1932

Abstract

The second messenger molecule cyclic di-AMP (c-di-AMP) is formed by many bacteria and archaea. In many species that produce c-di-AMP, this second messenger is essential for viability on rich medium. Recent research has demonstrated that c-di-AMP binds to a large number of proteins and riboswitches, which are often involved in potassium and osmotic homeostasis. c-di-AMP becomes dispensable if the bacteria are cultivated on minimal media with low concentrations of osmotically active compounds. Thus, the essentiality of c-di-AMP does not result from an interaction with a single essential target but rather from the multilevel control of complex homeostatic processes. This review summarizes current knowledge on the homeostasis of c-di-AMP and its function(s) in the control of cellular processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115943
2020-09-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-020518-115943.html?itemId=/content/journals/10.1146/annurev-micro-020518-115943&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agostoni M, Logan-Jackson AR, Heinz ER, Severin GB, Bruger EL et al. 2018. Homeostasis of second messenger cyclic-di-AMP is critical for cyanobacterial fitness and acclimation to abiotic stress. Front. Microbiol. 9:1121
    [Google Scholar]
  2. 2. 
    Bai Y, Yang J, Eisele LE, Underwood AJ, Koestler BJ et al. 2013. Two DHH subfamily 1 proteins in Streptococcus pneumoniae possess cyclic di-AMP phosphodiesterase activity and affect bacterial growth and virulence. J. Bacteriol. 195:5123–32
    [Google Scholar]
  3. 3. 
    Bai Y, Yang J, Zarella TM, Zhang Y, Metzger DW, Bai G 2014. Cyclic di-AMP impairs potassium uptake mediated by a cyclic di-AMP binding protein in Streptococcus pneumoniae. J. Bacteriol 196:614–23
    [Google Scholar]
  4. 4. 
    Bai Y, Yang J, Zhou X, Ding X, Eisele LE, Bai G 2012. Mycobacterium tuberculosis Rv3586 (DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP. PLOS ONE 7:e35206
    [Google Scholar]
  5. 5. 
    Ballal A, Basu B, Apte SK 2007. The Kdp-ATPase system and its regulation. J. Biosci. 32:559–68
    [Google Scholar]
  6. 6. 
    Banerjee R, Gretes M, Harlem C, Basuino L, Chambers H 2010. A mecA-negative strain of methicillin-resistant Staphylococcus aureus with high-level β-lactam resistance contains mutations in three genes. Antimicrob. Agents Chemother. 54:4900–2
    [Google Scholar]
  7. 7. 
    Barker JR, Koestler BJ, Carpenter VK, Burdette DL, Waters CM et al. 2013. STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio 4:e00018–13
    [Google Scholar]
  8. 8. 
    Bejerano-Sagie M, Oppenheimer-Shaanan Y, Berlatzky I, Rouvinski A, Meyerovich M, Ben-Yehuda S 2006. A checkpoint protein that scans the chromosome for damage at the start of sporulation in Bacillus subtilis. Cell 125:679–90
    [Google Scholar]
  9. 9. 
    Block KF, Hammond MC, Breaker RR 2010. Evidence for widespread gene control by the ydaO riboswitch candidate. J. Bacteriol. 192:3983–89
    [Google Scholar]
  10. 10. 
    Blötz C, Treffon K, Kaever V, Schwede F, Hammer E, Stülke J 2017. Identification of the components involved in cyclic di-AMP signaling in Mycoplasma pneumoniae. Front. Microbiol 8:1328
    [Google Scholar]
  11. 11. 
    Bowman L, Zeden MS, Schuster CF, Kaever V, Gründling A 2016. New insights into the cyclic di-adenosine monophosphate (c-di-AMP) degradation pathway and the requirement of the cyclic dinucleotide for acid stress resistance in Staphylococcus aureus. J. Biol. Chem 291:26970–86
    [Google Scholar]
  12. 12. 
    Braun F, Thomalla L, van der Does C, Quax TEF, Allers T et al. 2019. Cyclic nucleotides in archaea: cyclic di-AMP in the archaeon Haloferax volcanii and its putative role. MicrobiologyOpen 8:e00829
    [Google Scholar]
  13. 13. 
