1932

Abstract

Grain boundaries can undergo phase-like transitions, called complexion transitions, in which their structure, composition, and properties change discontinuously as temperature, bulk composition, and other parameters are varied. Grain boundary complexion transitions can lead to rapid changes in the macroscopic properties of polycrystalline metals and ceramics and are responsible for a variety of materials phenomena as diverse as activated sintering and liquid-metal embrittlement. The property changes caused by grain boundary complexion transitions can be beneficial or detrimental. Grain boundary complexion engineering exploits beneficial complexion transitions to improve the processing, properties, and performance of materials. Here, we review the thermodynamic fundamentals of grain boundary complexion transitions, highlight the strongest experimental and computationalevidence for these transitions, clarify a number of important misconceptions, discuss the advantages of grain boundary complexion engineering, and summarize existing research challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081619-114055
2020-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-081619-114055.html?itemId=/content/journals/10.1146/annurev-matsci-081619-114055&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP 2014. Grain boundary complexions. Acta Mater 62:1–48
    [Google Scholar]
  2. 2. 
    Tang M, Carter WC, Cannon RM 2006. Diffuse interface model for structural transitions of grain boundaries. Phys. Rev. B 73:2024102
    [Google Scholar]
  3. 3. 
    Harmer MP. 2011. The phase behavior of interfaces. Science 332:6026182–83
    [Google Scholar]
  4. 4. 
    Dillon SJ, Tai K, Chen S 2016. The importance of grain boundary complexions in affecting physical properties of polycrystals. Curr. Opin. Solid State Mater. Sci. 20:5324–35
    [Google Scholar]
  5. 5. 
    Gupta VK, Yoon D-H, Meyer HM, Luo J 2007. Thin intergranular films and solid-state activated sintering in nickel-doped tungsten. Acta Mater 55:93131–42
    [Google Scholar]
  6. 6. 
    Luo J, Cheng H, Asl KM, Kiely CJ, Harmer MP 2011. The role of a bilayer interfacial phase on liquid metal embrittlement. Science 333:60501730–33
    [Google Scholar]
  7. 7. 
    Dillon SJ, Tang M, Carter WC, Harmer MP 2007. Complexion: a new concept for kinetic engineering in materials science. Acta Mater 55:186208–18
    [Google Scholar]
  8. 8. 
    Hart EW. 1968. Two-dimensional phase transformation in grain boundaries. Scr. Metall. 2:3179–82
    [Google Scholar]
  9. 9. 
    Hart EW. 1972. Grain boundary phase transformations. The Nature and Behavior of Grain Boundaries H Hu 155–70 New York: Plenum Press
    [Google Scholar]
  10. 10. 
    Cahn JW. 1982. Transitions and phase equilibria among grain boundary structures. J. Phys. Colloq. 43:C6–199213
    [Google Scholar]
  11. 11. 
    Tang M, Carter WC, Cannon RM 2006. Grain boundary transitions in binary alloys. Phys. Rev. Lett. 97:7075502
    [Google Scholar]
  12. 12. 
    Clarke DR, Thomas G. 1977. Grain boundary phases in a hot-pressed MgO fluxed silicon nitride. J. Am. Ceram. Soc. 60:11–12491–95
    [Google Scholar]
  13. 13. 
    Krause AR, Cantwell PR, Marvel CJ, Compson C, Rickman JM, Harmer MP 2019. Review of grain boundary complexion engineering: know your boundaries. J. Am. Ceram. Soc. 102:2778–800
    [Google Scholar]
  14. 14. 
    Wynblatt P, Chatain D. 2006. Anisotropy of segregation at grain boundaries and surfaces. Metall. Mater. Trans. A 37:92595–620
    [Google Scholar]
  15. 15. 
    Günter G, Shvindlerman LS. 2009. Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications Boca Raton, FL: CRC Press, 2nd ed..
  16. 16. 
