1932

Abstract

Demyelination of central nervous system axons, associated with traumatic injury and demyelinating diseases such as multiple sclerosis, causes impaired neural transmission and ultimately axon degeneration. Consequently, extensive research has focused on signaling systems that promote myelinating activity of oligodendrocytes or promote production of new oligodendrocytes from oligodendrocyte progenitor cells. Many receptor systems, notably including growth factor receptors and G protein–coupled receptors, control myelination. A number of recent clinical trials target these receptor signaling pathways.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-050715-104400
2017-01-14
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/med/68/1/annurev-med-050715-104400.html?itemId=/content/journals/10.1146/annurev-med-050715-104400&mimeType=html&fmt=ahah

Literature Cited

  1. Papastefanaki F, Matsas R. 1.  2015. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 63:71101–25 [Google Scholar]
  2. Gonzalez-Perez O, Alvarez-Buylla A. 2.  2011. Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res. Rev. 67:1–2147–56 [Google Scholar]
  3. Dawson MR, Polito A, Levine JM. 3.  et al. 2003. Ng2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell Neurosci. 24:2476–88 [Google Scholar]
  4. Yeung MS, Zdunek S, Bergmann O. 4.  et al. 2014. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159:4766–74 [Google Scholar]
  5. Demerens C, Stankoff B, Logak M. 5.  et al. 1996. Induction of myelination in the central nervous system by electrical activity. PNAS 93:189887–92 [Google Scholar]
  6. Stevens B, Porta S, Haak LL. 6.  et al. 2002. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:5855–68 [Google Scholar]
  7. Wake H, Lee PR, Fields RD. 7.  2011. Control of local protein synthesis and initial events in myelination by action potentials. Science 333:60491647–51 [Google Scholar]
  8. Gibson EM, Purger D, Mount CW. 8.  et al. 2014. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:6183487–509 [Google Scholar]
  9. Schlegel AA, Rudelson JJ, Tse PU. 9.  2012. White matter structure changes as adults learn a second language. J. Cogn. Neurosci. 24:81664–70 [Google Scholar]
  10. Bengtsson SL, Nagy Z, Skare S. 10.  et al. 2005. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8:91148–50 [Google Scholar]
  11. Scholz J, Klein MC, Behrens TE. 11.  et al. 2009. Training induces changes in white-matter architecture. Nat. Neurosci. 12:111370–71 [Google Scholar]
  12. McKenzie IA, Ohayon D, Li H. 12.  et al. 2014. Motor skill learning requires active central myelination. Science 346:6207318–22 [Google Scholar]
  13. Young KM, Psachoulia K, Tripathi RB. 13.  et al. 2013. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:5873–85 [Google Scholar]
  14. Zhu X, Hill RA, Dietrich D. 14.  et al. 2011. Age-dependent fate and lineage restriction of single NG2 cells. Development 138:4745–53 [Google Scholar]
  15. Crawford AH, Tripathi RB, Foerster S. 15.  et al. 2016. Pre-existing mature oligodendrocytes do not contribute to remyelination following toxin-induced spinal cord demyelination. Am. J. Pathol. 186:511–16 [Google Scholar]
  16. Gensert JM, Goldman JE. 16.  1997. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19:1197–203 [Google Scholar]
  17. Kang SH, Fukaya M, Yang JK. 17.  et al. 2010. Ng2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68:4668–81 [Google Scholar]
  18. Yang H, Lu P, McKay HM. 18.  et al. 2006. Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury. J. Neurosci. 26:82157–66 [Google Scholar]
  19. Dietz KC, Polanco JJ, Pol SU. 19.  et al. 2016. Targeting human oligodendrocyte progenitors for myelin repair. Exp. Neurol. 4886:30060–67 [Google Scholar]
  20. Peru RL, Mandrycky N, Nait-Oumesmar B. 20.  et al. 2008. Paving the axonal highway: from stem cells to myelin repair. Stem Cell Rev 4:4304–18 [Google Scholar]
  21. Franklin RJ. 21.  2002. Why does remyelination fail in multiple sclerosis?. Nat. Rev. Neurosci. 3:9705–14 [Google Scholar]
