1932

Abstract

Historically, fibers are known to be relatively passive materials and are used primarily in textiles. Today, however, fibers with a range of functionalities such as electrical and thermal conductivity, superparamagnetic properties, temperature regulation, energy harvesting, and biomedical capability provide many possibilities. Most man-made fibers today are derived from petroleum, but there is increasing emphasis on making fibers biorenewable. Fibers are also the strongest structural materials available today. Different fiber fabrication technologies, available properties, and some near-term future prospects are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-120116-114326
2017-07-03
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/matsci/47/1/annurev-matsci-120116-114326.html?itemId=/content/journals/10.1146/annurev-matsci-120116-114326&mimeType=html&fmt=ahah

Literature Cited

  1. Smith P, Lemstra PJ, Kalb B, Pennings AJ. 1.  1979. Ultrahigh-strength polyethylene filaments by solution spinning and hot drawing. Polym. Bull. 1:733–36 [Google Scholar]
  2. Barham lP, Keller A. 2.  1985. High-strength polyethylene fibres from solution and gel spinning. J. Mater. Sci. 20:2281–302 [Google Scholar]
  3. Smith P, Lemstra PJ. 3.  1980. Ultra-high-strength polyethylene filaments by solution spinning/drawing. J. Mater. Sci. 15:505–14 [Google Scholar]
  4. Chae HG, Newcomb BA, Gulgunje PV, Liu Y, Gupta KK. 4.  et al. 2015. High strength and high modulus carbon fibers. Carbon 93:81–87 [Google Scholar]
  5. Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Möller M. 5.  2007. Electrospinning of polymer melts: phenomenological observations. Polymer 48:6823–33 [Google Scholar]
  6. Nayani K, Katepalli H, Sharma CS, Sharma A, Patil S, Venkataraghavan R. 6.  2011. Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Ind. Eng. Chem. Res. 51:1761–66 [Google Scholar]
  7. Wang T, Kumar S. 7.  2006. Electrospinning of polyacrylonitrile nanofibers. J. Appl. Polym. Sci. 102:1023–29 [Google Scholar]
  8. Nava R, Cremar L, Agubra V, Sánchez J, Alcoutlabi M, Lozano K. 8.  2016. Centrifugal spinning: an alternative for large scale production of silicon–carbon composite nanofibers for lithium ion battery anodes. ACS Appl. Mater. Interfaces 8:4329365–72 [Google Scholar]
  9. Hunt MA, Saito T, Brown RH, Kumbhar AS, Naskar AK. 9.  2012. Patterned functional carbon fibers from polyethylene. Adv. Mater. 24:2386–89 [Google Scholar]
  10. Chien A-T, Gulgunje PV, Chae HG, Joshi AS, Moon J. 10.  et al. 2013. Functional polymer–polymer/carbon nanotube bi-component fibers. Polymer 54:6210–17 [Google Scholar]
  11. Abouraddy A, Bayindir M, Benoit G, Hart S, Kuriki K. 11.  et al. 2007. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6:336–47 [Google Scholar]
  12. Barton G, van Eijkelenborg MA, Henry G, Large MC, Zagari J. 12.  2004. Fabrication of microstructured polymer optical fibres. Opt. Fiber Technol. 10:325–35 [Google Scholar]
  13. 13. Fiber Opt. Assoc. 2015. Guide to fiber optics and premises cabling http://www.thefoa.org/tech/ref/basic/fiber.html
  14. Bayindir M, Abouraddy AF, Arnold J, Joannopoulos JD, Fink Y. 14.  2006. thermal-sensing fiber devices by multimaterial codrawing. Adv. Mater. 18:845–49 [Google Scholar]
  15. Heckert WW.15.  1953. Synthetic fibers. J. Chem. Educ. 30:166 [Google Scholar]
  16. Chae HG, Kumar S. 16.  2006. Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 100:791–802 [Google Scholar]
  17. Penning J, Van der Werff H, Roukema M, Pennings A. 17.  1990. On the theoretical strength of gelspun/hotdrawn ultra-high molecular weight polyethylene fibres. Polym. Bull. 23:347–52 [Google Scholar]
  18. Crist B.18.  1995. The ultimate strength and stiffness of polymers. Annu. Rev. Mater. Sci. 25:295–323 [Google Scholar]
