. Chem. Lett. 4:183024–30 [Google Scholar]
  52. Llordes A, Hammack AT, Buonsanti R, Tangirala R, Aloni S. 52.  et al. 2011. Polyoxometalates and colloidal nanocrystals as building blocks for metal oxide nanocomposite films. J. Mater. Chem. 21:3111631–38 [Google Scholar]
  53. Kinsey N, DeVault C, Kim J, Ferrera M, Shalaev VM, Boltasseva A. 53.  2015. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica 2:7616 [Google Scholar]
  54. Noginov MA, Gu L, Livenere J, Zhu G, Pradhan AK. 54.  et al. 2011. Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 99:2021101 [Google Scholar]
  55. Schubert EF.55.  2006. Light-Emitting Diodes Cambridge, UK/New York: Cambridge Univ. Press, 2nd ed..
  56. Manthiram K, Alivisatos AP. 56.  2012. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 134:93995–98 [Google Scholar]
  57. Chopra KL, Major S, Pandya DK. 57.  1983. Transparent conductors—a status review. Thin Solid Films 102:11–46 [Google Scholar]
  58. Haase M, Weller H, Henglein A. 58.  1988. Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization. J. Phys. Chem. 92:2482–87 [Google Scholar]
  59. Nütz T, zum Felde U, Haase M. 59.  1999. Wet-chemical synthesis of doped nanoparticles: blue-colored colloids of n-doped SnO2:Sb. J. Chem. Phys. 110:2412142–50 [Google Scholar]
  60. Hammarberg E, Prodi-Schwab A, Feldmann C. 60.  2009. Microwave-assisted polyol synthesis of aluminium- and indium-doped ZnO nanocrystals. J. Colloid Interface Sci. 334:129–36 [Google Scholar]
  61. Gilstrap RA, Capozzi CJ, Carson CG, Gerhardt RA, Summers CJ. 61.  2008. Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion. Adv. Mater. 20:214163–66 [Google Scholar]
  62. Choi S-I, Nam KM, Park BK, Seo WS, Park JT. 62.  2008. Preparation and optical properties of colloidal, monodisperse, and highly crystalline ITO nanoparticles. Chem. Mater. 20:82609–11 [Google Scholar]
  63. Diroll BT, Gordon TR, Gaulding EA, Klein DR, Paik T. 63.  et al. 2014. Synthesis of n-type plasmonic oxide nanocrystals and the optical and electrical characterization of their transparent conducting films. Chem. Mater. 26:154579–88 [Google Scholar]
  64. Ravichandran AT, Xavier AR, Pushpanathan K, Nagabhushana BM, Chandramohan R. 64.  2015. Structural and optical properties of Zn doped CdO nanoparticles synthesized by chemical precipitation method. J. Mater. Sci. Mater. Electron. 27:32693–700 [Google Scholar]
  65. Ghosh S, Saha M, Dev Ashok V, Dalal B, De SK. 65.  2015. Tunable surface plasmon resonance in Sn-doped Zn-Cd-O alloyed nanocrystals. J. Phys. Chem. C 119:21180–87 [Google Scholar]
  66. Kim J, Naik GV, Gavrilenko AV, Dondapati K, Gavrilenko VI. 66.  et al. 2013. Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment. Phys. Rev. X 3:4041037 [Google Scholar]
  67. Della Gaspera E, Duffy NW, van Embden J, Waddington L, Bourgeois L. 67.  et al. 2015. Plasmonic Ge-doped ZnO nanocrystals. Chem. Commun. 51:6212369–72 [Google Scholar]
  68. Tandon B, Yadav A, Nag A. 68.  2016. Delocalized electrons mediated magnetic coupling in Mn-Sn codoped In2O3 nanocrystals: Plasmonics shows the way. Chem. Mater. 28:113620–24 [Google Scholar]
  69. De Trizio L, Buonsanti R, Schimpf AM, Llordes A, Gamelin DR. 69.  et al. 2013. Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption. Chem. Mater. 25:163383–90 [Google Scholar]
  70. Rini M, Cavalleri A, Schoenlein RW, López R, Feldman LC. 70.  et al. 2005. Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance. Opt. Lett. 30:5558–60 [Google Scholar]
  71. Zhu Y, Mendelsberg RJ, Zhu J, Han J, Anders A. 71.  2013. Structural, optical, and electrical properties of indium-doped cadmium oxide films prepared by pulsed filtered cathodic arc deposition. J. Mater. Sci. 48:103789–97 [Google Scholar]
  72. Hamberg I, Granqvist CG. 72.  1986. Evaporated Sn‐doped In2O3 films: basic optical properties and applications to energy‐efficient windows. J. Appl. Phys. 60:11R123–60 [Google Scholar]
  73. Brown AM, Sundararaman R, Narang P, Goddard WA, Atwater HA. 73.  2016. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10:1957–66 [Google Scholar]