  22. Gaesser JM, Fyffe-Maricich SL. 22.  2016. Intracellular signaling pathway regulation of myelination and remyelination in the cns. Exp. Neurol. 4886:30051–56 [Google Scholar]
  23. Ishii A, Fyffe-Maricich SL, Furusho M. 23.  et al. 2012. ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination. J. Neurosci. 32:268855–64 [Google Scholar]
  24. Ishii A, Furusho M, Bansal R. 24.  2013. Sustained activation of ERK1/2 MAPK in oligodendrocytes and Schwann cells enhances myelin growth and stimulates oligodendrocyte progenitor expansion. J. Neurosci. 33:1175–86 [Google Scholar]
  25. Fyffe-Maricich SL, Schott A, Karl M. 25.  et al. 2013. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system. J. Neurosci. 33:4718402–8 [Google Scholar]
  26. Narayanan SP, Flores AI, Wang F. 26.  et al. 2009. Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J. Neurosci. 29:216860–70 [Google Scholar]
  27. Harrington EP, Zhao C, Fancy SP. 27.  et al. 2010. Oligodendrocyte PTEN is required for myelin and axonal integrity, not remyelination. Ann. Neurol. 68:5703–16 [Google Scholar]
  28. Liang X, Draghi NA, Resh MD. 28.  2004. Signaling from integrins to Fyn to Rho family GTPases regulates morphologic differentiation of oligodendrocytes. J. Neurosci. 24:327140–49 [Google Scholar]
  29. Murtie JC, Zhou YX, Le TQ. 29.  et al. 2005. PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol. Dis. 19:1–2171–82 [Google Scholar]
  30. Vana AC, Flint NC, Harwood NE. 30.  et al. 2007. Platelet-derived growth factor promotes repair of chronically demyelinated white matter. J. Neuropathol. Exp. Neurol. 66:11975–88 [Google Scholar]
  31. Ohya W, Funakoshi H, Kurosawa T. 31.  et al. 2007. Hepatocyte growth factor (HGF) promotes oligodendrocyte progenitor cell proliferation and inhibits its differentiation during postnatal development in the rat. Brain Res 1147:51–65 [Google Scholar]
  32. Ishii A, Furusho M, Dupree JL. 32.  et al. 2014. Role of ERK1/2 MAPK signaling in the maintenance of myelin and axonal integrity in the adult CNS. J. Neurosci. 34:4816031–45 [Google Scholar]
  33. Aguirre A, Dupree JL, Mangin JM. 33.  et al. 2007. A functional role for EGFR signaling in myelination and remyelination. Nat. Neurosci. 10:8990–1002 [Google Scholar]
  34. Palazuelos J, Klingener M, Raines EW. 34.  et al. 2015. Oligodendrocyte regeneration and CNS remyelination require TACE/ADAM17. J Neurosci 35:3512241–47 [Google Scholar]
  35. Brinkmann BG, Agarwal A, Sereda MW. 35.  et al. 2008. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59:4581–95 [Google Scholar]
  36. Taveggia C, Thaker P, Petrylak A. 36.  et al. 2008. Type III neuregulin-1 promotes oligodendrocyte myelination. Glia 56:3284–93 [Google Scholar]
  37. Sussman CR, Vartanian T, Miller RH. 37.  2005. The ErbB4 neuregulin receptor mediates suppression of oligodendrocyte maturation. J. Neurosci. 25:245757–62 [Google Scholar]
  38. Makinodan M, Rosen KM, Ito S. 38.  et al. 2012. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337:61001357–60 [Google Scholar]
  39. Park SK, Miller R, Krane I. 39.  et al. 2001. The ErbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes. J. Cell Biol. 154:61245–58 [Google Scholar]
  40. Barres BA, Schmid R, Sendnter M. 40.  et al. 1993. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118:1283–95 [Google Scholar]
  41. Jean I, Lavialle C, Barthelaix-Pouplard A. 41.  et al. 2003. Neurotrophin-3 specifically increases mature oligodendrocyte population and enhances remyelination after chemical demyelination of adult rat CNS. Brain Res 972:1–2110–18 [Google Scholar]
  42. Van't Veer A, Du Y, Fischer TZ. 42.  et al. 2009. Brain-derived neurotrophic factor effects on oligodendrocyte progenitors of the basal forebrain are mediated through trkB and the MAP kinase pathway. J. Neurosci. Res. 87:169–78 [Google Scholar]
  43. VonDran MW, Singh H, Honeywell JZ. 43.  et al. 2011. Levels of BDNF impact oligodendrocyte lineage cells following a cuprizone lesion. J. Neurosci. 31:4014182–90 [Google Scholar]