    Herring C. 1951. Surface tension as a motivation for sintering. The Physics of Powder Metallurgy WE Kingston 143–79 New York: McGraw-Hill
    [Google Scholar]
  17. 17. 
    Gibbs JW. 1948. The Collected Works of J.W. Gibbs, Vol. 1 New Haven, CT: Yale Univ. Press
  18. 18. 
    Cahn JW. 1977. Thermodynamics of solid and fluid interfaces. Interfacial Segregation: Papers Presented at a Seminar of the Materials Science Division of the American Society for Metals, October 22 and 23, 1977 WC Johnson, JM Blakely 3–23 Metals Park, OH: Am. Soc. Met.
    [Google Scholar]
  19. 19. 
    Frolov T, Mishin Y. 2015. Phases, phase equilibria, and phase rules in low-dimensional systems. J. Chem. Phys. 143:4044706
    [Google Scholar]
  20. 20. 
    Rohrer GS. 2016. The role of grain boundary energy in grain boundary complexion transitions. Curr. Opin. Solid State Mater. Sci. 20:5231–39
    [Google Scholar]
  21. 21. 
    Frolov T, Mishin Y. 2012. Thermodynamics of coherent interfaces under mechanical stresses. I. Theory. Phys. Rev. B 85:22224106
    [Google Scholar]
  22. 22. 
    Rottman C. 1988. Theory of phase transitions at internal interfaces. J. Phys. Colloq. 49:C5–31326
    [Google Scholar]
  23. 23. 
    Sigle W, Ciiang L-S, Gusr W 2002. On the correlation between grain-boundary segregation, faceting and embrittlement in Bi-doped Cu. Philos. Mag. A 82:81595–608
    [Google Scholar]
  24. 24. 
    Kundu A, Asl KM, Luo J, Harmer MP 2013. Identification of a bilayer grain boundary complexion in Bi-doped Cu. Scr. Mater. 68:2146–49
    [Google Scholar]
  25. 25. 
    Mullins WW. 1957. Theory of thermal grooving. J. Appl. Phys. 28:3333–39
    [Google Scholar]
  26. 26. 
    Saylor DM, Rohrer GS. 1999. Measuring the influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals. J. Am. Ceram. Soc. 82:61529–36
    [Google Scholar]
  27. 27. 
    Dillon SJ, Harmer MP, Rohrer GS 2010. The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions. J. Am. Ceram. Soc. 93:61796–802
    [Google Scholar]
  28. 28. 
    Bojarski SA, Ma S, Lenthe W, Harmer MP, Rohrer GS 2012. Changes in the grain boundary character and energy distributions resulting from a complexion transition in Ca-doped yttria. Metall. Mater. Trans. A 43:103532–38
    [Google Scholar]
  29. 29. 
    Quach DV, Castro RHR. 2012. Direct measurement of grain boundary enthalpy of cubic yttria-stabilized zirconia by differential scanning calorimetry. J. Appl. Phys. 112:8083527
    [Google Scholar]
  30. 30. 
    Muche DNF, Marple MAT, Sen S, Castro RHR 2018. Grain boundary energy, disordering energy and grain growth kinetics in nanocrystalline MgAl2O4 spinel. Acta Mater 149:302–11
    [Google Scholar]
  31. 31. 
    Dey S, Chang C-H, Gong M, Liu F, Castro RHR 2015. Grain growth resistant nanocrystalline zirconia by targeting zero grain boundary energies. J. Mater. Res. 30:202991–3002
    [Google Scholar]
  32. 32. 
    Cheng J, Luo J, Yang K 2018. Aimsgb: an algorithm and open-source python library to generate periodic grain boundary structures. Comput. Mater. Sci. 155:92–103
    [Google Scholar]
  33. 33. 
    Tschopp MA, Coleman SP, McDowell DL 2015. Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals). Integr. Mater. Manuf. Innov. 4:1176–89
    [Google Scholar]
  34. 34. 