    Bremer E, Krämer R. 2019. Responses of microorganisms to osmotic stress. Annu. Rev. Microbiol. 73:313–34
    [Google Scholar]
  14. 14. 
    Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–18
    [Google Scholar]
  15. 15. 
    Campeotto I, Zhang Y, Mladenov MG, Freemont PS, Gründling A 2015. Complex structure and biochemical characterization of the Staphylococcus aureus cyclic diadenylate monophosphate (c-di-AMP)-binding protein PstA, the founding member of a new signal transduction protein family. J. Biol. Chem. 290:2888–901
    [Google Scholar]
  16. 16. 
    Chandrangsu P, Huang X, Gaballa A, Helmann JD 2019. Bacillus subtilis FolE is sustained by the ZagA metallochaperone and the alarmone ZTP under conditions of zinc deficiency. Mol. Microbiol. 112:751–65
    [Google Scholar]
  17. 17. 
    Chin KH, Liang JM, Yang JG, Shih MS, Tu ZL et al. 2015. Structural insights into the distinct binding mode of cyclic di-AMP with SaCpaA_RCK. Biochemistry 54:4936–51
    [Google Scholar]
  18. 18. 
    Cho KH, Kang SO. 2013. Streptococcus pyogenes c-di-AMP phosphodiesterase, GdpP influences SpeB processing and virulence. PLOS ONE 8:e69425
    [Google Scholar]
  19. 19. 
    Choi PH, Sureka K, Woodward JJ, Tong L 2015. Molecular basis for the recognition of cyclic di-AMP by PstA, a PII-like signal transduction protein. MicrobiologyOpen 4:361–74
    [Google Scholar]
  20. 20. 
    Choi PH, Vu TMN, Pham HT, Woodward JJ, Turner MS, Tong L 2017. Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria. PNAS 114:E7226–35
    [Google Scholar]
  21. 21. 
    Chou SH, Galperin MY. 2016. Diversity of cyclic di-GMP-binding proteins and mechanisms. J. Bacteriol. 198:32–46
    [Google Scholar]
  22. 22. 
    Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stülke J 2015. A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol. Microbiol. 97:189–204
    [Google Scholar]
  23. 23. 
    Commichau FM, Gibhardt J, Halbedel S, Gundlach J, Stülke J 2018. A delicate connection: c-di-AMP affects cell integrity by controlling osmolyte transport. Trends Microbiol 26:175–85
    [Google Scholar]
  24. 24. 
    Commichau FM, Heidemann JL, Ficner R, Stülke J 2019. Making and breaking of an essential poison: the cyclases and phosphodiesterases that produce and degrade the essential second messenger cyclic di-AMP in bacteria. J. Bacteriol. 201:e00462–18
    [Google Scholar]
  25. 25. 
    Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A 2011. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLOS Pathog 7:e1002217
    [Google Scholar]
  26. 26. 
    Corrigan RM, Bowman L, Willis AR, Kaever V, Gründling A 2015. Cross-talk between two nucleotide-signaling pathways in Staphylococcus aureus. J. Biol. Chem 290:5826–39
    [Google Scholar]
  27. 27. 
    Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Gründling A 2013. Systematic identification of conserved bacterial c-di-AMP receptor proteins. PNAS 110:9084–89
    [Google Scholar]
  28. 28. 
    Corrigan RM, Gründling A. 2013. Cyclic di-AMP: another second messenger enters the fray. Nat. Rev. Microbiol. 11:513–24
    [Google Scholar]
  29. 29. 
    Dahlstrom KM, O'Toole GA. 2017. A symphony of cyclases: specificity in diguanylate cyclase signaling. Annu. Rev. Microbiol. 71:179–95
    [Google Scholar]
  30. 30. 
    Davies BW, Bogard RW, Young TS, Mekalanos JJ 2012. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149:358–70
    [Google Scholar]
  31. 31. 
    Dengler V, McCallum N, Kiefer P, Christen P, Patrignani A et al. 2013. Mutation in the c-di-AMP cyclase dacA affects fitness and resistance of methicillin resistant Staphylococcus aureus. PLOS ONE 8:e73512
    [Google Scholar]
  32. 32. 
