1932

Abstract

This review discusses selective and fast transport of ionic species (ions and their associates) through systems as diverse as ion-conducting transmembrane proteins and ion exchange membranes (IEMs) in aqueous environments, with special emphasis on the role of electrostatics, specific chemical interactions, and morphology (steric effects). Contrary to the current doctrine, we suggest that properly balanced ion-coordinating interactions are more important than steric effects for selective ion transport in biological systems. Steric effects are more relevant to the selectivity of ionic transport through IEMs. As a general rule, decreased hydration leads to higher selectivity but also to lower transport rate. Near-perfect selectivity is achieved by ion-conducting channels in which unhydrated ions transfer through extremely short hydrophobic passages separating aqueous environments. In IEMs, ionic species practically keep their hydration shell and their transport is sterically constrained by the width of aqueous pathways. We discuss the trade-off between selectivity and transport rates and make suggestions for choosing, optimizing, or developing membranes for technological applications such as vanadium-redox-flow batteries.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080619-010139
2021-07-26
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080619-010139.html?itemId=/content/journals/10.1146/annurev-matsci-080619-010139&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dunn B, Farrington GC. 1983. Trivalent ion exchange in beta′′ alumina. Solid State Ionics 9:–10223–25
    [Google Scholar]
  2. 2. 
    Foster LM, Anderson MP, Chandrashekhar GV, Burns G, Bradford RB 1981. The mixed alkali effect in (K, Na)-β-gallate fast ion conductor. J. Chem. Phys. 75:2412–22
    [Google Scholar]
  3. 3. 
    Isard JO. 1969. The mixed alkali effect in glass. J. Non-Crystalline Solids 1:235–61
    [Google Scholar]
  4. 4. 
    Frant MS, Ross JW. 1966. Electrode for sensing fluoride ion activity in solution. Science 154:1553–55
    [Google Scholar]
  5. 5. 
    Luo T, Abdu S, Wessling M 2018. Selectivity of ion exchange membranes: a review. J. Membr. Sci. 555:429–54
    [Google Scholar]
  6. 6. 
    Sata T, Sata T, Yang W 2002. Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. J. Membr. Sci. 206:31–60
    [Google Scholar]
  7. 7. 
    Moore C, Pressman BC. 1964. Mechanism of action of valinomycin on mitochondria. Biochem. Biophys. Res. Commun. 15:562–67
    [Google Scholar]
  8. 8. 
    Pioda LAR, Wipf HK, Simon W 1968. A crystalline complex of potassium rhodanide and valinomycin, an antibiotic of high potassium ion selectivity. EMF measurements on synthetic membranes. Chimia 22:189–91
    [Google Scholar]
  9. 9. 
    Wipf H-K, Olivier A, Simon W 1970. Mechanismus und Selektivität des Alkali-Ionentransportes in Modell-Membranen in Gegenwart des Antibioticums Valinomycin. 531605–8
  10. 10. 
    Anderson EL, Bühlmann P. 2016. Electrochemical impedance spectroscopy of ion-selective membranes: artifacts in two-, three-, and four-electrode measurements. Anal. Chem. 88:9738–45
    [Google Scholar]
  11. 11. 
    Bakker E, Bühlmann P, Pretsch E 1997. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 97:3083–132
    [Google Scholar]
  12. 12. 
    Bühlmann P, Pretsch E, Bakker E 1998. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev. 98:1593–688
    [Google Scholar]
  13. 13. 
    Varma S, Sabo D, Rempe SB 2008. K+/Na+ selectivity in K channels and valinomycin: over-coordination versus cavity-size constraints. J. Mol. Biol. 376:13–22
    [Google Scholar]
  14. 14. 
    Varma S, Rogers DM, Pratt LR, Rempe SB 2011. Design principles for K+ selectivity in membrane transport. J. Gen. Physiol. 137:479–88
    [Google Scholar]
  15. 15. 
    Münchinger A, Kreuer K-D. 2019. Selective ion transport through hydrated cation and anion exchange membranes I. The effect of specific interactions. J. Membr. Sci. 592:117372
    [Google Scholar]
  16. 16. 
    Elton DC. 2016. Understanding the dielectric properties of water. PhD Thesis, Stony Brook Univ., NY
    [Google Scholar]
  17. 17. 