  74. Chattopadhyay D, Queisser HJ. 74.  1981. Electron scattering by ionized impurities in semiconductors. Rev. Mod. Phys. 53:4745–68 [Google Scholar]
  75. Sachet E, Losego MD, Guske J, Franzen S, Maria J-P. 75.  2013. Mid-infrared surface plasmon resonance in zinc oxide semiconductor thin films. Appl. Phys. Lett. 102:5051111 [Google Scholar]
  76. Naik GV, Kim J, Boltasseva A. 76.  2011. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1:61090–99 [Google Scholar]
  77. Lounis SD, Runnerstrom EL, Bergerud A, Nordlund D, Milliron DJ. 77.  2014. Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals. J. Am. Chem. Soc. 136:197110–16 [Google Scholar]
  78. zum Felde U, Haase M, Weller H. 78.  2000. Electrochromism of highly doped nanocrystalline SnO2:Sb. J. Phys. Chem. B 104:409388–95 [Google Scholar]
  79. McLeod AS, Kelly P, Goldflam MD, Gainsforth Z, Westphal AJ. 79.  et al. 2014. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Phys. Rev. B 90:8085136 [Google Scholar]
  80. Johns RW, Bechtel HA, Runnerstrom EL, Agrawal A, Lounis SD, Milliron DJ. 80.  2016. Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals. Nat. Commun. 7:11583 [Google Scholar]
  81. Triana CA, Granqvist CG, Niklasson GA. 81.  2015. Electrochromism and small-polaron hopping in oxygen deficient and lithium intercalated amorphous tungsten oxide films. J. Appl. Phys. 118:2024901 [Google Scholar]
  82. Chen A, Zhu K, Zhong H, Shao Q, Ge G. 82.  2014. A new investigation of oxygen flow influence on ITO thin films by magnetron sputtering. Sol. Energy Mater. Sol. Cells 120:Part A157–62 [Google Scholar]
  83. Ágoston P, Erhart P, Klein A, Albe K. 83.  2009. Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide. J. Phys. Condens. Matter 21:45455801 [Google Scholar]
  84. Hwang J-H, Edwards DD, Kammler DR, Mason TO. 84.  2000. Point defects and electrical properties of Sn-doped In-based transparent conducting oxides. Solid State Ion 129:1–4135–44 [Google Scholar]
  85. Sachet E, Shelton CT, Harris JS, Gaddy BE, Irving DL. 85.  et al. 2015. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 14:4414–20 [Google Scholar]
  86. Bhachu DS, Scanlon DO, Sankar G, Veal TD, Egdell RG. 86.  et al. 2015. Origin of high mobility in molybdenum-doped indium oxide. Chem. Mater. 27:82788–96 [Google Scholar]
  87. Deepa M, Srivastava AK, Sood KN, Agnihotry SA. 87.  2006. Nanostructured mesoporous tungsten oxide films with fast kinetics for electrochromic smart windows. Nanotechnology 17:102625–30 [Google Scholar]
  88. Yang C, Chen J-F, Zeng X, Cheng D, Huang H, Cao D. 88.  2016. Enhanced near-infrared shielding ability of (Li,K)-codoped WO3 for smart windows: DFT prediction validated by experiment. Nanotechnology 27:7075203 [Google Scholar]
  89. Shim M, Guyot-Sionnest P. 89.  2001. Organic-capped ZnO nanocrystals: synthesis and n-type character. J. Am. Chem. Soc. 123:4711651–54 [Google Scholar]
  90. Schimpf AM, Ochsenbein ST, Buonsanti R, Milliron DJ, Gamelin DR. 90.  2012. Comparison of extra electrons in colloidal n-type Al3+-doped and photochemically reduced ZnO nanocrystals. Chem. Commun. 48:759352–54 [Google Scholar]
  91. Gerlach E.91.  1986. Carrier scattering and transport in semiconductors treated by the energy-loss method. J. Phys. C Solid State Phys. 19:244585 [Google Scholar]
  92. Tandon B, Shanker GS, Nag A. 92.  2014. Multifunctional Sn- and Fe-codoped In2O3 colloidal nanocrystals: plasmonics and magnetism. J. Phys. Chem. Lett. 5:132306–11 [Google Scholar]
  93. Zhou D, Kittilstved KR. 93.  2016. Electron trapping on Fe3+ sites in photodoped ZnO colloidal nanocrystals. Chem. Commun. 52:589101–4 [Google Scholar]
  94. Hu M, Novo C, Funston A, Wang H, Staleva H. 94.  et al. 2008. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. J. Mater. Chem. 18:171949–60 [Google Scholar]
  95. Jiang L, Yin T, Dong Z, Liao M, Tan SJ. 95.  et al. 2015. Accurate modeling of dark-field scattering spectra of plasmonic nanostructures. ACS Nano 9:1010039–46 [Google Scholar]
  96. Li W, Chen X. 96.  2015. Gold nanoparticles for photoacoustic imaging. Nanomed 10:2299–320 [Google Scholar]