    Devaux L, Kaminski PA, Trieu-Cout P, Firon A 2018. Cyclic di-AMP in host pathogen interactions. Curr. Opin. Microbiol. 41:21–28
    [Google Scholar]
  33. 33. 
    Devaux L, Sleiman D, Mazzuoli MV, Gominet M, Lanotte P et al. 2018. Cyclic di-AMP regulation of osmotic homeostasis is essential in group B Streptococcus. PLOS Genet 14:e1007342
    [Google Scholar]
  34. 34. 
    Eisenreich W, Slaghuis J, Laupitz R, Bussemer J, Stritzker J et al. 2006. 13C isotopologue perturbation studies of Listeria monocytogenes carbon metabolism and its modulation by the virulence regulator PrfA. PNAS 103:2040–45
    [Google Scholar]
  35. 35. 
    Fahmi T, Faozia S, Port GC, Cho KH 2019. The second messenger c-di-AMP regulates diverse cellular pathways involved in stress response, biofilm formation, cell wall homeostasis, SpeB expression, and virulence in Streptococcus pyogenes. Infect. Immun 87:e00147–19
    [Google Scholar]
  36. 36. 
    Fahmi T, Port GC, Cho KH 2017. c-di-AMP: an essential molecule in the signaling pathways that regulate the viability and virulence of Gram-positive bacteria. Genes 8:E197
    [Google Scholar]
  37. 37. 
    Feucht BU, Saier MH. 1980. Fine control of adenylate cyclase by the phosphotransferase systems in Escherichia coli and Salmonella typhimurium. J. Bacteriol 141:603–10
    [Google Scholar]
  38. 38. 
    Forchhammer K, Lüddecke J. 2016. Sensory properties of the PII signalling protein family. FEBS J 283:425–37
    [Google Scholar]
  39. 39. 
    Gándara C, Alonso JC. 2015. DisA and c-di-AMP act at the intersection between DNA-damage response and stress homeostasis in exponentially growing Bacillus subtilis cells. DNA Repair 27:1–8
    [Google Scholar]
  40. 40. 
    Gándara C, de Lucena DKC, Torres R, Serrano E, Altenburger S et al. 2017. Activity and in vivo dynamics of Bacillus subtilis Dis are affected by RadA/Sms and by Holliday junction-processing proteins. DNA Repair 55:17–30
    [Google Scholar]
  41. 41. 
    Gao A, Serganov A. 2015. Structural insights into recognition of c-di-AMP by the ydaO riboswitch. Nat. Chem. Biol. 10:787–92
    [Google Scholar]
  42. 42. 
    Gibhardt J, Hoffmann G, Turdiev A, Wang M, Lee VT, Commichau FM 2019. c-di-AMP assists osmoadaptation by regulating the Listeria monocytogenes potassium transporters KimA and KtrCD. J. Biol. Chem. 294:16020–33
    [Google Scholar]
  43. 43. 
    Gomelsky M. 2011. cAMP, c-di-GMP, c-di-AMP, and now cGMP: Bacteria use them all. ! Mol. Microbiol. 79:562–65
    [Google Scholar]
  44. 44. 
    Görke B, Stülke J. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6:613–24
    [Google Scholar]
  45. 45. 
    Green J, Stapleton MR, Smith LJ, Artymiuk PJ, Kahramanoglou C et al. 2014. Cyclic-AMP and bacterial cyclic-AMP receptor proteins revisited: adaptation for different ecological niches. Curr. Opin. Microbiol. 18:1–7
    [Google Scholar]
  46. 46. 
    Gundlach J, Commichau FM, Stülke J 2018. Of ions and messengers: an intricate link between potassium, glutamate, and cyclic di-AMP. Curr. Genet. 64:191–95
    [Google Scholar]
  47. 47. 
    Gundlach J, Dickmanns A, Schröder-Tittmann K, Neumann P, Kaesler J et al. 2015. Identification, characterization and structure analysis of the c-di-AMP binding PII-like signal transduction protein DarA. J. Biol. Chem. 290:3069–80
    [Google Scholar]
  48. 48. 