    Banadaki AD, Tschopp MA, Patala S 2018. An efficient Monte Carlo algorithm for determining the minimum energy structures of metallic grain boundaries. Comput. Mater. Sci. 155:466–75
    [Google Scholar]
  35. 35. 
    Olmsted DL, Buta D, Adland A, Foiles SM, Asta M, Karma A 2011. Dislocation-pairing transitions in hot grain boundaries. Phys. Rev. Lett. 106:4046101
    [Google Scholar]
  36. 36. 
    Frolov T, Olmsted DL, Asta M, Mishin Y 2013. Structural phase transformations in metallic grain boundaries. Nat. Commun. 4:1899
    [Google Scholar]
  37. 37. 
    Frolov T, Asta M, Mishin Y 2015. Segregation-induced phase transformations in grain boundaries. Phys. Rev. B 92:2020103
    [Google Scholar]
  38. 38. 
    Brown JA, Mishin Y. 2007. Dissociation and faceting of asymmetrical tilt grain boundaries: molecular dynamics simulations of copper. Phys. Rev. B 76:13134118
    [Google Scholar]
  39. 39. 
    Rickman JM, Harmer MP, Chan HM 2016. Grain-boundary layering transitions and phonon engineering. Surf. Sci. 651:1–4
    [Google Scholar]
  40. 40. 
    Hickman J, Mishin Y. 2016. Disjoining potential and grain boundary premelting in binary alloys. Phys. Rev. B 93:22224108
    [Google Scholar]
  41. 41. 
    Merkle KL, Smith DJ. 1987. Atomic structure of symmetric tilt grain boundaries in NiO. Phys. Rev. Lett. 59:252887–90
    [Google Scholar]
  42. 42. 
    Sickafus KE, Sass SL. 1987. Grain boundary structural transformations induced by solute segregation. Acta Metall 35:169–79
    [Google Scholar]
  43. 43. 
    Khalajhedayati A, Rupert TJ. 2015. High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy. JOM 67:122788–801
    [Google Scholar]
  44. 44. 
    Luo J, Shi X. 2008. Grain boundary disordering in binary alloys. Appl. Phys. Lett. 92:10101901
    [Google Scholar]
  45. 45. 
    Ma S, Asl KM, Tansarawiput C, Cantwell PR, Qi M et al. 2012. A grain boundary phase transition in Si-Au. Scr. Mater. 66:5203–6
    [Google Scholar]
  46. 46. 
    Ma S, Cantwell PR, Pennycook TJ, Zhou N, Oxley MP et al. 2013. Grain boundary complexion transitions in WO3- and CuO-doped TiO2 bicrystals. Acta Mater 61:51691–704
    [Google Scholar]
  47. 47. 
    Peter NJ, Frolov T, Duarte MJ, Hadian R, Ophus C et al. 2018. Segregation-induced nanofaceting transition at an asymmetric tilt grain boundary in copper. Phys. Rev. Lett. 121:25255502
    [Google Scholar]
  48. 48. 
    Kwiatkowski da Silva A, Ponge D, Peng Z, Inden G, Lu Y et al. 2018. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys. Nat. Commun. 9:11137
    [Google Scholar]
  49. 49. 
    Zhou X, Yu X, Kaub T, Martens RL, Thompson GB 2016. Grain boundary specific segregation in nanocrystalline Fe(Cr). Sci. Rep. 6:34642
    [Google Scholar]
  50. 50. 
    Williams PL, Mishin Y. 2009. Thermodynamics of grain boundary premelting in alloys. II. Atomistic simulation. Acta Mater 57:133786–94
    [Google Scholar]
  51. 51. 
    Pan Z, Rupert TJ. 2016. Effect of grain boundary character on segregation-induced structural transitions. Phys. Rev. B 93:13134113
    [Google Scholar]
  52. 52. 