    Noskov SY, Bernèche S, Roux B 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431:830–34
    [Google Scholar]
  18. 18. 
    Ammann D, Morf WE, Anker P, Meier PC, Pretsch E, Simon W 1983. Neutral carrier based ion-selective electrodes. Ion-Selective Electrode Reviews JDR Thomas pp.3–92 Oxford, UK: Pergamon
    [Google Scholar]
  19. 19. 
    Hille B. 2001. Ionic Channels of Excitable Membranes Sunderland, MA: Sinauer
  20. 20. 
    Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77
    [Google Scholar]
  21. 21. 
    Eisenman G, Latorre R, Miller C 1986. Multi-ion conduction and selectivity in the high-conductance Ca++-activated K+ channel from skeletal muscle. Biophys. J. 50:1025–34
    [Google Scholar]
  22. 22. 
    Heginbotham L, MacKinnon R. 1993. Conduction properties of the cloned Shaker K+ channel. Biophys. J. 65:2089–96
    [Google Scholar]
  23. 23. 
    LeMasurier M, Heginbotham L, Miller C 2001. KcsA: It's a potassium channel. J. Gen. Physiol. 118:303–14
    [Google Scholar]
  24. 24. 
    Lam YL, Zeng W, Sauer DB, Jiang Y 2014. The conserved potassium channel filter can have distinct ion binding profiles: structural analysis of rubidium, cesium, and barium binding in NaK2K. J. Gen. Physiol. 144:181–92
    [Google Scholar]
  25. 25. 
    Krasne S. 1978. Ion selectivity in membrane permeation. Physiology of Membrane Disorders TE Andreoli, JF Hoffman, DD Fanestil 217–41 Boston: Springer
    [Google Scholar]
  26. 26. 
    Eisenman G, Horn R. 1983. Ionic selectivity revisited—the role of kinetic and equilibrium process in ion permeation through channels. J. Membr. Biol. 76:197–225
    [Google Scholar]
  27. 27. 
    Dudev T, Lim C. 2014. Ion selectivity strategies of sodium channel selectivity filters. Acc. Chem. Res. 47:3580–87
    [Google Scholar]
  28. 28. 
    Mikhelson K. 2006. AC-impedance studies of ion transfer across ionophore-based ion-selective membranes. Chem. Anal. 51:853–67
    [Google Scholar]
  29. 29. 
    Donnan FG. 1911. Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie. Z. Elektrochem. Angew. Phys. Chem. 17:572–81
    [Google Scholar]
  30. 30. 
    Teorell T. 1935. An attempt to formulate a quantitative theory of membrane permeability. Proc. Soc. Exp. Biol. Med. 33:282–85
    [Google Scholar]
  31. 31. 
    Meyer KH, Sievers JF. 1936. La perméabilité des membranes I. Théorie de la perméabilité ionique. Helv. Chim. Acta 19:649–64
    [Google Scholar]
  32. 32. 
    Helfferich F. 1959. Ionenaustauscher: Bd 1: Grundlagen: Struktur, Herstellung, Theorie Weinheim, Ger: Verlag Chemie GmbH
  33. 33. 
    Kreuer K-D, Paddison SJ, Spohr E, Schuster M 2004. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104:4637–78
    [Google Scholar]
  34. 34. 
    Kortüm G. 1966. Lehrbuch der Elektrochemie. Weinheim, Ger: Verlag Chemie GmbH
    [Google Scholar]
  35. 35. 
    Manning GS. 1979. Counterion binding in polyelectrolyte theory. Acc. Chem. Res. 12:443–49
    [Google Scholar]
  36. 36. 
    Kreuer K-D. 2013. The role of internal pressure for the hydration and transport properties of ionomers and polyelectrolytes. Solid State Ionics 252:93–101
    [Google Scholar]
  37. 37. 
    Zabolotsky VI, Manzanares JA, Nikonenko VV, Lebedev KA, Lovtsov EG 2002. Space charge effect on competitive ion transport through ion-exchange membranes. Desalination 147:387–92
    [Google Scholar]
  38. 38. 
    Besha AT, Tsehaye MT, Aili D, Zhang WJ, Tufa RA 2020. Design of monovalent ion selective membranes for reducing the impacts of multivalent ions in reverse electrodialysis. Membranes 10:7
    [Google Scholar]
  39. 39. 