    Gundlach J, Herzberg C, Hertel D, Thürmer A, Daniel R et al. 2017. Adaptation of Bacillus subtilis to life at extreme potassium limitation. mBio 8:e00861–17
    [Google Scholar]
  49. 49. 
    Gundlach J, Herzberg C, Kaever V, Gunka K, Hoffmann T et al. 2017. Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci. Signal 10:eaal3011
    [Google Scholar]
  50. 50. 
    Gundlach J, Krüger L, Herzberg C, Turdiev A, Poehlein A et al. 2019. Sustained sensing in potassium homeostasis: Cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity. J. Biol. Chem. 294:9605–14
    [Google Scholar]
  51. 51. 
    Gundlach J, Mehne FM, Herzberg C, Kampf J, Valerius O et al. 2015. An essential poison: synthesis and degradation of cyclic di-AMP in Bacillus subtilis. J. Bacteriol 197:3265–74
    [Google Scholar]
  52. 52. 
    Gundlach J, Rath H, Herzberg C, Mäder U, Stülke J 2016. Second messenger signaling in Bacillus subtilis: accumulation of cyclic di-AMP inhibits biofilm formation. Front. Microbiol. 7:804
    [Google Scholar]
  53. 53. 
    Heidemann JL, Neumann P, Dickmanns A, Ficner R 2019. Crystal structures of the c-di-AMP synthesizing enzyme CdaA. J. Biol. Chem. 294:10463–70
    [Google Scholar]
  54. 54. 
    Hengge R, Häussler S, Pruteanu M, Stülke J, Tschowri N, Turgay K 2019. Recent advances and current trends in nucleotide second messenger signaling in bacteria. J. Mol. Biol. 431:908–27
    [Google Scholar]
  55. 55. 
    Hoffmann T, Bremer E. 2017. Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis. Biol. Chem 398:193–214
    [Google Scholar]
  56. 56. 
    Holland LM, O'Donnell ST, Ryjenkov DA, Gomelsky L, Slater SR et al. 2008. A staphylococcal GGDEF domain protein regulates biofilm formation independently of cyclic dimeric GMP. J. Bacteriol. 190:5178–89
    [Google Scholar]
  57. 57. 
    Holtmann G, Bakker EP, Uozumi N, Bremer E 2003. KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J. Bacteriol. 185:1289–98
    [Google Scholar]
  58. 58. 
    Huynh TN, Choi PH, Sureka K, Ledvina HE, Campillo J et al. 2016. Cyclic di-AMP targets the cystathione beta-synthase domain of the osmolyte transporter OpuC. Mol. Microbiol. 102:233–43
    [Google Scholar]
  59. 59. 
    Huynh TN, Luo S, Pensinger D, Sauer JD, Tong L, Woodward JJ 2015. An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. PNAS 112:E747–56
    [Google Scholar]
  60. 60. 
    Huynh TN, Woodward JJ. 2016. Too much of a good thing: regulated depletion of c-di-AMP in the bacterial cytoplasm. Curr. Opin. Microbiol. 30:22–29
    [Google Scholar]
  61. 61. 
    Jenal U, Reinders A, Lori C 2017. Cyclic di-GMP: a second messenger extraordinaire. Nat. Rev. Microbiol. 15:271–84
    [Google Scholar]
  62. 62. 
    Kampf J, Gundlach J, Herzberg C, Treffon K, Stülke J 2017. Identification of c-di-AMP-binding proteins using magnetic beads. Meth. Mol. Biol. 1657:347–59
    [Google Scholar]
  63. 63. 
    Kanjee U, Ogata K, Houry WA 2012. Direct binding targets of the stringent response alarmone (p)ppGpp. Mol. Microbiol. 85:1029–43
    [Google Scholar]
  64. 64. 
    Kaplan Zeevi M, Shafir NS, Shaham S, Friedman S, Sigal N et al. 2013. Listeria monocytogenes multidrug resistance transporters and cyclic di-AMP, which contribute to type I interferon induction, play a role in cell wall stress. J. Bacteriol. 195:5250–61
    [Google Scholar]
  65. 65. 
    Kappes RM, Kempf B, Kneip S, Boch J, Gade J et al. 1999. Two evolutionary closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol. Microbiol 32:203–16
    [Google Scholar]
  66. 66. 