    O'Brien CJ, Barr CM, Price PM, Hattar K, Foiles SM 2018. Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals. J. Mater. Sci. 53:42911–27
    [Google Scholar]
  53. 53. 
    Yang S, Zhou N, Zheng H, Ong SP, Luo J 2018. First-order interfacial transformations with a critical point: breaking the symmetry at a symmetric tilt grain boundary. Phys. Rev. Lett. 120:8085702
    [Google Scholar]
  54. 54. 
    Pan Z, Rupert TJ. 2017. Spatial variation of short-range order in amorphous intergranular complexions. Comput. Mater. Sci. 131:62–68
    [Google Scholar]
  55. 55. 
    Zhu Q, Samanta A, Li B, Rudd RE, Frolov T 2018. Predicting phase behavior of grain boundaries with evolutionary search and machine learning. Nat. Commun. 9:1467
    [Google Scholar]
  56. 56. 
    Frolov T, Setyawan W, Kurtz RJ, Marian J, Oganov AR et al. 2018. Grain boundary phases in bcc metals. Nanoscale 10:178253–68
    [Google Scholar]
  57. 57. 
    Tewari A, Nabiei F, Cantoni M, Bowen P, Hébert C 2014. Segregation of anion (Cl) impurities at transparent polycrystalline α-alumina interfaces. J. Eur. Ceram. Soc. 34:123037–45
    [Google Scholar]
  58. 58. 
    Molodov DA, Czubayko U, Gottstein G, Shvindlerman LS, Straumal B, Gust W 1995. Acceleration of grain boundary motion in Al by small additions of Ga. Philos. Mag. Lett. 72:6361–68
    [Google Scholar]
  59. 59. 
    Dillon SJ, Harmer MP. 2007. Multiple grain boundary transitions in ceramics: a case study of alumina. Acta Mater 55:155247–54
    [Google Scholar]
  60. 60. 
    Divinski S, Lohmann M, Herzig C, Straumal B, Baretzky B, Gust W 2005. Grain-boundary melting phase transition in the Cu-Bi system. Phys. Rev. B 71:10104104
    [Google Scholar]
  61. 61. 
    Divinski SV, Edelhoff H, Prokofjev S 2012. Diffusion and segregation of silver in copper Σ5(310) grain boundary. Phys. Rev. B 85:14144104
    [Google Scholar]
  62. 62. 
    Frolov T, Divinski SV, Asta M, Mishin Y 2013. Effect of interface phase transformations on diffusion and segregation in high-angle grain boundaries. Phys. Rev. Lett. 110:25255502
    [Google Scholar]
  63. 63. 
    Prokoshkina D, Esin VA, Divinski SV 2017. Experimental evidence for anomalous grain boundary diffusion of Fe in Cu and Cu-Fe alloys. Acta Mater 133:240–46
    [Google Scholar]
  64. 64. 
    Nie J, Chan JM, Qin M, Zhou N, Luo J 2017. Liquid-like grain boundary complexion and sub-eutectic activated sintering in CuO-doped TiO2. Acta Mater 130:329–38
    [Google Scholar]
  65. 65. 
    Sigle W, Richter G, Rühle M, Schmidt S 2006. Insight into the atomic-scale mechanism of liquid metal embrittlement. Appl. Phys. Lett. 89:12121911
    [Google Scholar]
  66. 66. 
    Khalajhedayati A, Pan Z, Rupert TJ 2016. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nat. Commun. 7:10802
    [Google Scholar]
  67. 67. 
    Pan Z, Rupert TJ. 2015. Amorphous intergranular films as toughening structural features. Acta Mater 89:205–14
    [Google Scholar]
  68. 68. 
    Turlo V, Rupert TJ. 2018. Grain boundary complexions and the strength of nanocrystalline metals: dislocation emission and propagation. Acta Mater 151:100–11
    [Google Scholar]
  69. 69. 
