1932

Abstract

Psoriasis vulgaris, affecting the skin, is one of the most common organ-specific autoimmune diseases in humans. Until recently, psoriasis was treated by agents or approaches discovered largely through serendipity. Many of the available drugs were inherently quite toxic when used as continuous treatment for many years in this chronic disease. However, an increasing understanding of disease-specific immune pathways has spurred development of pathway-targeted therapeutics during the past decade. Psoriasis is now the most effectively treated human autoimmune disease, with high-level clinical improvements possible in ∼90% of patients using a new generation of drugs that selectively target the IL-23/Type 17 T cell axis. Thus, psoriasis is a model for the success of a translational-medicine approach based on cellular and molecular dissection of disease pathogenesis in humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042915-103905
2017-01-14
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/med/68/1/annurev-med-042915-103905.html?itemId=/content/journals/10.1146/annurev-med-042915-103905&mimeType=html&fmt=ahah

Literature Cited

  1. Schön MP, Boehncke W-H. 1.  2005. Psoriasis. N. Engl. J. Med. 352:1899–912 [Google Scholar]
  2. Christophers E. 2.  2001. Psoriasis—epidemiology and clinical spectrum. Clin. Exp. Dermatol. 26:314–20 [Google Scholar]
  3. Langley R, Krueger G, Griffiths C. 3.  2005. Psoriasis: epidemiology, clinical features, and quality of life. Ann. Rheum. Dis.64:ii18–ii23
  4. Sterry W, Strober B, Menter A. 4.  2007. Obesity in psoriasis: the metabolic, clinical and therapeutic implications. Report of an interdisciplinary conference and review. Br. J. Dermatol. 157:649–55 [Google Scholar]
  5. Gisondi P, Tessari G, Conti A. 5.  et al. 2007. Prevalence of metabolic syndrome in patients with psoriasis: a hospital-based case–control study. Br. J. Dermatol. 157:68–73 [Google Scholar]
  6. Cohen A, Dreiher J, Shapiro Y. 6.  et al. 2008. Psoriasis and diabetes: a population-based cross-sectional study. J. Eur. Acad. Dermatol. Venereol. 22:585–89 [Google Scholar]
  7. Armstrong EJ, Harskamp CT, Armstrong AW. 7.  2013. Psoriasis and major adverse cardiovascular events: a systematic review and meta-analysis of observational studies. J. Am. Heart Assoc. 2:e000062 [Google Scholar]
  8. Gladman DD. 8.  2015. Clinical features and diagnostic considerations in psoriatic arthritis. Rheum. Dis. Clin. North Am. 41:569–79 [Google Scholar]
  9. Gelfand JM, Troxel AB, Lewis JD. 9.  et al. 2007. The risk of mortality in patients with psoriasis: results from a population-based study. Arch Dermatol 143:1493–99 [Google Scholar]
  10. 10. Stern RS, PUVA Follow Up Study 2001. The risk of melanoma in association with long-term exposure to PUVA. J. Am. Acad. Dermatol. 44:755–61 [Google Scholar]
  11. Lowes MA, Suarez-Farinas M, Krueger JG. 11.  2014. Immunology of psoriasis. Annu. Rev. Immunol. 32:227–55 [Google Scholar]
  12. Krueger JG, Ferris LK, Menter A. 12.  et al. 2015. Anti–IL-23A mAb BI 655066 for treatment of moderate-to-severe psoriasis: Safety, efficacy, pharmacokinetics, and biomarker results of a single-rising-dose, randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 136:116–24 [Google Scholar]
  13. Lande R, Botti E, Jandus C. 13.  et al. 2014. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat. Commun. 5:5621 [Google Scholar]
  14. Arakawa A, Siewert K, Stöhr J. 14.  et al. 2015. Melanocyte antigen triggers autoimmunity in human psoriasis. J. Exp. Med. 212:2203–12 [Google Scholar]