  19. Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR. 19.  2014. Carbon fibers: precursor systems, processing, structure, and properties. Angew. Chem. Int. Ed. 53:5262–98 [Google Scholar]
  20. Black WB.20.  1980. High modulus/high strength organic fibers. Annu. Rev. Mater. Res. 10:311–62 [Google Scholar]
  21. Newcomb BA.21.  2016. Processing, structure, and properties of carbon fibers. Composites A Appl. Sci. Manuf. 91:1262–82 [Google Scholar]
  22. Liu Y, Kumar S. 22.  2012. Recent progress in fabrication, structure, and properties of carbon fibers. Polym. Rev. 52:234–58 [Google Scholar]
  23. Minus M, Kumar S. 23.  2005. The processing, properties, and structure of carbon fibers. JOM 57:52–58 [Google Scholar]
  24. Edison TA.24.  1880. Electric lamp US Patent 223,898
  25. Ko TH.25.  1991. Influence of continuous stabilization on the physical properties and microstructure of PAN-based carbon fibers. J. Appl. Polym. Sci. 42:1949–57 [Google Scholar]
  26. Dalton S, Heatley F, Budd PM. 26.  1999. Thermal stabilization of polyacrylonitrile fibres. Polymer 40:5531–43 [Google Scholar]
  27. Chien A-T, Cho S, Joshi Y, Kumar S. 27.  2014. Electrical conductivity and Joule heating of polyacrylonitrile/carbon nanotube composite fibers. Polymer 55:6896–905 [Google Scholar]
  28. Kumar S, Anderson DP, Crasto AS. 28.  1993. Carbon fibre compressive strength and its dependence on structure and morphology. J. Mater. Sci. 28:423–39 [Google Scholar]
  29. Basu-Dutt S, Minus ML, Jain R, Nepal D, Kumar S. 29.  2011. Chemistry of carbon nanotubes for everyone. J. Chem. Educ. 89:221–29 [Google Scholar]
  30. Dumitrica T, Hua M, Yakobson BI. 30.  2006. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. PNAS 103:6105–9 [Google Scholar]
  31. Kelly A, Macmillan NH. 31.  1986. Strong Solids Oxford, UK: Oxford Univ. Press
  32. Newcomb BA, Giannuzzi LA, Lyons KM, Gulgunje PV, Gupta K. 32.  et al. 2015. High resolution transmission electron microscopy study on polyacrylonitrile/carbon nanotube based carbon fibers and the effect of structure development on the thermal and electrical conductivities. Carbon 93:502–14 [Google Scholar]
  33. Gulgunje PV, Newcomb BA, Gupta K, Chae HG, Tsotsis TK, Kumar S. 33.  2015. Low-density and high-modulus carbon fibers from polyacrylonitrile with honeycomb structure. Carbon 95:710–14 [Google Scholar]
  34. Fitzer E, Manocha LM. 34.  1998. Carbon Reinforcements and Carbon/Carbon Composites Berlin: Springer Science & Business Media
  35. Lu W, Zu M, Byun J-H, Kim B-S, Chou T-W. 35.  2012. State of the art of carbon nanotube fibers: opportunities and challenges. Adv. Mater. 24:1805–33 [Google Scholar]
  36. Xu Z, Gao C. 36.  2011. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2:571 [Google Scholar]
  37. León y León CA. 37.  2014. Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same US Patent 8,871,172 B2
  38. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. 38.  2014. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26:5310–36 [Google Scholar]
  39. Castano LM, Flatau AB. 39.  2014. Smart fabric sensors and e-textile technologies: a review. Smart Mater. Struct. 23:053001 [Google Scholar]
  40. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. 40.  1977. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. . Chem. Commun. 1977:578–80 [Google Scholar]
  41. Okuzaki H, Harashina Y, Yan H. 41.  2009. Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur. Polym. J. 45:256–61 [Google Scholar]
  42. Cárdenas JR, de França MGO, de Vasconcelos EA, de Azevedo WM, da Silva EF Jr.. 42.  2007. Growth of sub-micron fibres of pure polyaniline using the electrospinning technique. J. Phys. D Appl. Phys. 40:1068 [Google Scholar]
  43. Mirabedini A, Foroughi J, Wallace GG. 43.  2016. Developments in conducting polymer fibres: from established spinning methods toward advanced applications. RSC Adv 6:44687–716 [Google Scholar]