    Madhav Reddy K, Guo JJ, Shinoda Y, Fujita T, Hirata A et al. 2012. Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases. Nat. Commun. 3:1052
    [Google Scholar]
  70. 70. 
    Cui FY, Kundu A, Krause A, Harmer MP, Vinci RP 2018. Surface energies, segregation, and fracture behavior of magnesium aluminate spinel low-index grain boundary planes. Acta Mater 148:320–29
    [Google Scholar]
  71. 71. 
    Feng L, Hao R, Lambros J, Dillon SJ 2018. The influence of dopants and complexion transitions on grain boundary fracture in alumina. Acta Mater 142:121–30
    [Google Scholar]
  72. 72. 
    Rohrer GS. 2011. Grain boundary energy anisotropy: a review. J. Mater. Sci. 46:185881–95
    [Google Scholar]
  73. 73. 
    Bojarski SA, Harmer MP, Rohrer GS 2014. Influence of grain boundary energy on the nucleation of complexion transitions. Scr. Mater. 88:1–4
    [Google Scholar]
  74. 74. 
    Li J, Dillon SJ, Rohrer GS 2009. Relative grain boundary area and energy distributions in nickel. Acta Mater 57:144304–11
    [Google Scholar]
  75. 75. 
    Ratanaphan S, Olmsted DL, Bulatov VV, Holm EA, Rollett AD, Rohrer GS 2015. Grain boundary energies in body-centered cubic metals. Acta Mater 88:346–54
    [Google Scholar]
  76. 76. 
    Olmsted DL, Foiles SM, Holm EA 2009. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57:133694–703
    [Google Scholar]
  77. 77. 
    Dillon SJ, Rohrer GS. 2009. Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth. Acta Mater 57:11–7
    [Google Scholar]
  78. 78. 
    Kelly MN, Bojarski SA, Rohrer GS 2017. The temperature dependence of the relative grain-boundary energy of yttria-doped alumina. J. Am. Ceram. Soc. 100:2783–91
    [Google Scholar]
  79. 79. 
    Dillon SJ, Harmer MP, Rohrer GS 2010. Influence of interface energies on solute partitioning mechanisms in doped aluminas. Acta Mater 58:155097–108
    [Google Scholar]
  80. 80. 
    Rheinheimer W, Hoffmann MJ. 2015. Non-Arrhenius behavior of grain growth in strontium titanate: new evidence for a structural transition of grain boundaries. Scr. Mater. 101:68–71
    [Google Scholar]
  81. 81. 
    Sternlicht H, Rheinheimer W, Hoffmann MJ, Kaplan WD 2016. The mechanism of grain boundary motion in SrTiO3. J. Mater. Sci. 51:1467–75
    [Google Scholar]
  82. 82. 
    Kelly MN, Rheinheimer W, Hoffmann MJ, Rohrer GS 2018. Anti-thermal grain growth in SrTiO3: coupled reduction of the grain boundary energy and grain growth rate constant. Acta Mater 149:11–18
    [Google Scholar]
  83. 83. 
    Frazier WE, Rohrer GS, Rollett AD 2015. Abnormal grain growth in the Potts model incorporating grain boundary complexion transitions that increase the mobility of individual boundaries. Acta Mater 96:390–98
    [Google Scholar]
  84. 84. 
    Yu Z, Cantwell PR, Gao Q, Yin D, Zhang Y et al. 2017. Segregation-induced ordered superstructures at general grain boundaries in a nickel-bismuth alloy. Science 358:635997–101
    [Google Scholar]
  85. 85. 
    Alber U, Mullejans H, Ruhle M 1997. Improved quantification of grain boundary segregation by EDS in a dedicated STEM. Ultramicroscopy 69:105–16
    [Google Scholar]
  86. 86. 