    Kim H, Youn SJ, Kim SO, Ko J, Lee JO, Choi BS 2015. Structural studies of potassium transport protein KtrA regulator of conductance of K+ (RCK) C domain in complex with cyclic diadenosine monophosphate (c-di-AMP). J. Biol. Chem. 290:16393–402
    [Google Scholar]
  67. 67. 
    Kim PB, Nelson JW, Breaker RR 2015. An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism. Mol. Cell 57:317–28
    [Google Scholar]
  68. 68. 
    Klotz A, Georg J, Bucinská L, Watanabe S, Reimann V et al. 2016. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr. Biol. 26:2862–72
    [Google Scholar]
  69. 69. 
    Kohlstedt M, Sappa PK, Meyer H, Maaß S, Zaprasis A et al. 2014. Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective. Environ. Microbiol. 16:1898–917
    [Google Scholar]
  70. 70. 
    Larrimore KE, Rancati G. 2019. The conditional nature of gene essentiality. Curr. Opin. Genet. Dev. 58–59:55–61
    [Google Scholar]
  71. 71. 
    Latoscha A, Drexler DJ, Al-Bassam MM, Kaever V, Findlay KC et al. 2019. c-di-AMP hydrolysis by a novel type of phosphodiesterase promotes differentiation of multicellular bacteria. bioRxiv 789354. https://doi.org/10.1101/789354
    [Crossref]
  72. 72. 
    Liu K, Bittner AN, Wang JD 2015. Diversity in (p)ppGpp metabolism and effectors. Curr. Opin. Microbiol. 24:72–79
    [Google Scholar]
  73. 73. 
    Lori C, Ozaki S, Steiner S, Böhm R, Abel S et al. 2015. Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature 523:236–39
    [Google Scholar]
  74. 74. 
    Luo Y, Helmann JD. 2012. Analysis of the role of Bacillus subtilis σM in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol. Microbiol. 83:623–39
    [Google Scholar]
  75. 75. 
    McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR 2017. Riboswitch diversity and distribution. RNA 23:995–1011
    [Google Scholar]
  76. 76. 
    McDonough KA, Rodriguez A. 2012. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat. Rev. Microbiol. 10:27–38
    [Google Scholar]
  77. 77. 
    Mehne FM, Gunka K, Eilers H, Herzberg C, Kaever V, Stülke J 2013. Cyclic di-AMP homeostasis in Bacillus subtilis: Both lack and high level accumulation of the nucleotide are detrimental for cell growth. J. Biol. Chem. 288:2004–17
    [Google Scholar]
  78. 78. 
    Mehne FMP, Schröder-Tittmann K, Eijlander RT, Herzberg C, Hewitt L et al. 2014. Control of the diadenylate cyclase CdaS in Bacillus subtilis: An autoinhibitory domain limits c-di-AMP production. J. Biol. Chem. 289:21098–107
    [Google Scholar]
  79. 79. 
    Morgan JL, McNamara JT, Zimmer J 2014. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat. Struct. Mol. Biol. 21:489–96
    [Google Scholar]
  80. 80. 
    Moscoso JA, Schramke H, Zhang Y, Tosi T, Dehbi A et al. 2015. Binding of cyclic di-AMP to the Staphylococcus aureus sensor kinase KdpD occurs via the Universal Stress Protein domain and downregulates the expression of the Kdp potassium transporter. J. Bacteriol. 198:98–110
    [Google Scholar]
  81. 81. 
    Müller M, Hopfner KP, Witte G 2015. c-di-AMP recognition by Staphylococcus aureus PstA. FEBS Lett 589:45–51
    [Google Scholar]
  82. 82. 
    Nelson JW, Breaker RR. 2017. The lost language of the RNA world. Sci. Signal. 10:eaam8812
    [Google Scholar]
  83. 83. 
    Nelson JW, Sudarsan N, Furukawa K, Weingerg Z, Wang JX, Breaker RR 2013. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat. Chem. Biol. 9:834–39
    [Google Scholar]
  84. 84. 