  44. Liu Y, Li X, JC. 44.  2013. Electrically conductive poly(3,4-ethylenedioxythiophene)–polystyrene sulfonic acid/polyacrylonitrile composite fibers prepared by wet spinning. J. Appl. Polym. Sci. 130:370–74 [Google Scholar]
  45. Takano T, Tagaya M, Kobayashi T. 45.  2013. Dual-layer hollow fiber of polyaniline–cellulose acetate prepared with simple wet technique of chemical polymerization of aniline. Polym. Bull. 70:3019–30 [Google Scholar]
  46. Devaux E, Koncar V, Kim B, Campagne C, Roux C. 46.  et al. 2007. Processing and characterization of conductive yarns by coating or bulk treatment for smart textile applications. Trans. Inst. Meas. Control 29:355–76 [Google Scholar]
  47. Huang JC.47.  2002. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Tech. 21:299–313 [Google Scholar]
  48. Lee S, Shin S, Lee S, Seo J, Lee J. 48.  et al. 2015. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 25:3114–21 [Google Scholar]
  49. Gao B, Chen Y, Fuhrer M, Glattli D, Bachtold A. 49.  2005. Four-point resistance of individual single-wall carbon nanotubes. Phys. Rev. Lett. 95:196802 [Google Scholar]
  50. Xu Z, Gao C. 50.  2015. Graphene fiber: a new trend in carbon fibers. Mater. Today 18:480–92 [Google Scholar]
  51. Jakubinek MB, Johnson MB, White MA, Jayasinghe C, Li G. 51.  et al. 2012. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns. Carbon 50244–48
  52. Bernholc J, Brenner D, Buongiorno Nardelli M, Meunier V, Roland C. 52.  2002. Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res. 32:347–75 [Google Scholar]
  53. Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X. 53.  et al. 2013. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182–86 [Google Scholar]
  54. Xu Z, Sun H, Zhao X, Gao C. 54.  2013. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25:188–93 [Google Scholar]
  55. Randeniya LK, Bendavid A, Martin PJ, Tran CD. 55.  2010. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small 6:1806–11 [Google Scholar]
  56. Aboutalebi SH, Jalili R, Esrafilzadeh D, Salari M, Gholamvand Z. 56.  et al. 2014. High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano 8:2456–66 [Google Scholar]
  57. Xu Z, Liu Z, Sun H, Gao C. 57.  2013. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv. Mater. 25:3249–53 [Google Scholar]
  58. 58. Toray. 2016. Carbon fiber composite materials http://www.toray.us/products/prod_004.html
  59. 59. Hexcel. 2016. Commercial aerospace http://www.hexcel.com/Markets/Commercial-Aerospace/
  60. 60. Mitsubishi. 2016. Pitch-based carbon fiber (CF) “DIALEAD.” https://www.m-chemical.co.jp/en/products/departments/mcc/cfcm/product/1201229_7502.html [Google Scholar]
  61. Biron M.61.  2014. Thermosets and Composites: Material Selection, Applications, Manufacturing and Cost Analysis Amsterdam: Elsevier
  62. Gültekin ND. Usta İ. 62. , 2015. Investigation of thermal and electrical conductivity properties of carbon black coated cotton fabrics. Marmara J. Pure Appl. Sci. 27:91–94 [Google Scholar]
  63. Yamanaka A, Takao T. 63.  2011. Thermal conductivity of high-strength polyethylene fiber and applications for cryogenic use. ISRN Mater. Sci. 2011:718761 [Google Scholar]
  64. 64. DuPont. 2016. Kevlar® properties http://www.dupont.com/products-and-services/fabrics-fibers-nonwovens/fibers/articles/kevlar-properties.html
  65. Wang X, Ho V, Segalman RA, Cahill DG. 65.  2013. Thermal conductivity of high-modulus polymer fibers. Macromolecules 46:4937–43 [Google Scholar]
  66. Huang X, Liu G, Wang X. 66.  2012. New secrets of spider silk: exceptionally high thermal conductivity and its abnormal change under stretching. Adv. Mater. 24:1482–86 [Google Scholar]
  67. Choy C, Fei Y, Xi T. 67.  1993. Thermal conductivity of gel-spun polyethylene fibers. J. Polym. Sci. B Polym. Phys. 31:365–70 [Google Scholar]
  68. Ma J, Zhang Q, Mayo A, Ni Z, Yi H. 68.  et al. 2015. Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale 7:16899–908 [Google Scholar]