  44. Wong AW, Xiao J, Kemper D. 44.  et al. 2013. Oligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation. J. Neurosci. 33:114947–57 [Google Scholar]
  45. Peckham H, Giuffrida L, Wood R. 45.  et al. 2016. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination. Glia 64:2255–69 [Google Scholar]
  46. Simon K, Hennen S, Merten N. 46.  et al. 2016. The orphan G protein-coupled receptor GPR17 negatively regulates oligodendrocyte differentiation via GαI/O and its downstream effector molecules. J. Biol. Chem. 291:2705–18 [Google Scholar]
  47. Ackerman SD, Garcia C, Piao X. 47.  et al. 2015. The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA. Nat. Commun. 6:6122 [Google Scholar]
  48. Wang RR, Chen Y, Guo T. 48.  et al. 2014. Histamine H3 receptor negatively regulates oligodendrocyte differentiation and myelination. Mult. Scler. 20:1 Suppl.285–496 [Google Scholar]
  49. Mei F, Fancy SP, Shen YA. 49.  et al. 2014. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med. 20:8954–60 [Google Scholar]
  50. De Angelis F, Bernardo A, Magnaghi V. 50.  et al. 2012. Muscarinic receptor subtypes as potential targets to modulate oligodendrocyte progenitor survival, proliferation, and differentiation. Dev. Neurobiol. 72:5713–28 [Google Scholar]
  51. Deshmukh VA, Tardif V, Lyssiotis CA. 51.  et al. 2013. A regenerative approach to the treatment of multiple sclerosis. Nature 502:7471327–32 [Google Scholar]
  52. Liu J, Dupree JL, Gacias M. 52.  et al. 2016. Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice. J Neurosci. 36:3957–62 [Google Scholar]
  53. Xiao L, Xu H, Zhang Y. 53.  et al. 2008. Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol. Psychiatry 13:7697–708 [Google Scholar]
  54. Zhang Y, Zhang H, Wang L. 54.  et al. 2012. Quetiapine enhances oligodendrocyte regeneration and myelin repair after cuprizone-induced demyelination. Schizophr. Res. 138:18–17 [Google Scholar]
  55. O'Meara RW, Michalski JP, Kothary R. 55.  2011. Integrin signaling in oligodendrocytes and its importance in CNS myelination. J. Signal. Transduct. 2011:354091 [Google Scholar]
  56. Gregg C, Shikar V, Larsen P. 56.  et al. 2007. White matter plasticity and enhanced remyelination in the maternal CNS. J. Neurosci. 27:81812–23 [Google Scholar]
  57. Bishop JD, Nien WL, Dauphinee SM. 57.  et al. 2006. Prolactin activates mammalian target-of-rapamycin through phosphatidylinositol 3-kinase and stimulates phosphorylation of p70s6K and 4E-binding protein-1 in lymphoma cells. J. Endocrinol. 190:2307–12 [Google Scholar]
  58. Fresno Vara JA, Cáceres MA, Silva A. 58.  et al. 2001. Src family kinases are required for prolactin induction of cell proliferation. Mol. Biol. Cell 12:72171–83 [Google Scholar]
  59. Zhang HL, Wang J, Tang L. 59.  2014. SEMA4D knockdown in oligodendrocytes promotes functional recovery after spinal cord injury. Cell Biochem. Biophys. 68:3489–96 [Google Scholar]
  60. Smith ES, Jonason A, Reilly C. 60.  et al. 2015. SEMA4D compromises blood-brain barrier, activates microglia, and inhibits remyelination in neurodegenerative disease. Neurobiol. Dis. 73:254–68 [Google Scholar]
  61. Basile JR, Gavard J, Gutkind JS. 61.  2007. Plexin-B1 utilizes RhoA and Rho kinase to promote the integrin-dependent activation of Akt and ERK and endothelial cell motility. J. Biol. Chem. 282:4834888–95 [Google Scholar]
  62. Koch-Henriksen N. 62.  2009. No shortcuts to outcome in MS clinical trials?. Neurology 72:686–87 [Google Scholar]
  63. Mi S, Lee X, Shao Z. 63.  et al. 2004. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat. Neurosci. 7:221–28 [Google Scholar]
  64. Wong ST, Henley JR, Kanning KC. 64.  et al. 2002. A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat. Neurosci. 5:121302–8 [Google Scholar]
  65. Wang KC, Kim JA, Sivasankaran R. 65.  et al. 2002. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420:691174–78 [Google Scholar]