    Oldenburg FJ, Nilsson E, Schmidt TJ, Gubler L 2019. Tackling capacity fading in vanadium redox flow batteries with amphoteric polybenzimidazole/Nafion bilayer membranes. ChemSusChem 12:2620–27
    [Google Scholar]
  40. 40. 
    Pang X, Tao Y, Xu Y, Pan J, Shen J, Gao C 2020. Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers. J. Membr. Sci. 595:117544
    [Google Scholar]
  41. 41. 
    Abdu S, Martí-Calatayud M-C, Wong JE, García-Gabaldón M, Wessling M 2014. Layer-by-layer modification of cation exchange membranes controls ion selectivity and water splitting. ACS Appl. Mater. Interfaces 6:1843–54
    [Google Scholar]
  42. 42. 
    Wang YF, Wang SJ, Xiao M, Han DM, Hickner MA, Meng YZ 2013. Layer-by-layer self-assembly of PDDA/PSS-SPFEK composite membrane with low vanadium permeability for vanadium redox flow battery. RSC Adv. 3:15467–74
    [Google Scholar]
  43. 43. 
    Cheng W, Liu C, Tong T, Epsztein R, Sun M et al. 2018. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength. J. Membr. Sci. 559:98–106
    [Google Scholar]
  44. 44. 
    Güler E, van Baak W, Saakes M, Nijmeijer K 2014. Monovalent-ion-selective membranes for reverse electrodialysis. J. Membr. Sci. 455:254–70
    [Google Scholar]
  45. 45. 
    Marino MG, Melchior JP, Wohlfarth A, Kreuer K-D 2014. Hydroxide, halide and water transport in a model anion exchange membrane. J. Membr. Sci. 464:61–71
    [Google Scholar]
  46. 46. 
    Yeager HL. 1982. Cation exchange selectivity of a perfluorosulfonate polymer. Perfluorinated Ionomer Membranes25–39 Washington, DC: American Chemical Society
    [Google Scholar]
  47. 47. 
    Bontha JR, Pintauro PN. 1994. Water orientation and ion solvation effects during multicomponent salt partitioning in a Nafion cation-exchange membrane. Chem. Eng. Sci. 49:3835–51
    [Google Scholar]
  48. 48. 
    Yang Y, Pintauro PN. 2000. Multicomponent space-charge transport model for ion-exchange membranes. AIChE J. 46:1177–90
    [Google Scholar]
  49. 49. 
    Pintauro PN, Tandon R, Chao L, Xu W, Evilia R 1995. Equilibrium partitioning of monovalent divalent cation-salt mixtures in Nafion cation-exchange membranes. J. Phys. Chem. 99:12915–24
    [Google Scholar]
  50. 50. 
    Okada T, Arimura N, Satou H, Yuasa M, Kikuchi T 2005. Membrane transport characteristics of binary cation systems with Li+ and alkali metal cations in perfluorosulfonated ionomer. Electrochim. Acta 50:3569–75
    [Google Scholar]
  51. 51. 
    Tessman JR, Kahn AH, Shockley W 1953. Electronic polarizabilities of ions in crystals. Phys. Rev. 92:890–95
    [Google Scholar]
  52. 52. 
    Volkov VI, Pavlov AA, Sanginov EA 2011. Ionic transport mechanism in cation-exchange membranes studied by NMR technique. Solid State Ionics 188:124–28
    [Google Scholar]
  53. 53. 
    Geise GM, Cassady HJ, Paul DR, Logan BE, Hickner MA 2014. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys. Chem. Chem. Phys. 16:21673–81
    [Google Scholar]
  54. 54. 
    Nibel O, Rojek T, Schmidt TJ, Gubler L 2017. Amphoteric ion-exchange membranes with significantly improved vanadium barrier properties for all-vanadium redox flow batteries. ChemSusChem 10:2767–77
    [Google Scholar]
  55. 55. 
    Glueckauf E. 1955. The influence of ionic hydration on activity coefficients in concentrated electrolyte solutions. Trans. Faraday Soc. 51:1235–44
    [Google Scholar]
  56. 56. 
    Ruthven DM. 1977. Diffusion in molecular sieves: a review of recent developments. Molecular SievesII JR Katzer 320–34 Washington, DC: American Chemical Society
    [Google Scholar]
  57. 57. 