  69. Chae HG, Kumar S. 69.  2008. Making strong fibers. Science 319:908–9 [Google Scholar]
  70. Shen S, Henry A, Tong J, Zheng R, Chen G. 70.  2010. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5:251–55 [Google Scholar]
  71. Zhang T, Wu X, Luo T. 71.  2014. Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C 118:21148–59 [Google Scholar]
  72. Ericson LM, Fan H, Peng H, Davis VA, Zhou W. 72.  et al. 2004. Macroscopic, neat, single-walled carbon nanotube fibers. Science 305:1447–50 [Google Scholar]
  73. Shaikh S, Li L, Lafdi K, Huie J. 73.  2007. Thermal conductivity of an aligned carbon nanotube array. Carbon 45:2608–13 [Google Scholar]
  74. Xin G, Yao T, Sun H, Scott SM, Shao D. 74.  et al. 2015. Highly thermally conductive and mechanically strong graphene fibers. Science 349:1083–87 [Google Scholar]
  75. Han Z, Fina A. 75.  2011. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36:914–44 [Google Scholar]
  76. Moon J, Weaver K, Feng B, Chae HG, Kumar S. 76.  et al. 2012. Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method. Rev. Sci. Instrum. 83:016103 [Google Scholar]
  77. Jain R, Choi YH, Liu Y, Minus ML, Chae HG. 77.  et al. 2010. Processing, structure and properties of poly(ether ketone) grafted few wall carbon nanotube composite fibers. Polymer 51:3940–47 [Google Scholar]
  78. Yang Y, Tang L, Li H. 78.  2009. Vibration energy harvesting using macro-fiber composites. Smart Mater. Struct. 18:115025 [Google Scholar]
  79. Zeng W, Tao X-M, Chen S, Shang S, Chan HLW, Choy SH. 79.  2013. Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 6:2631–38 [Google Scholar]
  80. Chou S, Wang R, Fane AG. 80.  2013. Robust and high performance hollow fiber membranes for energy harvesting from salinity gradients by pressure retarded osmosis. J. Membr. Sci. 448:44–54 [Google Scholar]
  81. Chen J, Huang Y, Zhang N, Zou H, Liu R. 81.  et al. 2016. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1:16138 [Google Scholar]
  82. Sarier N, Onder E. 82.  2012. Organic phase change materials and their textile applications: an overview. Thermochim Acta 540:7–60 [Google Scholar]
  83. Mondal S.83.  2008. Phase change materials for smart textiles—an overview. Appl. Therm. Eng. 28:1536–50 [Google Scholar]
  84. Chen C, Wang L, Huang Y. 84.  2011. Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl. Energy 88:3133–39 [Google Scholar]
  85. Nguyen TTT, Park JS. 85.  2011. Fabrication of electrospun nonwoven mats of polyvinylidene fluoride/polyethylene glycol/fumed silica for use as energy storage materials. J. Appl. Polym. Sci. 121:3596–603 [Google Scholar]
  86. Chen C, Liu S, Liu W, Zhao Y, Lu Y. 86.  2012. Synthesis of novel solid–liquid phase change materials and electrospinning of ultrafine phase change fibers. Sol. Energy Mater. Sol. Cells 96:202–9 [Google Scholar]
  87. Hsu P-C, Song AY, Catrysse PB, Liu C, Peng Y. 87.  et al. 2016. Radiative human body cooling by nanoporous polyethylene textile. Science 353:1019–23 [Google Scholar]
  88. Rosso F, Giordano A, Barbarisi M, Barbarisi A. 88.  2004. From cell–ECM interactions to tissue engineering. J. Cell. Physiol. 199:174–80 [Google Scholar]
  89. Hutmacher DW.89.  2000. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–43 [Google Scholar]
  90. Ding T, Luo Z-J, Zheng Y, Hu X-Y, Ye Z-X. 90.  2010. Rapid repair and regeneration of damaged rabbit sciatic nerves by tissue-engineered scaffold made from nano-silver and collagen type I. Injury 41:522–27 [Google Scholar]
  91. Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X. 91.  2006. Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles. Eur. Polym. J. 42:2081–87 [Google Scholar]
  92. Kim S-E, Wallat JD, Harker EC, Advincula AA, Pokorski JK. 92.  2015. Multifunctional and spatially controlled bioconjugation to melt coextruded nanofibers. Polym. Chem. 6:5683–92 [Google Scholar]