  15. Suárez-Fariñas M, Li K, Fuentes-Duculan J. 15.  et al. 2012. Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis. J. Invest. Dermatol. 132:2552–64 [Google Scholar]
  16. Krueger JG. 16.  2015. An autoimmune “attack” on melanocytes triggers psoriasis and cellular hyperplasia. J. Exp. Med. 212:2186 [Google Scholar]
  17. Harden JL, Krueger JG, Bowcock AM. 17.  2015. The immunogenetics of psoriasis: a comprehensive review. J. Autoimmun. 64:66–73 [Google Scholar]
  18. Zaba LC, Fuentes-Duculan J, Eungdamrong NJ. 18.  et al. 2009. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J. Investig. Dermatol. 129:79–88 [Google Scholar]
  19. Hyder LA, Gonzalez J, Harden JL. 19.  et al. 2013. TREM-1 as a potential therapeutic target in psoriasis. J. Investig. Dermatol. 133:1742–51 [Google Scholar]
  20. Zaba LC, Fuentes-Duculan J, Eungdamrong NJ. 20.  et al. 2010. Identification of TNF-related apoptosis-inducing ligand and other molecules that distinguish inflammatory from resident dendritic cells in patients with psoriasis. J. Allergy Clin. Immunol. 125:1261–68 [Google Scholar]
  21. Lowes MA, Chamian F, Abello MV. 21.  et al. 2005. Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). PNAS 102:19057–62 [Google Scholar]
  22. Nestle FO, Conrad C, Tun-Kyi A. 22.  et al. 2005. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 202:135–43 [Google Scholar]
  23. Lande R, Gregorio J, Facchinetti V. 23.  et al. 2007. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449:564–69 [Google Scholar]
  24. Meller S, Di Domizio J, Voo KS. 24.  et al. 2015. TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. Nat. Immunol. 16:970–79 [Google Scholar]
  25. Lee JS, Cua DJ. 25.  2015. IL-26 AMPs up the TH17 arsenal. Nat. Immunol. 16:897–98 [Google Scholar]
  26. Donnelly RP, Sheikh F, Dickensheets H. 26.  et al. 2010. Interleukin-26: an IL-10-related cytokine produced by Th17 cells. Cytokine Growth Factor Rev 21:393–401 [Google Scholar]
  27. Blanco P, Palucka AK, Gill M. 27.  et al. 2001. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294:1540–43 [Google Scholar]
  28. Spits H, Cupedo T. 28.  2012. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30:647–75 [Google Scholar]
  29. Villanova F, Flutter B, Tosi I. 29.  et al. 2014. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J. Investig. Dermatol. 134:984–91 [Google Scholar]
  30. Nograles KE, Zaba LC, Guttman-Yassky E. 30.  et al. 2008. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br. J. Dermatol. 159:1092–102 [Google Scholar]
  31. Eyerich S, Eyerich K, Pennino D. 31.  et al. 2009. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Investig. 119:3573–85 [Google Scholar]
  32. Krueger JG, Fretzin S, Suarez-Farinas M. 32.  et al. 2012. IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J. Allergy Clin. Immunol. 130:145–54 [Google Scholar]
  33. Papp KA, Leonardi C, Menter A. 33.  et al. 2012. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366:1181–89 [Google Scholar]
  34. Papp KA, Reid C, Foley P. 34.  et al. 2012. Anti-IL-17 receptor antibody AMG 827 leads to rapid clinical response in subjects with moderate to severe psoriasis: results from a phase I, randomized, placebo-controlled trial. J. Investig. Dermatol. 132:2466–69 [Google Scholar]
  35. Leonardi C, Matheson R, Zachariae C. 35.  et al. 2012. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366:1190–99 [Google Scholar]
  36. Harden JL, Johnson-Huang LM, Chamian MF. 36.  et al. 2015. Humanized anti–IFN-γ (HuZAF) in the treatment of psoriasis. J. Allergy Clin. Immunol. 135:553–56 [Google Scholar]