  97. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. 97.  2008. Biosensing with plasmonic nanosensors. Nat. Mater. 7:6442–53 [Google Scholar]
  98. Bechtel HA, Muller EA, Olmon RL, Martin MC, Raschke MB. 98.  2014. Ultrabroadband infrared nanospectroscopic imaging. PNAS 111:207191–96 [Google Scholar]
  99. Jansons AW, Hutchison JE. 99.  2016. Continuous growth of metal oxide nanocrystals: enhanced control of nanocrystal size and radial dopant distribution. ACS Nano 10:76942–51 [Google Scholar]
  100. Matsui H, Furuta S, Tabata H. 100.  2014. Role of electron carriers on local surface plasmon resonances in doped oxide semiconductor nanocrystals. Appl. Phys. Lett. 104:21211903 [Google Scholar]
  101. Wang T, Radovanovic PV. 101.  2011. Free electron concentration in colloidal indium tin oxide nanocrystals determined by their size and structure. J. Phys. Chem. C 115:2406–13 [Google Scholar]
  102. Hutfluss LN, Radovanovic PV. 102.  2015. Controlling the mechanism of phase transformation of colloidal In2O3 nanocrystals. J. Am. Chem. Soc. 137:31101–8 [Google Scholar]
  103. Yockell-Lelièvre H, Lussier F, Masson J-F. 103.  2015. Influence of the particle shape and density of self-assembled gold nanoparticle sensors on LSPR and SERS. J. Phys. Chem. C 119:5128577–85 [Google Scholar]
  104. Babicheva VE, Boltasseva A, Lavrinenko AV. 104.  2015. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics 4:1165–85 [Google Scholar]
  105. Mehra S, Bergerud A, Milliron DJ, Chan EM, Salleo A. 105.  2016. Core/shell approach to dopant incorporation and shape control in colloidal zinc oxide nanorods. Chem. Mater. 28:103454–61 [Google Scholar]
  106. Kuznetsov AS.106.  2016. Effect of proximity in arrays of plasmonic nanoantennas on hot spots density: degenerate semiconductors vs. conventional metals. Plasmonics 11:61487–93 [Google Scholar]
  107. Garcia G, Buonsanti R, Llordes A, Runnerstrom EL, Bergerud A, Milliron DJ. 107.  2013. Near-infrared spectrally selective plasmonic electrochromic thin films. Adv. Opt. Mater. 1:3215–20 [Google Scholar]
  108. Boschloo G, Fitzmaurice D. 108.  1999. Spectroelectrochemistry of highly doped nanostructured tin dioxide electrodes. J. Phys. Chem. B 103:163093–98 [Google Scholar]
  109. Runnerstrom EL, Llordés A, Lounis SD, Milliron DJ. 109.  2014. Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 50:7310555–72 [Google Scholar]
  110. Wang J, Polleux J, Lim J, Dunn B. 110.  2007. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111:4014925–31 [Google Scholar]
  111. Williams TE, Chang CM, Rosen EL, Garcia G, Runnerstrom EL. 111.  et al. 2014. NIR-selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices. J. Mater. Chem. C 2:173328–35 [Google Scholar]
  112. Wang Y, Runnerstrom EL, Milliron DJ. 112.  2016. Switchable materials for smart windows. Annu. Rev. Chem. Biomol. Eng. 7:1283–304 [Google Scholar]
  113. Melikyan A, Lindenmann N, Walheim S, Leufke PM, Ulrich S. 115.  et al. 2011. Surface plasmon polariton absorption modulator. Opt. Express 19:98855–69 [Google Scholar]
  114. Sorger VJ, Lanzillotti-Kimura ND, Ma R-M, Zhang X. 116.  2012. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1:117–22 [Google Scholar]
  115. Kinsey N, Ferrera M, Shalaev VM, Boltasseva A. 117.  2015. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials. J. Opt. Soc. Am. B 32:1121–42 [Google Scholar]
  116. Ung T, Giersig M, Dunstan D, Mulvaney P. 118.  1997. Spectroelectrochemistry of colloidal silver. Langmuir 13:61773–82 [Google Scholar]
  117. Novo C, Funston AM, Gooding AK, Mulvaney P. 119.  2009. Electrochemical charging of single gold nanorods. J. Am. Chem. Soc. 131:4114664–66 [Google Scholar]
  118. Nguyen WH, Barile CJ, McGehee MD. 113.  2016. Small molecule anchored to mesoporous ITO for high-contrast black electrochromics. J. Phys. Chem. C 120:4626336–41 [Google Scholar]
  119. Barile CJ, Slotcavage DJ, McGehee MD. 114.  2016. Polymer–nanoparticle electrochromic materials that selectively modulate visible and near-infrared light. Chem. Mater. 28:51439–45 [Google Scholar]
  120. Shen Y, Zhou J, Liu T, Tao Y, Jiang R. 120.  et al. 2013. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 4:2381 [Google Scholar]