    Nelson JW, Sudarsan N, Phillips GE, Stav S, Lünse CE et al. 2015. Control of bacterial exoelectrogenesis by c-AMP-GMP. PNAS 112:5389–94
    [Google Scholar]
  85. 85. 
    Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A et al. 2012. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335:1103–6
    [Google Scholar]
  86. 86. 
    Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO 2016. Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signaling have come of age to be inhibited by small molecules. Chem. Comm. 52:9327–42
    [Google Scholar]
  87. 87. 
    Oppenheimer-Shaanan Y, Wexselblatt E, Katzhendler J, Yavin E, Ben-Yehuda S 2011. c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Rep 12:594–601
    [Google Scholar]
  88. 88. 
    Orr MW, Galperin MY, Lee VT 2016. Sustained sensing as an emerging principle in second messenger signaling systems. Curr. Opin. Microbiol. 34:119–26
    [Google Scholar]
  89. 89. 
    Pechter KB, Meyer FM, Serio AW, Stülke J, Sonenshein AL 2013. Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis. J. Bacteriol 195:1525–37
    [Google Scholar]
  90. 90. 
    Peng X, Zhang Y, Bai G, Zhou X, Wu H 2016. Cyclic di-AMP mediates biofilm formation. Mol. Microbiol. 99:945–59
    [Google Scholar]
  91. 91. 
    Pflüger-Grau K, Görke B. 2010. Regulatory role of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 18:205–14
    [Google Scholar]
  92. 92. 
    Pham HT, Nhiep NTH, Vu TNM, Huynh TN, Zhu Y et al. 2018. Enhanced uptake of potassium or glycine betaine or export of cyclic di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant. PLOS Genet 14:e1007574
    [Google Scholar]
  93. 93. 
    Pham TH, Liang ZX, Marcellin E, Turner MS 2016. Replenishing the cyclic di-AMP pool: regulation of diadenylate cyclase activity in bacteria. Curr. Genet. 62:731–38
    [Google Scholar]
  94. 94. 
    Quintana I, Espariz M, Villar S, Gonzalez FB, Pacini F et al. 2018. Genetic engineering of Lactococcus lactis co-producing antigen and the mucosal adjuvant 3′ 5′- cyclic di adenosine monophosphate (c-di-AMP) as a design strategy to develop a mucosal vaccine prototype. Front. Microbiol. 9:2100
    [Google Scholar]
  95. 95. 
    Quintana IM, Gibhardt J, Turdiev A, Hammer E, Commichau FM et al. 2019. The KupA and KupB proteins of Lactococcus lactis IL1403 are novel c-di-AMP receptor proteins responsible for potassium uptake. J. Bacteriol. 201:e00028–19
    [Google Scholar]
  96. 96. 
    Raguse M, Torres R, Seco EM, Gándara C, Ayora S et al. 2017. Bacillus subtilis DisA helps to circumvent replicative stress during spore revival. DNA Repair 59:57–68
    [Google Scholar]
  97. 97. 
    Rao F, See RY, Zhang D, Toh DC, Ji Q, Liang ZX 2010. YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J. Biol. Chem. 285:473–82
    [Google Scholar]
  98. 98. 
    Ren A, Patel DJ. 2015. c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat. Chem. Biol. 10:780–86
    [Google Scholar]
  99. 99. 
    Rismondo J, Gibhardt J, Rosenberg J, Kaever V, Halbedel S, Commichau FM 2016. Phenotypes associated with the essential diadenylate cyclase CdaA and its potential regulator CdaR in the human pathogen Listeria monocytogenes. J. Bacteriol 198:416–26
    [Google Scholar]
  100. 100. 
    Rocha R, Texeira-Duarte CM, Jorge JMP, Morais-Cabral JH 2019. Characterization of the molecular properties of KtrC, a second RCK domain that regulates a Ktr channel in Bacillus subtilis. J. Struct. Biol 205:34–43
    [Google Scholar]
  101. 101. 
    Roelofs KG, Wang J, Sintim HO, Lee VT 2011. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interaction in bacteria. PNAS 108:15528–33
    [Google Scholar]
  102. 102. 
