1932

Abstract

The fungal pathogens , , and have transitioned from a rare curiosity to a leading cause of human mortality. The management of infections caused by these organisms is intimately dependent on the efficacy of antifungal agents; however, fungi that are resistant to these treatments are regularly isolated in the clinic, impeding our ability to control infections. Given the significant impact fungal pathogens have on human health, it is imperative to understand the molecular mechanisms that govern antifungal drug resistance. This review describes our current knowledge of the mechanisms by which antifungal drug resistance evolves in experimental populations and clinical settings. We explore current antifungal treatment options and discuss promising strategies to impede the evolution of drug resistance. By tackling antifungal drug resistance as an evolutionary problem, there is potential to improve the utility of current treatments and accelerate the development of novel therapeutic strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-030117-020345
2017-09-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/71/1/annurev-micro-030117-020345.html?itemId=/content/journals/10.1146/annurev-micro-030117-020345&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson JB. 1.  2005. Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat. Rev. Microbiol. 3:547–56 [Google Scholar]
  2. Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS. 2.  et al. 2014. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 10:400–6Challenging the accepted ion channel model for polyene activity, this study illustrated that polyenes extract sterols from the cell membrane. [Google Scholar]
  3. Andersson DI, Hughes D. 3.  2010. Antibiotic resistance and its cost: Is it possible to reverse resistance?. Nat. Rev. Microbiol. 8:260–71 [Google Scholar]
  4. Araujo R, Pina-Vaz C, Goncalves Rodrigues A. 4.  2007. Susceptibility of environmental versus clinical strains of pathogenic Aspergillus. Int. J. Antimicrob. Agents 29:108–11 [Google Scholar]
  5. Arendrup MC, Perlin DS. 5.  2014. Echinocandin resistance: an emerging clinical problem?. Curr. Opin. Infect. Dis. 27:484–92 [Google Scholar]
  6. Bahn YS, Staab J, Sundstrom P. 6.  2003. Increased high-affinity phosphodiesterase PDE2 gene expression in germ tubes counteracts CAP1-dependent synthesis of cyclic AMP, limits hypha production and promotes virulence of Candida albicans. Mol. Microbiol. 50:391–409 [Google Scholar]
  7. Baym M, Stone LK, Kishony R. 7.  2016. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351:aad3292 [Google Scholar]
  8. Bennett JW, Chung KT. 8.  2001. Alexander Fleming and the discovery of penicillin. Adv. Appl. Microbiol. 49:163–84 [Google Scholar]
  9. Bien CM, Espenshade PJ. 9.  2010. Sterol regulatory element binding proteins in fungi: hypoxic transcription factors linked to pathogenesis. Eukaryot. Cell 9:352–59 [Google Scholar]
  10. Blankenship JR, Steinbach WJ, Perfect JR, Heitman J. 10.  2003. Teaching old drugs new tricks: reincarnating immunosuppressants as antifungal drugs. Curr. Opin. Investig. Drugs 4:192–99 [Google Scholar]
  11. Blum G, Hortnagl C, Jukic E, Erbeznik T, Pumpel T. 11.  et al. 2013. New insight into amphotericin B resistance in Aspergillus terreus. Antimicrob. Agents Chemother. 57:1583–88 [Google Scholar]
  12. Braun BR, Kadosh D, Johnson AD. 12.  2001. NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction. EMBO J. 20:4753–61 [Google Scholar]
  13. Brown ED, Wright GD. 13.  2016. Antibacterial drug discovery in the resistance era. Nature 529:336–43 [Google Scholar]
  14. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 14.  2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4:165rv13 [Google Scholar]