    Marvel CJ, Behler KD, LaSalvia JC, Domnich V, Haber RA et al. 2019. Extending ζ-factor microanalysis to boron-rich ceramics: quantification of bulk stoichiometry and grain boundary composition. Ultramicroscopy 202:163–72
    [Google Scholar]
  87. 87. 
    Sternlicht H, Bojarski SA, Rohrer GS, Kaplan WD 2018. Quantitative differences in the Y grain boundary excess at boundaries delimiting large and small grains in Y doped Al2O3. J. Eur. Ceram. Soc. 38:41829–35
    [Google Scholar]
  88. 88. 
    Liu C, Chen H, Nie JF 2016. Interphase boundary segregation of Zn in Mg-Sn-Zn alloys. Scr. Mater. 123:5–8
    [Google Scholar]
  89. 89. 
    Marvel CJ, Kracum MR, Yu Z, Harmer MP, Chan HM 2018. Observation of Cu-rich grain boundary nanoparticles and complexions in Cu/Ti-doped alumina. Scr. Mater. 157:34–38
    [Google Scholar]
  90. 90. 
    Herbig M, Raabe D, Li YJ, Choi P, Zaefferer S, Goto S 2014. Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112:12126103
    [Google Scholar]
  91. 91. 
    Marvel CJ, Hornbuckle BC, Darling KA, Harmer MP 2019. Intentional and unintentional elemental segregation to grain boundaries in a Ni-rich nanocrystalline alloy. J. Mater. Sci. 54:43496–508
    [Google Scholar]
  92. 92. 
    Nguyen TD, La Fontaine A, Yang L, Cairney JM, Zhang J, Young DJ 2018. Atom probe study of impurity segregation at grain boundaries in chromia scales grown in CO2 gas. Corros. Sci. 132:125–35
    [Google Scholar]
  93. 93. 
    Peng Z, Lu Y, Hatzoglou C, Kwiatkowski da Silva A, Vurpillot F et al. 2019. An automated computational approach for complete in-plane compositional interface analysis by atom probe tomography. Microsc. Microanal. 25:2389–400
    [Google Scholar]
  94. 94. 
    Herbig M. 2018. Spatially correlated electron microscopy and atom probe tomography: current possibilities and future perspectives. Scr. Mater. 148:98–105
    [Google Scholar]
  95. 95. 
    De Oliveira MJ, Griffiths RB 1978. Lattice-gas model of multiple layer adsorption. Surf. Sci. 71:3687–94
    [Google Scholar]
  96. 96. 
    Pandit R, Schick M, Wortis M 1982. Systematics of multilayer adsorption phenomena on attractive substrates. Phys. Rev. B 26:95112–40
    [Google Scholar]
  97. 97. 
    Wynblatt P, Shi Z. 2005. Relation between grain boundary segregation and grain boundary character in FCC alloys. J. Mater. Sci. 40:112765–73
    [Google Scholar]
  98. 98. 
    Wynblatt P, Chatain D. 2008. Solid-state wetting transitions at grain boundaries. Mater. Sci. Eng. A 495:1–2119–25
    [Google Scholar]
  99. 99. 
    Rickman JM, Chan HM, Harmer MP, Luo J 2013. Grain-boundary layering transitions in a model bicrystal. Surf. Sci. 618:88–93
    [Google Scholar]
  100. 100. 
    Luo J. 2009. Grain boundary complexions: the interplay of premelting, prewetting, and multilayer adsorption. Appl. Phys. Lett. 95:7071911
    [Google Scholar]
  101. 101. 
    Rickman JM, Luo J. 2016. Layering transitions at grain boundaries. Curr. Opin. Solid State Mater. Sci. 20:5225–30
    [Google Scholar]
  102. 102. 
    Sutton AP, Balluffi RW. 1995. Interfaces in Crystalline Materials Oxford, UK: Clarendon Press
  103. 103. 
    Tasker PW, Duffy DM. 1983. On the structure of twist grain boundaries in ionic oxides. Philos. Mag. A 47:6L45–48
    [Google Scholar]
  104. 104. 