    Kreuer K-D, Weppner W, Rabenau A 1982. Proton conduction in zeolites. Mater. Res. Bull. 17:501–9
    [Google Scholar]
  58. 58. 
    Xu Z, Michos I, Wang XR, Yang RD, Gu XH, Dong JH 2014. A zeolite ion exchange membrane for redox flow batteries. Chem. Commun. 50:2416–19
    [Google Scholar]
  59. 59. 
    Dai WJ, Shen Y, Li ZH, Yu LH, Xi JY, Qiu XP 2014. SPEEK/graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. J. Mater. Chem. A 2:12423–32
    [Google Scholar]
  60. 60. 
    Wu C, Bai H, Lv Y, Lv Z, Xiang Y, Lu S 2017. Enhanced membrane ion selectivity by incorporating graphene oxide nanosheet for vanadium redox flow battery application. Electrochim. Acta 248:454–61
    [Google Scholar]
  61. 61. 
    Kim S, Choi J, Choi C, Heo J, Kim DW et al. 2018. Pore-size-tuned graphene oxide frameworks as ion-selective and protective layers on hydrocarbon membranes for vanadium redox-flow batteries. Nano Lett. 18:3962–68
    [Google Scholar]
  62. 62. 
    Ren CE, Hatzell KB, Alhabeb M, Ling Z, Mahmoud KA, Gogotsi Y 2015. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6:4026–31
    [Google Scholar]
  63. 63. 
    Zhang H, Zhang H, Li X, Mai Z, Zhang J 2011. Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs). ? Energy Environ. Sci. 4:1676–79
    [Google Scholar]
  64. 64. 
    Wang P, Wang M, Liu F, Ding S, Wang X et al. 2018. Ultrafast ion sieving using nanoporous polymeric membranes. Nat. Commun. 9:569
    [Google Scholar]
  65. 65. 
    Dai Q, Liu Z, Huang L, Wang C, Zhao Y et al. 2020. Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery. Nat. Commun. 11:13
    [Google Scholar]
  66. 66. 
    Kim S, Yan J, Schwenzer B, Zhang J, Li L et al. 2010. Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. Electrochem. Commun. 12:1650–53
    [Google Scholar]
  67. 67. 
    Kreuer K-D, Portale G. 2013. A critical revision of the nano-morphology of proton conducting ionomers and polyelectrolytes for fuel cell applications. Adv. Funct. Mater. 23:5390–97
    [Google Scholar]
  68. 68. 
    Münchinger A 2021. Selective ion transport through ion exchange membranes—effects of chemical interactions and morphology PhD Thesis, Univ. Stuttgart, Ger.
  69. 69. 
    Schmidt O, Hawkes A, Gambhir A, Staffell I 2017. The future cost of electrical energy storage based on experience rates. Nat. Energy 2:17110
    [Google Scholar]
  70. 70. 
    Noack J, Roznyatovskaya N, Herr T, Fischer P 2015. The chemistry of redox-flow batteries. Angew. Chem. Int. Ed. 54:9776–809
    [Google Scholar]
  71. 71. 
    Mögelin H, Yao G, Zhong H, dos Santos AR, Barascu A et al. 2018. Porous glass membranes for vanadium redox-flow battery application—effect of pore size on the performance. J. Power Sourc. 377:18–25
    [Google Scholar]
  72. 72. 
    Li X-R, Qin Y, Xu W-G, Liu J-G, Yang J-Z et al. 2016. Thermodynamic investigation of electrolytes of the vanadium redox flow battery (V): conductivity and ionic dissociation of vanadyl sulfate in aqueous solution in the 278.15–318.15 K temperature range. J. Solut. Chem. 45:1879–89
    [Google Scholar]
  73. 73. 
    Darling RM, Weber AZ, Tucker MC, Perry ML 2015. The influence of electric field on crossover in redox-flow batteries. J. Electrochem. Soc. 163:A5014–22
    [Google Scholar]
  74. 74. 
    Sun C, Chen J, Zhang H, Han X, Luo Q 2010. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J. Power Sourc. 195:890–97
    [Google Scholar]
  75. 75. 
    Kohler G, Wendt H. 1966. Die Bestimmung von Gleichgewichtskonstanten aus kinetischen Messungen. Ber. Bunsen-Ges. Phys. Chem. 70:674–81
    [Google Scholar]
  76. 76. 