  15. Brown GD, Denning DW, Levitz SM. 15.  2012. Tackling human fungal infections. Science 336:647 [Google Scholar]
  16. Butts A, DiDone L, Koselny K, Baxter BK, Chabrier-Rosello Y. 16.  et al. 2013. A repurposing approach identifies off-patent drugs with fungicidal cryptococcal activity, a common structural chemotype, and pharmacological properties relevant to the treatment of cryptococcosis. Eukaryot. Cell 12:278–87 [Google Scholar]
  17. Calvet HM, Yeaman MR, Filler SG. 17.  1997. Reversible fluconazole resistance in Candida albicans: a potential in vitro model. Antimicrob. Agents Chemother. 41:535–39 [Google Scholar]
  18. Calvo B, Melo AS, Perozo-Mena A, Hernandez M, Francisco EC. 18.  et al. 2016. First report of Candida auris in America: clinical and microbiological aspects of 18 episodes of candidemia. J. Infect. 73:369–74 [Google Scholar]
  19. Carroll L. 19.  1871. Through the Looking-Glass London: Macmillan
  20. Casadevall A, Cleare W, Feldmesser M, Glatman-Freedman A, Goldman DL. 20.  et al. 1998. Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob. Agents Chemother. 42:1437–46 [Google Scholar]
  21. Casadevall A, Mukherjee J, Devi SJ, Schneerson R, Robbins JB, Scharff MD. 21.  1992. Antibodies elicited by a Cryptococcus neoformans-tetanus toxoid conjugate vaccine have the same specificity as those elicited in infection. J. Infect. Dis. 165:1086–93 [Google Scholar]
  22. 22. Cent. Dis. Control Prev. (CDC). 2013. Antibiotic Resistance Threats in the United States, 2013 Atlanta: CDC
  23. Chang YC, Ingavale SS, Bien C, Espenshade P, Kwon-Chung KJ. 23.  2009. Conservation of the sterol regulatory element-binding protein pathway and its pathobiological importance in Cryptococcus neoformans. Eukaryot. Cell 8:1770–79 [Google Scholar]
  24. Chen G, Mulla WA, Kucharavy A, Tsai HJ, Rubinstein B. 24.  et al. 2015. Targeting the adaptability of heterogeneous aneuploids. Cell 160:771–84 [Google Scholar]
  25. Chowdhary A, Anil Kumar V, Sharma C, Prakash A, Agarwal K. 25.  et al. 2014. Multidrug-resistant endemic clonal strain of Candida auris in India. Eur. J. Clin. Microbiol. Infect. Dis. 33:919–26 [Google Scholar]
  26. Clatworthy AE, Pierson E, Hung DT. 26.  2007. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 3:541–48 [Google Scholar]
  27. Coste A, Selmecki A, Forche A, Diogo D, Bougnoux ME. 27.  et al. 2007. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot. Cell 6:1889–904 [Google Scholar]
  28. Coste A, Turner V, Ischer F, Morschhauser J, Forche A. 28.  et al. 2006. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172:2139–56 [Google Scholar]
  29. Cowen LE. 29.  2008. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 6:187–98 [Google Scholar]
  30. Cowen LE. 30.  2013. The fungal Achilles’ heel: targeting Hsp90 to cripple fungal pathogens. Curr. Opin. Microbiol. 16:377–84 [Google Scholar]
  31. Cowen LE, Lindquist S. 31.  2005. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309:2185–89This work established that Hsp90 enables the evolution of drug resistance by stabilizing key signal transducers. [Google Scholar]
  32. Cowen LE, Sanglard D, Calabrese D, Sirjusingh C, Anderson JB, Kohn LM. 32.  2000. Evolution of drug resistance in experimental populations of Candida albicans. J. Bacteriol. 182:1515–22 [Google Scholar]
  33. Cowen LE, Singh SD, Kohler JR, Collins C, Zaas AK. 33.  et al. 2009. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. PNAS 106:2818–23 [Google Scholar]
  34. Cowen LE, Steinbach WJ. 34.  2008. Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryot. Cell 7:747–64 [Google Scholar]