  37. Sofen H, Smith S, Matheson RT. 37.  et al. 2014. Guselkumab (an IL-23–specific mAb) demonstrates clinical and molecular response in patients with moderate-to-severe psoriasis. J. Allergy Clin. Immunol. 133:1032–40 [Google Scholar]
  38. Sugiyama H, Gyulai R, Toichi E. 38.  et al. 2005. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J. Immunol. 174:164–73 [Google Scholar]
  39. Chen L, Shen Z, Wang G. 39.  et al. 2008. Dynamic frequency of CD4+CD25+Foxp3+ Treg cells in psoriasis vulgaris. J. Dermatol. Sci. 51:200–3 [Google Scholar]
  40. Kagen M, McCormick T, Cooper K. 40.  2006. Regulatory T cells in psoriasis. Cytokines as Potential Therapeutic Targets for Inflammatory Skin Diseases193–209 Heidelberg: Springer [Google Scholar]
  41. Kim J, Oh C-H, Jeon J. 41.  et al. 2016. Molecular phenotyping small (Asian) versus large (Western) plaque psoriasis shows common activation of IL-17 pathway genes but different regulatory gene sets. J. Investig. Dermatol. 136:161–72 [Google Scholar]
  42. Bettelli E, Carrier Y, Gao W. 42.  et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–38 [Google Scholar]
  43. Veldhoen M, Hocking RJ, Atkins CJ. 43.  et al. 2006. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–89 [Google Scholar]
  44. Bovenschen HJ, van de Kerkhof PC, van Erp PE. 44.  et al. 2011. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J. Investig. Dermatol. 131:1853–60 [Google Scholar]
  45. Goodman WA, Levine AD, Massari JV. 45.  et al. 2009. IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. J. Immunol. 183:3170–76 [Google Scholar]
  46. Kim J, Bissonnette R, Lee J. 46.  et al. 2016. The spectrum of mild-to-severe psoriasis vulgaris is defined by a common activation of IL-17 pathway genes, but with key differences in immune regulatory genes. J. Investig. Dermatol. In press
  47. Zaba LC, Krueger JG, Lowes MA. 47.  2009. Resident and “inflammatory” dendritic cells in human skin. J. Investig. Dermatol. 129:302–8 [Google Scholar]
  48. Chamian F, Lowes MA, Lin SL. 48.  et al. 2005. Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. PNAS 102:2075–80 [Google Scholar]
  49. Saurat JH, Stingl G, Dubertret L. 57.  et al. 2008. Efficacy and safety results from the randomized controlled comparative study of adalimumab versus methotrexate versus placebo in patients with psoriasis (CHAMPION). Br. J. Dermatol. 158:558–66 [Google Scholar]
  50. Zaba LC, Cardinale I, Gilleaudeau P. 49.  et al. 2007. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204:3183–94 [Google Scholar]
  51. Goldminz AM, Suarez-Farinas M, Wang AC. 50.  et al. 2015. CCL20 and IL22 messenger RNA expression after adalimumab versus methotrexate treatment of psoriasis: a randomized clinical trial. JAMA Dermatol 151:837–46 [Google Scholar]
  52. Lowes MA, Russell CB, Martin DA. 51.  et al. 2013. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol 34:174–81 [Google Scholar]
  53. Summers deLuca L, Gommerman JL. 52.  2012. Fine-tuning of dendritic cell biology by the TNF superfamily. Nat. Rev. Immunol. 12:339–51 [Google Scholar]
  54. Tyring S, Gottlieb A, Papp K. 53.  et al. 2006. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 367:29–35 [Google Scholar]
  55. Leonardi CL, Powers JL, Matheson RT. 54.  et al. 2003. Etanercept as monotherapy in patients with psoriasis. N. Engl. J. Med. 349:2014–22 [Google Scholar]
  56. Papp KA, Tyring S, Lahfa M. 55.  et al. 2005. A global phase III randomized controlled trial of etanercept in psoriasis: safety, efficacy, and effect of dose reduction. Br. J. Dermatol. 152:1304–12 [Google Scholar]