    Romeo Y, Obis D, Bouvier J, Guillot A, Fourçans A et al. 2003. Osmoregulation in Lactococcus lactis: BusR, a transcriptional regulator of the glycine betaine uptake system BusA. Mol. Microbiol. 47:1135–47
    [Google Scholar]
  103. 103. 
    Rosenberg J, Dickmanns A, Neumann P, Gunka K, Arens J et al. 2015. Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes. J. Biol. Chem 290:6596–606
    [Google Scholar]
  104. 104. 
    Rubin BE, Huynh TN, Welkie DG, Diamond S, Simkovsky R et al. 2018. High-throughput interaction screens illuminate the role of c-di-AMP in cyanobacterial nighttime survival. PLOS Genet 14:e1007301
    [Google Scholar]
  105. 105. 
    Sarenko O, Klauck G, Wilke FM, Pfiffer V, Richter AM et al. 2017. More than enzymes that make or break cyclic di-GMP—local signaling in the interactome of GGDEF/EAL domain proteins of Escherichia coli. mBio 8:e01639–17
    [Google Scholar]
  106. 106. 
    Sauer JD, Sotelo-Troha K, von Moltke J, Monroe KM, Rae CS et al. 2011. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun. 79:688–94
    [Google Scholar]
  107. 107. 
    Schär J, Stoll R, Schauer K, Loeffler DI, Eylert E et al. 2010. Pyruvate carboxylase plays a crucial role in carbon metabolism of extra- and intracellularly replicating Listeria monocytogenes. J. Bacteriol 192:1774–84
    [Google Scholar]
  108. 108. 
    Schuster CF, Bellows LE, Tosi T, Campeotto I, Corrigan RM et al. 2016. The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus. Sci. Signal 9:ra81
    [Google Scholar]
  109. 109. 
    Sherlock ME, Sudarsan N, Breaker RR 2018. Riboswitches for the alarmone ppGpp expand the collection of RNA-based signaling systems. PNAS 115:6052–57
    [Google Scholar]
  110. 110. 
    Smith WM, Pham TH, Lei L, Dou J, Soomro AH et al. 2012. Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation in llmg_816 (gdpP) induced by high-temperature growth. Appl. Environ. Microbiol. 78:7753–59
    [Google Scholar]
  111. 111. 
    Song JH, Ko KS, Lee JY, Baek JY, Oh WS et al. 2005. Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol. Cells 19:365–74
    [Google Scholar]
  112. 112. 
    St-Onge RJ, Haiser HJ, Yousef MR, Sherwood E, Tschowri N et al. 2015. Nucleotide second messenger-mediated regulation of a muralytic enzyme in Streptomyces. Mol. Microbiol 96:779–95
    [Google Scholar]
  113. 113. 
    Sureka K, Choi PH, Precit M, Delince M, Pensinger DA et al. 2014. The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158:1389–401
    [Google Scholar]
  114. 114. 
    Tang Q, Luo Y, Zheng C, Yin K, Ali MK et al. 2015. Functional analysis of a c-di-AMP-specific phosphodiesterase MsPDE from Mycobacterium smegmatis. Int. J. Biol. Sci 11:813–24
    [Google Scholar]
  115. 115. 
    Tascón I, Sousa JS, Corey RA, Mills DJ, Griwatz D et al. 2020. Structural basis of proton-coupled potassium transport in the KUP family. Nat. Commun. 11:1626
    [Google Scholar]
  116. 116. 
    Torres R, Carrasco B, Gándara C, Baidya AK, Ben-Yehuda S, Alonso JC 2019. Bacillus subtilis DisA regulates RecA-mediated DNA strand exchange. Nucleic Acids Res 47:5141–54
    [Google Scholar]
  117. 117. 
    Tosi T, Hoshiga F, Millership C, Singh R, Eldrid C et al. 2019. Inhibition of the Staphylococcus aureus c-di-AMP cyclase DacA by direct interaction with the phosphoglucosamine mutase GlmM. PLOS Pathog 15:e1007537
    [Google Scholar]
  118. 118. 
    Townsley L, Yannarell SM, Huynh TN, Woodward JJ, Shank EA 2018. Cyclic di-AMP acts as an extracellular signal that impacts Bacillus subtilis biofilm formation and plant attachment. mBio 9:e00341–18
    [Google Scholar]
  119. 119. 