  121. Lin S-Y, Wu S-H, Chen C. 121.  2006. A simple strategy for prompt visual sensing by gold nanoparticles: general applications of interparticle hydrogen bonds. Angew. Chem. Int. Ed. 45:304948–51 [Google Scholar]
  122. Huttanus HM, Graugnard E, Yurke B, Knowlton WB, Kuang W. 122.  et al. 2013. Enhanced DNA sensing via catalytic aggregation of gold nanoparticles. Biosens. Bioelectron. 50:382–86 [Google Scholar]
  123. Valdez CN, Braten M, Soria A, Gamelin DR, Mayer JM. 123.  2013. Effect of protons on the redox chemistry of colloidal zinc oxide nanocrystals. J. Am. Chem. Soc. 135:238492–95 [Google Scholar]
  124. Cohn AW, Janßen N, Mayer JM, Gamelin DR. 124.  2012. Photocharging ZnO nanocrystals: picosecond hole capture, electron accumulation, and Auger recombination. J. Phys. Chem. C 116:3820633–42 [Google Scholar]
  125. Cohn AW, Schimpf AM, Gunthardt CE, Gamelin DR. 125.  2013. Size-dependent trap-assisted Auger recombination in semiconductor nanocrystals. Nano Lett 13:41810–15 [Google Scholar]
  126. Schimpf AM, Knowles KE, Carroll GM, Gamelin DR. 126.  2015. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals. Acc. Chem. Res. 48:71929–37 [Google Scholar]
  127. Schimpf AM, Thakkar N, Gunthardt CE, Masiello DJ, Gamelin DR. 127.  2014. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals. ACS Nano 8:11065–72 [Google Scholar]
  128. Valdez CN, Schimpf AM, Gamelin DR, Mayer JM. 128.  2016. Proton-controlled reduction of ZnO nanocrystals: effects of molecular reductants, cations, and thermodynamic limitations. J. Am. Chem. Soc. 138:41377–85 [Google Scholar]
  129. Deb SK.129.  1973. Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. 27:4801–22 [Google Scholar]
  130. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE. 130.  2008. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:121912–19 [Google Scholar]
  131. Jiang W, Kim BYS, Rutka JT, Chan WCW. 131.  2008. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3:3145–50 [Google Scholar]
  132. Zhang Y, Wei T, Dong W, Huang C, Zhang K. 133.  et al. 2013. Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide. Appl. Phys. Lett. 102:21213117 [Google Scholar]
  133. Chang J-Y, Basu S, Wang L. 132.  2015. Indium tin oxide nanowires as hyperbolic metamaterials for near-field radiative heat transfer. J. Appl. Phys. 117:5054309 [Google Scholar]
  134. Bermel P, Boriskina SV, Yu Z, Joulain K. 134.  2015. Control of radiative processes for energy conversion and harvesting. Opt. Express 23:24A1533–40 [Google Scholar]
  135. Boriskina SV, Ghasemi H, Chen G. 135.  2013. Plasmonic materials for energy: from physics to applications. Mater. Today 16:10375–86 [Google Scholar]
  136. Lenert A, Bierman DM, Nam Y, Chan WR, Celanović I. 136.  et al. 2014. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9:2126–30 [Google Scholar]
  137. Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG. 137.  et al. 2009. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. PNAS 106:4619227–32 [Google Scholar]
  138. Adato R, Altug H. 138.  2013. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun. 4:2154 [Google Scholar]
  139. Kim J, Dutta A, Memarzadeh B, Kildishev AV, Mosallaei H, Boltasseva A. 139.  2015. Zinc oxide based plasmonic multilayer resonator: localized and gap surface plasmon in the infrared. ACS Photonics 2:81224–30 [Google Scholar]
  140. Matsui H, Badalawa W, Hasebe T, Furuta S, Nomura W. 140.  et al. 2014. Coupling of Er light emissions to plasmon modes on In2O3:Sn nanoparticle sheets in the near-infrared range. Appl. Phys. Lett. 105:4041903 [Google Scholar]
  141. Guduru SSK, Kriegel I, Ramponi R, Scotognella F. 141.  2015. Plasmonic heavily-doped semiconductor nanocrystal dielectrics: making static photonic crystals dynamic. J. Phys. Chem. C 119:52775–82 [Google Scholar]
  142. Park J, Kang J-H, Liu X, Brongersma ML. 142.  2015. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Sci. Rep. 5:15754 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070616-124259
Loading
/content/journals/10.1146/annurev-matsci-070616-124259
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error