    Sun CP, Balluffi RW. 1982. Secondary grain boundary dislocations in [001]twist boundaries in MgO I. Intrinsic structures. Philos. Mag. A 46:149–62
    [Google Scholar]
  105. 105. 
    Phillpot SR, Rickman JM. 1992. Simulated quenching to the zero‐temperature limit of the grand‐canonical ensemble. J. Chem. Phys. 97:42651–58
    [Google Scholar]
  106. 106. 
    Phillpot SR. 1994. Simulation of solids at nonzero temperatures in the grand-canonical ensemble. Phys. Rev. B 49:117639–45
    [Google Scholar]
  107. 107. 
    von Alfthan S, Haynes PD, Kaski K, Sutton AP 2006. Are the structures of twist grain boundaries in silicon ordered at 0 K. Phys. Rev. Lett. 96:5055505
    [Google Scholar]
  108. 108. 
    Chua AL-S, Benedek NA, Chen L, Finnis MW, Sutton AP 2010. A genetic algorithm for predicting the structures of interfaces in multicomponent systems. Nat. Mater. 9:5418–22
    [Google Scholar]
  109. 109. 
    Oganov AR, Glass CW. 2006. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124:24244704
    [Google Scholar]
  110. 110. 
    Frolov T, Zhu Q, Oppelstrup T, Marian J, Rudd RE 2018. Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects. Acta Mater 159:123–34
    [Google Scholar]
  111. 111. 
    Gao B, Gao P, Lu S, Lv J, Wang Y, Ma Y 2019. Interface structure prediction via CALYPSO method. Sci. Bull. 64:5301–9
    [Google Scholar]
  112. 112. 
    Zhou N, Luo J. 2015. Developing grain boundary diagrams for multicomponent alloys. Acta Mater 91:202–16
    [Google Scholar]
  113. 113. 
    Zhou N, Hu T, Luo J 2016. Grain boundary complexions in multicomponent alloys: challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 20:5268–77
    [Google Scholar]
  114. 114. 
    Straumal B, Gust W, Molodov D 1994. Tie lines of the grain boundary wetting phase transition in the Al-Sn system. J. Phase Equilib. 15:4386–91
    [Google Scholar]
  115. 115. 
    Zhou N, Yu Z, Zhang Y, Harmer MP, Luo J 2017. Calculation and validation of a grain boundary complexion diagram for Bi-doped Ni. Scr. Mater. 130:165–69
    [Google Scholar]
  116. 116. 
    Shi X, Luo J. 2011. Developing grain boundary diagrams as a materials science tool: a case study of nickel-doped molybdenum. Phys. Rev. B 84:1014105
    [Google Scholar]
  117. 117. 
    Schumacher O, Marvel CJ, Kelly MN, Cantwell PR, Vinci RP et al. 2016. Complexion time-temperature-transformation (TTT) diagrams: opportunities and challenges. Curr. Opin. Solid State Mater. Sci. 20:5316–23
    [Google Scholar]
  118. 118. 
    Cantwell PR, Ma S, Bojarski S, Rohrer G, Harmer MP 2016. Expanding time-temperature-transformation (TTT) diagrams to interfaces: a new approach for grain boundary engineering. Acta Mater 106:78–86
    [Google Scholar]
  119. 119. 
    Peillon FC, Thevenot F. 2002. Microstructural designing of silicon nitride related to toughness. J. Eur. Ceram. Soc. 22:3271–78
    [Google Scholar]
  120. 120. 
    Lawrence AK, Kundu A, Harmer MP, Compson C, Atria J, Spreij M 2015. Influence of complexion transitions on microstructure evolution in specialty aluminas. J. Am. Ceram. Soc. 98:41347–55
    [Google Scholar]
  121. 121. 