    Tschowri N, Schumacher MA, Schlimpert S, Chinnam NB, Findlay KC et al. 2014. Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 158:1136–47
    [Google Scholar]
  120. 120. 
    Volckmar J, Knop L, Stegemann-Koniszewski S, Schulze K, Ebensen T et al. 2019. The STING activator c-di-AMP exerts superior adjuvant properties than the formulation poly(I:C)/CpG after subcutaneous vaccination with soluble protein antigen or DEC-205-mediated antigen targeting to dendritic cells. Vaccine 37:4963–74
    [Google Scholar]
  121. 121. 
    Wang X, Cai X, Ma H, Yin W, Zhu L et al. 2019. A c-di-AMP riboswitch controlling kdpFABC operon transcription regulates the potassium transporter system in Bacillus thuringiensis. Commun. Biol 2:151
    [Google Scholar]
  122. 122. 
    Whatmore AM, Reed RH. 1990. Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J. Gen. Microbiol. 136:2521–26
    [Google Scholar]
  123. 123. 
    Whiteley AT, Garelis NE, Peterson BN, Choi PH, Tong L et al. 2017. c-di-AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation. Mol. Microbiol. 104:212–33
    [Google Scholar]
  124. 124. 
    Whiteley AT, Pollock AJ, Portnoy DA 2015. The PAMP c-di-AMP is essential for Listeria monocytogenes growth in rich but not minimal media due to a toxic increase in (p)ppGpp. Cell Host Microbe 17:788–98
    [Google Scholar]
  125. 125. 
    Witte CE, Whiteley AT, Burke TP, Sauer JD, Portnoy DA, Woodward JJ 2013. Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. mBio 4:e00282–13
    [Google Scholar]
  126. 126. 
    Witte G, Hartung S, Büttner K, Hopfner KP 2008. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell 30:167–78
    [Google Scholar]
  127. 127. 
    Woodward JJ, Lavarone AT, Portnoy DA 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703–5
    [Google Scholar]
  128. 128. 
    Yang J, Bai Y, Zhang Y, Gabrielle VD, Jin L, Bai G 2014. Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to virulence in a mouse model of infection. Mol. Microbiol. 93:65–79
    [Google Scholar]
  129. 129. 
    Zarrella TM, Metzger DW, Bai G 2018. Stress suppressor screening leads to detecting regulation of cyclic di-AMP homeostasis by a Trk-family effector protein in Streptococcus pneumoniae. J. Bacteriol 200:e00045-18
    [Google Scholar]
  130. 130. 
    Zarrella TM, Yang J, Metzger DW, Bai G 2019. The bacterial second messenger cyclic di-AMP modulates the competence state in Streptococcus pneumoniae. J. Bacteriol 202:e00691–19
    [Google Scholar]
  131. 131. 
    Zeden MS, Kviatkovski I, Schuster CF, Thomas VC, Fey PD, Gründling A 2020. Identification of the main glutamine and glutamate transporters in Staphylococcus aureus and their impact on c-di-AMP production. Mol. Microbiol. 113:1085–100
    [Google Scholar]
  132. 132. 
    Zeden MS, Schuster CF, Bowman L, Zhong Q, Williams HD, Gründling A 2018. Cyclic di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions. J. Biol. Chem. 293:3180–200
    [Google Scholar]
  133. 133. 
    Zhang L, He ZG. 2013. Radiation-sensitive gene A (RadA) targets DisA, DNA integrity scanning protein A, to negatively affect cyclic di-AMP synthesis activity in Mycobacterium smegmatis. J. Biol. Chem 288:22426–36
    [Google Scholar]
  134. 134. 
    Zhang L, Li W, He ZG 2013. DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. J. Biol. Chem 288:3085–96
    [Google Scholar]
  135. 135. 
    Zhu Y, Pham TH, Nhiep TH, Vu NM, Marcellin E et al. 2016. Cyclic-di-AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan biosynthesis enzyme GlmM in Lactococcus lactis. Mol. Microbiol 99:1015–27
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115943
Loading
/content/journals/10.1146/annurev-micro-020518-115943
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error