    Chen D, Chen X, Ding L, Li X 2018. Advanced acid-base blend ion exchange membranes with high performance for vanadium flow battery application. J. Membr. Sci. 553:25–31
    [Google Scholar]
  77. 77. 
    Zhang Y, Zheng L, Liu B, Wang H, Shi H 2019. Sulfonated polysulfone proton exchange membrane influenced by a varied sulfonation degree for vanadium redox flow battery. J. Membr. Sci. 584:173–80
    [Google Scholar]
  78. 78. 
    Sepehr F, Paddison SJ. 2013. The solvation structure and thermodynamics of aqueous vanadium cations. Chem. Phys. Lett. 585:53–58
    [Google Scholar]
  79. 79. 
    Hinkle KR, Jameson CJ, Murad S 2014. Transport of vanadium and oxovanadium ions across zeolite membranes: a molecular dynamics study. J. Phys. Chem. C 118:23803–10
    [Google Scholar]
  80. 80. 
    Liu Z, Li R, Chen J, Wu X, Zhang K et al. 2017. Theoretical investigation into suitable pore sizes of membranes for vanadium redox flow batteries. ChemElectroChem 4:2184–89
    [Google Scholar]
  81. 81. 
    Chen D, Hickner MA, Agar E, Kumbur EC 2013. Optimized anion exchange membranes for vanadium redox flow batteries. ACS Appl. Mater. Interfaces 5:7559–66
    [Google Scholar]
  82. 82. 
    Choi H-S, Oh Y-H, Ryu C-H, Hwang G-J 2014. Characteristics of the all-vanadium redox flow battery using anion exchange membrane. J. Taiwan Inst. Chem. Eng. 45:2920–25
    [Google Scholar]
  83. 83. 
    Manning GS. 1969. Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 51:924–33
    [Google Scholar]
  84. 84. 
    de Araujo CC, Kreuer K-D, Schuster M, Portale G, Mendil-Jakani H et al. 2009. Poly(p-phenylene sulfone)s with high ion exchange capacity: ionomers with unique microstructural and transport features. Phys. Chem. Chem. Phys. 11:3305–12
    [Google Scholar]
  85. 85. 
    Kreuer K-D. 2014. Ion conducting membranes for fuel cells and other electrochemical devices. Chem. Mater. 26:361–80
    [Google Scholar]
  86. 86. 
    Oldenburg FJ, Schmidt TJ, Gubler L 2017. Tackling capacity fading in vanadium flow batteries with amphoteric membranes. J. Power Sourc. 368:68–72
    [Google Scholar]
  87. 87. 
    Gubler L. 2019. Membranes and separators for redox flow batteries. Curr. Opin. Electrochem. 18:31–36
    [Google Scholar]
  88. 88. 
    Liu L, Wang C, He Z, Das R, Dong B et al. 2021. An overview of amphoteric ion exchange membranes for vanadium redox flow batteries. J. Mater. Sci. Technol. 69:212–27
    [Google Scholar]
  89. 89. 
    Aaron DS, Liu Q, Tang Z, Grim GM, Papandrew AB et al. 2012. Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J. Power Sourc. 206:450–53
    [Google Scholar]
  90. 90. 
    Ulaganathan M, Aravindan V, Yan Q, Madhavi S, Skyllas-Kazacos M, Lim TM 2016. Recent advancements in all‐vanadium redox flow batteries. Adv. Mater. Interfaces 3:1500309
    [Google Scholar]
  91. 91. 
    Wang T, Han J, Kim K, Münchinger A, Gao Y et al. 2020. Suppressing vanadium crossover using sulfonated aromatic ion exchange membranes for high performance flow batteries. Mater. Adv. 1:2206–18
    [Google Scholar]
  92. 92. 
    Yuan Z, Duan Y, Zhang H, Li X, Zhang H, Vankelecom I 2016. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries. Energy Environ. Sci. 9:441–47
    [Google Scholar]
  93. 93. 
    Peng S, Wu X, Yan X, Gao L, Zhu Y et al. 2018. Polybenzimidazole membranes with nanophase-separated structure induced by non-ionic hydrophilic side chains for vanadium flow batteries. J. Mater. Chem. A 6:3895–905
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080619-010139
Loading
/content/journals/10.1146/annurev-matsci-080619-010139
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error