  93. Kim Y-t, Haftel VK, Kumar S, Bellamkonda RV. 93.  2008. The role of aligned polymer fiber–based constructs in the bridging of long peripheral nerve gaps. Biomaterials 29:3117–27 [Google Scholar]
  94. Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC. 94.  et al. 1994. Biodegradable polymer scaffolds for tissue engineering. Nat. Biotechnol. 12:689–93 [Google Scholar]
  95. Zhang Y, Lim CT, Ramakrishna S, Huang Z-M. 95.  2005. Recent development of polymer nanofibers for biomedical and biotechnological applications. J. Mater. Sci. Mater. Med. 16:933–46 [Google Scholar]
  96. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N. 96.  2003. Electrospun nanofibrous polyurethane membrane as wound dressing. J. Biomed. Mater. Res. B Appl. Biomater 67675–79 [Google Scholar]
  97. Rujitanaroj P-o, Pimpha N, Supaphol P. 97.  2008. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49:4723–32 [Google Scholar]
  98. Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J. 98.  2007. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9:349–54 [Google Scholar]
  99. Hong KH.99.  2007. Preparation and properties of electrospun poly(vinyl alcohol)/silver fiber web as wound dressings. Polym. Eng. Sci. 47:43–49 [Google Scholar]
  100. Chen J-P, Chang G-Y, Chen J-K. 100.  2008. Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf. A 313:183–88 [Google Scholar]
  101. Schneider A, Wang X, Kaplan D, Garlick J, Egles C. 101.  2009. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater 5:2570–78 [Google Scholar]
  102. Gao W, Wang X, Xu W, Xu S. 102.  2014. Luminescent composite polymer fibers: in situ synthesis of silver nanoclusters in electrospun polymer fibers and application. Mater. Sci. Eng. C 42:333–40 [Google Scholar]
  103. Yu D-G, Yang C, Jin M, Williams GR, Zou H. 103.  et al. 2016. Medicated Janus fibers fabricated using a Teflon-coated side-by-side spinneret. Colloids Surf. B 138:110–16 [Google Scholar]
  104. Hua D, Liu Z, Wang F, Gao B, Chen F. 104.  et al. 2016. pH responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery. Carbohydr. Polym. 151:1240–44 [Google Scholar]
  105. Wang B, Zheng H, Chang M-W, Ahmad Z, Li J-S. 105.  2016. Hollow polycaprolactone composite fibers for controlled magnetic responsive antifungal drug release. Colloids Surf. B 145:757–67 [Google Scholar]
  106. Gupta AK, Gupta M. 106.  2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021 [Google Scholar]
  107. Chien A-T, Newcomb BA, Sabo D, Robbins J, Zhang ZJ, Kumar S. 107.  2014. High-strength superpara-magnetic composite fibers. Polymer 55:4116–24 [Google Scholar]
  108. Zhu J, Wei S, Rutman D, Haldolaarachchige N, Young DP, Guo Z. 108.  2011. Magnetic polyacrylonitrile-Fe@FeO nanocomposite fibers—electrospinning, stabilization and carbonization. Polymer 52:2947–55 [Google Scholar]
  109. Stone R, Hipp S, Barden J, Brown PJ, Mefford OT. 109.  2013. Highly scalable nanoparticle–polymer composite fiber via wet spinning. J. Appl. Polym. Sci. 130:1975–80 [Google Scholar]
  110. Canales A, Jia X, Froriep UP, Koppes RA, Tringides CM. 110.  et al. 2015. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33:277–84 [Google Scholar]
  111. Pu J, Yan X, Jiang Y, Chang C, Lin L. 111.  2010. Piezoelectric actuation of direct-write electrospun fibers. Sens. Actuators A Phys. 164:131–36 [Google Scholar]
  112. Tajitsu Y.112.  2008. Piezoelectricity of chiral polymeric fiber and its application in biomedical engineering. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55:1000–8 [Google Scholar]
  113. Sanghera J, Aggarwal I. 113.  1999. Active and passive chalcogenide glass optical fibers for IR applications: a review. J. Non-Cryst. Solids 256:6–16 [Google Scholar]
  114. Lee B.114.  2003. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 9:57–79 [Google Scholar]
  115. Polf J, McKeever S, Akselrod M, Holmstrom S. 115.  2002. A real-time, fibre optic dosimetry system using Al2O3 fibres. Radiat. Prot. Dosim. 100:301–4 [Google Scholar]