  57. Menter A, Tyring SK, Gordon K. 56.  et al. 2008. Adalimumab therapy for moderate to severe psoriasis: a randomized, controlled phase III trial. J. Am. Acad. Dermatol. 58:106–15 [Google Scholar]
  58. Menter A, Feldman SR, Weinstein GD. 58.  et al. 2007. A randomized comparison of continuous versus intermittent infliximab maintenance regimens over 1 year in the treatment of moderate-to-severe plaque psoriasis. J. Am. Acad. Dermatol. 56:31 [Google Scholar]
  59. Reich K, Nestle FO, Papp K. 59.  et al. 2005. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet 366:1367–74 [Google Scholar]
  60. Leonardi CL, Kimball AB, Papp KA. 60.  et al. 2008. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371:1665–74 [Google Scholar]
  61. Griffiths CE, Strober BE, van de Kerkhof P. 61.  et al. 2010. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N. Engl. J. Med. 362:118–28 [Google Scholar]
  62. Papp KA, Langley RG, Lebwohl M. 62.  et al. 2008. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371:1675–84 [Google Scholar]
  63. Alwawi EA, Krulig E, Gordon KB. 63.  2009. Long-term efficacy of biologics in the treatment of psoriasis: What do we really know?. Dermatol. Ther. 22:431–40 [Google Scholar]
  64. Kimball A, Papp K, Wasfi Y. 64.  et al. 2013. Long-term efficacy of ustekinumab in patients with moderate-to-severe psoriasis treated for up to 5 years in the PHOENIX 1 study. J. Eur. Acad. Dermatol. Venereol. 27:1535–45 [Google Scholar]
  65. Chiricozzi A, Krueger JG. 65.  2013. IL-17 targeted therapies for psoriasis. Expert Opin. Investig. Drugs 22:993–1005 [Google Scholar]
  66. Papp K, Griffiths C, Gordon K. 66.  et al. 2013. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from 5 years of follow-up. Br. J. Dermatol. 168:844–54 [Google Scholar]
  67. Langley RG, Elewski BE, Lebwohl M. 67.  et al. 2014. Secukinumab in plaque psoriasis—results of two phase 3 trials. N. Engl. J. Med. 371:326–38 [Google Scholar]
  68. Griffiths CEM, Reich K, Lebwohl M. 68.  et al. 2015. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet 386:541–51 [Google Scholar]
  69. Lebwohl M, Strober B, Menter A. 69.  et al. 2015. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N. Engl. J. Med. 373:1318–28 [Google Scholar]
  70. Papp K, Thaci D, Reich K. 70.  et al. 2015. Tildrakizumab (MK-3222), an anti-interleukin-23p19 monoclonal antibody, improves psoriasis in a phase IIb randomized placebo-controlled trial. Br. J. Dermatol. 173:930–39 [Google Scholar]
  71. Gordon KB, Duffin KC, Bissonnette R. 71.  et al. 2015. A phase 2 trial of guselkumab versus adalimumab for plaque psoriasis. N. Engl. J. Med. 373:136–44 [Google Scholar]
  72. Kim J, Correa–da Rosa J, Lee J. 72.  et al. 2016. 276 Reduction of cardiovascular disease-associated proteins in blood of psoriasis patients after 1-month treatment with tofacitinib or etanercept. J. Investig. Dermatol. 136:S49 [Google Scholar]
  73. McGeehan G, Bukhtiyarov YE, Zhao Y. 73.  et al. 2015. VTP-43742 is a potent and selective RORγt blocker that demonstrates oral efficacy in a mouse model of autoimmunity through suppression of IL-17A production. Blood 101:50 [Google Scholar]
  74. Skepner J, Ramesh R, Trocha M. 74.  et al. 2014. Pharmacologic inhibition of RORγt regulates Th17 signature gene expression and suppresses cutaneous inflammation in vivo. J. Immunol. 192:2564–75 [Google Scholar]
/content/journals/10.1146/annurev-med-042915-103905
Loading
/content/journals/10.1146/annurev-med-042915-103905
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error