    Saber M. 2013. Thermal stability of nanocrystalline alloys by solute additions and a thermodynamic modeling PhD Thesis, N.C. State Univ. Raleigh, NC:
  122. 122. 
    Dillon SJ, Harmer MP. 2007. Mechanism of “solid-state” single-crystal conversion in alumina. J. Am. Ceram. Soc. 90:3993–95
    [Google Scholar]
  123. 123. 
    Coleman SP, Hernandez-Rivera E, Behler KD, Synowczynski-Dunn J, Tschopp MA 2016. Challenges of engineering grain boundaries in boron-based armor ceramics. JOM 68:61605–15
    [Google Scholar]
  124. 124. 
    Behler KD, Marvel CJ, LaSalvia JC, Walck SD, Harmer MP 2018. Observations of grain boundary chemistry variations in a boron carbide processed with oxide additives. Scr. Mater. 142:106–10
    [Google Scholar]
  125. 125. 
    Zhang Y, Nie J, Luo J 2019. Flash sintering activated by bulk phase and grain boundary complexion transformations. Acta Mater 181:544–54
    [Google Scholar]
  126. 126. 
    Yu Z, Wu Q, Rickman JM, Chan HM, Harmer MP 2013. Atomic-resolution observation of Hf-doped alumina grain boundaries. Scr. Mater. 68:9703–6
    [Google Scholar]
  127. 127. 
    Wu Q, Chan HM, Rickman JM, Harmer MP 2015. Effect of Hf4+ concentration on oxygen grain-boundary diffusion in alumina. J. Am. Ceram. Soc. 98:103346–51
    [Google Scholar]
  128. 128. 
    Reddy KV, Pal S. 2018. Effect of grain boundary complexions on the deformation behavior of Ni bicrystal during bending creep. J. Mol. Model. 24:487
    [Google Scholar]
  129. 129. 
    Reddy KV, Pal S. 2018. Influence of grain boundary complexion on deformation mechanism of high temperature bending creep process of Cu bicrystal. Trans. Indian Inst. Met. 71:71721–34
    [Google Scholar]
  130. 130. 
    Cao W, Kundu A, Yu Z, Harmer MP, Vinci RP 2013. Direct correlations between fracture toughness and grain boundary segregation behavior in ytterbium-doped magnesium aluminate spinel. Scr. Mater. 69:181–84
    [Google Scholar]
  131. 131. 
    Bowman WJ, Kelly MN, Rohrer GS, Hernandez CA, Crozier PA 2017. Enhanced ionic conductivity in electroceramics by nanoscale enrichment of grain boundaries with high solute concentration. Nanoscale 9:4417293–302
    [Google Scholar]
  132. 132. 
    Kuo JJ, Yu Y, Kang SD, Cojocaru‐Mirédin O, Wuttig M, Snyder GJ 2019. Mg deficiency in grain boundaries of n-type Mg3Sb2 identified by atom probe tomography. Adv. Mater. Interfaces 6:131900429
    [Google Scholar]
  133. 133. 
    Zong PA, Hanus R, Dylla M, Tang Y, Liao J et al. 2017. Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci. 10:1183–91
    [Google Scholar]
  134. 134. 
    Watanabe T. 1984. An approach to grain boundary design of strong and ductile polycrystals. Res. Mech. 11:147–84
    [Google Scholar]
  135. 135. 
    Watanabe T. 2011. Grain boundary engineering: historical perspective and future prospects. J. Mater. Sci. 46:124095–115
    [Google Scholar]
  136. 136. 
    Raabe D, Herbig M, Sandlöbes S, Li Y, Tytko D et al. 2014. Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 18:4253–61
    [Google Scholar]
  137. 137. 
    Duscher G, Chisholm MF, Alber U, Rühle M 2004. Bismuth-induced embrittlement of copper grain boundaries. Nat. Mater. 3:9621–26
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081619-114055
Loading
/content/journals/10.1146/annurev-matsci-081619-114055
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error