  116. Rahman AM, Zubair H, Begum M, Abdul-Rashid H, Yusoff Z. 116.  et al. 2016. Real-time dosimetry in radiotherapy using tailored optical fibers. Radiat. Phys. Chem. 122:43–47 [Google Scholar]
  117. Maurice E, Monnom G, Dussardier B, Saïssy A, Ostrowsky D, Baxter G. 117.  1995. Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors. Appl. Opt. 34:8019–25 [Google Scholar]
  118. Raghunandhan R, Chen L, Long H, Leam L, So P. 118.  et al. 2016. Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection. Sens. Actuat. B Chem. 233:31–38 [Google Scholar]
  119. Jiang G, Huang W, Li L, Wang X, Pang F. 119.  et al. 2012. Structure and properties of regenerated cellulose fibers from different technology processes. Carbohydr. Polym. 87:2012–18 [Google Scholar]
  120. Fink H-P, Weigel P, Purz H, Ganster J. 120.  2001. Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci. 26:1473–524 [Google Scholar]
  121. Zhu S, Wu Y, Chen Q, Yu Z, Wang C. 121.  et al. 2006. Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–27 [Google Scholar]
  122. Rahatekar SS, Rasheed A, Jain R, Zammarano M, Koziol KK. 122.  et al. 2009. Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer 50:4577–83 [Google Scholar]
  123. Abitbol T, Kloser E, Gray DG. 123.  2013. Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–94 [Google Scholar]
  124. Cao X, Dong H, Li CM. 124.  2007. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899–904 [Google Scholar]
  125. Zimmermann T, Bordeanu N, Strub E. 125.  2010. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym. 79:1086–93 [Google Scholar]
  126. Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG. 126.  2009. A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–38 [Google Scholar]
  127. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ. 127.  2010. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–81 [Google Scholar]
  128. Chen S, Schueneman G, Pipes RB, Youngblood J, Moon RJ. 128.  2014. Effects of crystal orientation on cellulose nanocrystals–cellulose acetate nanocomposite fibers prepared by dry spinning. Biomacromolecules 15:3827–35 [Google Scholar]
  129. Urena-Benavides EE, Brown PJ, Kitchens CL. 129.  2010. Effect of jet stretch and particle load on cellulose nanocrystal–alginate nanocomposite fibers. Langmuir 26:14263–70 [Google Scholar]
  130. Chang H, Chien A-T, Liu HC, Wang P-H, Newcomb BA, Kumar S. 130.  2015. Gel spinning of polyacrylonitrile/cellulose nanocrystal composite fibers. ACS Biomater. Sci. Eng. 1:610–16 [Google Scholar]
  131. Hooshmand S, Aitomäki Y, Norberg N, Mathew AP, Oksman K. 131.  2015. Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl. Mater. Interfaces 7:13022–28 [Google Scholar]
  132. Håkansson KM, Fall AB, Lundell F, Yu S, Krywka C. 132.  et al. 2014. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5:4018 [Google Scholar]
  133. Walther A, Timonen JV, Díez I, Laukkanen A, Ikkala O. 133.  2011. Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv. Mater. 23:2924–28 [Google Scholar]
  134. Iwamoto S, Isogai A, Iwata T. 134.  2011. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12:831–36 [Google Scholar]
  135. Torres-Rendon JG, Schacher FH, Ifuku S, Walther A. 135.  2014. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. Biomacromolecules 15:2709–17 [Google Scholar]
  136. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. 136.  2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40:3941–94 [Google Scholar]
  137. Mariano M, El Kissi N, Dufresne A. 137.  2014. Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J. Polym. Sci. B Polym. Phys. 52:791–806 [Google Scholar]
  138. Zhang X, Lu Y, Xiao H, Peterlik H. 138.  2014. Effect of hot stretching graphitization on the structure and mechanical properties of rayon-based carbon fibers. J. Mater. Sci. 49:673–84 [Google Scholar]