  66. Park JB, Yiu G, Kaneko S. 66.  et al. 2005. A TNF receptor family member, Troy, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45:3345–51 [Google Scholar]
  67. Shao Z, Browning JL, Lee X. 67.  et al. 2005. Taj/Troy, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45:3353–59 [Google Scholar]
  68. Mi S, Miller RH, Lee X. 68.  et al. 2005. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci. 8:6745–51 [Google Scholar]
  69. Mi S, Hu B, Hahm K. 69.  et al. 2007. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat. Med. 13:101228–33 [Google Scholar]
  70. Sun L, Liu S, Sun Q. 70.  et al. 2014. Inhibition of Troy promotes OPC differentiation and increases therapeutic efficacy of OPC graft for spinal cord injury. Stem Cells Dev. 23:172104–18 [Google Scholar]
  71. Lee X, Shao Z, Sheng G. 71.  et al. 2014. LINGO-1 regulates oligodendrocyte differentiation by inhibiting ErbB2 translocation and activation in lipid rafts. Mol. Cell Neurosci. 60:36–42 [Google Scholar]
  72. Mandai K, Guo T. Hillaire C. 72. , St et al. 2009. LIG family receptor tyrosine kinase-associated proteins modulate growth factor signals during neural development. Neuron 63:5614–27 [Google Scholar]
  73. Meabon JS, de Laat R, Ieguchi K. 73.  et al. 2016. Intracellular LINGO-1 negatively regulates Trk neurotrophin receptor signaling. Mol. Cell Neurosci. 70:1–10 [Google Scholar]
  74. Fu QL, Hu B, Li X. 74.  et al. 2010. LINGO-1 negatively regulates TrkB phosphorylation after ocular hypertension. Eur. J. Neurosci. 31:61091–97 [Google Scholar]
  75. Meabon JS, De Laat R, Ieguchi K. 75.  et al. 2015. LINGO-1 protein interacts with the p75 neurotrophin receptor in intracellular membrane compartments. J. Biol. Chem. 290:159511–20 [Google Scholar]
  76. Tran JQ, Rana J, Barkhof F. 76.  et al. 2014. Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol. Neuroimmunol. Neuroinflamm. 1:2e18 [Google Scholar]
  77. 77. Biogen 2015. Biogen presents new anti-LINGO-1 phase 2 acute optic neuritis data demonstrating neurological repair Press release. http://media.biogen.com/press-release/corporate/biogen-presents-new-anti-lingo-1-phase-2-acute-optic-neuritis-data-demonstra
  78. Wootla B, Denic A, Watzlawik JO. 78.  et al. 2015. Antibody-mediated oligodendrocyte remyelination promotes axon health in progressive demyelinating disease. Mol. Neurobiol. doi:10.1007/s12035-015-9436-3
  79. Watzlawik J, Holicky E, Edberg DD. 79.  et al. 2010. Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia 58:151782–93 [Google Scholar]
  80. Watzlawik JO, Warrington AE, Rodriguez M. 80.  2013. PDGF is required for remyelination-promoting IgM stimulation of oligodendrocyte progenitor cell proliferation. PLOS ONE 8:2e55149 [Google Scholar]
  81. Li Z, He Y, Fan S. 81.  et al. 2015. Clemastine rescues behavioral changes and enhances remyelination in the cuprizone mouse model of demyelination. Neurosci. Bull. 315617–25 [Google Scholar]
  82. 82. American Academy of Neurology Over-the-counter drug may reverse chronic vision damage caused by multiple sclerosis Press release. http://www.aan.com/PressRoom/Home/PressRelease/1454
  83. Camanni F, Genazzani AR, Massara F. 83.  et al. 1980. Prolactin-releasing effect of domperidone in normoprolactinemic and hyperprolactinemic subjects. Neuroendocrinology 30:12–6 [Google Scholar]
  84. Magalon K, Zimmer C, Cayre M. 84.  et al. 2012. Olesoxime accelerates myelination and promotes repair in models of demyelination. Ann. Neurol. 71:2213–26 [Google Scholar]
  85. Martin LJ. 85.  2010. Olesoxime, a cholesterol-like neuroprotectant for the potential treatment of amyotrophic lateral sclerosis. IDrugs 13:8568–80 [Google Scholar]
  86. Baker D, Amor S. 86.  2015. Mouse models of multiple sclerosis: lost in translation?. Curr. Pharm. Des. 21:182440–52 [Google Scholar]
/content/journals/10.1146/annurev-med-050715-104400
Loading
/content/journals/10.1146/annurev-med-050715-104400
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error