  139. Lewandowska AE, Soutis C, Savage L, Eichhorn SJ. 139.  2015. Carbon fibres with ordered graphitic-like aggregate structures from a regenerated cellulose fibre precursor. Compos. Sci. Technol. 116:50–57 [Google Scholar]
  140. Xiao H, Lu Y, Zhao W, Qin X. 140.  2014. A comparison of the effect of hot stretching on microstructures and properties of polyacrylonitrile and rayon-based carbon fibers. J. Mater. Sci. 49:5017–29 [Google Scholar]
  141. Sudo K, Shimizu K. 141.  1992. A new carbon fiber from lignin. J. Appl. Polym. Sci. 44:127–34 [Google Scholar]
  142. Kubo S, Kadla J. 142.  2005. Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J. Polym. Environ. 13:97–105 [Google Scholar]
  143. Kadla J, Kubo S, Venditti R, Gilbert R, Compere A, Griffith W. 143.  2002. Lignin-based carbon fibers for composite fiber applications. Carbon 40:2913–20 [Google Scholar]
  144. Park SH, Lee SG, Kim SH. 144.  2013. The use of a nanocellulose-reinforced polyacrylonitrile precursor for the production of carbon fibers. J. Mater. Sci. 48:6952–59 [Google Scholar]
  145. Bissett PJ, Herriott CW. 145.  2014. Lignin/polyacrylonitrile-containing dopes, fibers, and methods of making same US Patent 8, 771, 832
  146. Liu HC, Chien A-T, Newcomb BA, Liu Y, Kumar S. 146.  2015. Processing, structure, and properties of lignin- and CNT-incorporated polyacrylonitrile-based carbon fibers. ACS Sustain. Chem. Eng. 3:1943–54 [Google Scholar]
  147. Kumar S, Chang H. 147.  2016. Polyacrylonitrile/cellulose nano-structure fibers US Patent 9,409,337
  148. Dong X, Lu C, Zhou P, Zhang S, Wang L, Li D. 148.  2015. Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber. RSC Adv 5:42259–65 [Google Scholar]
  149. Liu HC, Chien A-T, Newcomb BA, Davijani AAB, Kumar S. 149.  2016. Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon 101:382–89 [Google Scholar]
  150. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. 150.  2011. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6:1612–31 [Google Scholar]
  151. Seidel A, Liivak O, Calve S, Adaska J, Ji G. 151.  et al. 2000. Regenerated spider silk: processing, properties, and structure. Macromolecules 33:775–80 [Google Scholar]
  152. Yan J, Zhou G, Knight DP, Shao Z, Chen X. 152.  2009. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: discussion of spinning parameters. Biomacromolecules 11:1–5 [Google Scholar]
  153. Lazaris A, Arcidiacono S, Huang Y, Zhou J-F, Duguay F. 153.  et al. 2002. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295:472–76 [Google Scholar]
  154. 154. Kraig Biocraft Lab. 2016. http://www.kraiglabs.com/comparison/
  155. 155. Bolt Threads. 2016. https://boltthreads.com/
  156. 156. Spiber. 2016. https://www.spiber.jp/en
  157. 157. AMSilk. 2016. https://www.amsilk.com/home/
  158. 158. DuPont. 2016. http://biosciences.dupont.com/duponttm-genencorr-science/
  159. 159. Verdezyne. 2016. http://verdezyne.com/
  160. 160. Newlight Technol. 2016. https://www.newlight.com/
  161. 161. Zymergen. 2016. https://www.zymergen.com/
  162. 162. Cathay Indus. Biotech. 2016. http://www.cathaybiotech.com/en/
  163. 163. Carbon Multi-funct. Fiber Cent. 2016. http://acfrc.gatech.edu/brochure.html
  164. Sreekumar TV, Liu T, Min BG, Guo H, Kumar S. 164.  et al. 2004. Polyacrylonitrile single-walled carbon nanotube composite fibers. Adv. Mater. 16:58–61 [Google Scholar]
  165. Lee G-W, Jagannathan S, Chae HG, Minus ML, Kumar S. 165.  2008. Carbon nanotube dispersion and exfoliation in polypropylene and structure and properties of the resulting composites. Polymer 49:1831–40 [Google Scholar]
  166. Liu Y, Kumar S. 166.  2014. Polymer/carbon nanotube nano composite fibers—a review. ACS Appl. Mater. Interfaces 6:6069–87 [Google Scholar]
/content/journals/10.1146/annurev-matsci-120116-114326
Loading
/content/journals/10.1146/annurev-matsci-120116-114326
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error