  35. Cruz MC, Goldstein AL, Blankenship J, Del Poeta M, Perfect JR. 35.  et al. 2001. Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob. Agents Chemother. 45:3162–70 [Google Scholar]
  36. Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D. 36.  et al. 2002. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J. 21:546–59 [Google Scholar]
  37. D'Costa VM, King CE, Kalan L, Morar M, Sung WW. 37.  et al. 2011. Antibiotic resistance is ancient. Nature 477:457–61This study highlighted that antibiotic resistance is a natural phenomenon predating the modern clinical use of antibiotics. [Google Scholar]
  38. da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, Malavazi I, Perlin D. 38.  et al. 2004. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob. Agents Chemother. 48:4405–13 [Google Scholar]
  39. Day JN, Chau TT, Wolbers M, Mai PP, Dung NT. 39.  et al. 2013. Combination antifungal therapy for cryptococcal meningitis. N. Engl. J. Med. 368:1291–302 [Google Scholar]
  40. Denning DW. 40.  2003. Echinocandin antifungal drugs. Lancet 362:1142–51 [Google Scholar]
  41. Diaz-Guerra TM, Mellado E, Cuenca-Estrella M, Rodriguez-Tudela JL. 41.  2003. A point mutation in the 14α-sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus. Antimicrob. Agents Chemother. 47:1120–24 [Google Scholar]
  42. Drawz SM, Bonomo RA. 42.  2010. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 23:160–201 [Google Scholar]
  43. Dunkel N, Liu TT, Barker KS, Homayouni R, Morschhauser J, Rogers PD. 43.  2008. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot. Cell 7:1180–90 [Google Scholar]
  44. Eilam Y, Polacheck I, Ben-Gigi G, Chernichovsky D. 44.  1987. Activity of phenothiazines against medically important yeasts. Antimicrob. Agents Chemother. 31:834–36 [Google Scholar]
  45. Elena SF, Lenski RE. 45.  2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4:457–69 [Google Scholar]
  46. Esquivel BD, Smith AR, Zavrel M, White TC. 46.  2015. Azole drug import into the pathogenic fungus Aspergillus fumigatus. Antimicrob. Agents Chemother. 59:3390–98 [Google Scholar]
  47. Fairlamb AH, Gow NA, Matthews KR, Waters AP. 47.  2016. Drug resistance in eukaryotic microorganisms. Nat. Microbiol. 1:16092 [Google Scholar]
  48. Fanos V, Cataldi L. 48.  2000. Amphotericin B-induced nephrotoxicity: a review. J. Chemother. 12:463–70 [Google Scholar]
  49. Finkel JS, Mitchell AP. 49.  2011. Genetic control of Candida albicans biofilm development. Nat. Rev. Microbiol. 9:109–18 [Google Scholar]
  50. Forche A, Magee PT, Selmecki A, Berman J, May G. 50.  2009. Evolution in Candida albicans populations during a single passage through a mouse host. Genetics 182:799–811 [Google Scholar]
  51. Ford CB, Funt JM, Abbey D, Issi L, Guiducci C. 51.  et al. 2015. The evolution of drug resistance in clinical isolates of Candida albicans. eLife 4:e00662 [Google Scholar]
  52. Gauwerky K, Borelli C, Korting HC. 52.  2009. Targeting virulence: a new paradigm for antifungals. Drug Discov. Today 14:214–22 [Google Scholar]
  53. Hamill RJ. 53.  2013. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73:919–34 [Google Scholar]
  54. Harrison BD, Hashemi J, Bibi M, Pulver R, Bavli D. 54.  et al. 2014. A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole. PLOS Biol 12:e1001815 [Google Scholar]
  55. Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE. 55.  et al. 2002. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N. Engl. J. Med. 347:408–15 [Google Scholar]
  56. Hill JA, Ammar R, Torti D, Nislow C, Cowen LE. 56.  2013. Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations. PLOS Genet 9:e1003390This was the first analysis of the genomic architecture of the evolution of resistance to antifungal combinations. [Google Scholar]
  57. Hill JA, Cowen LE. 57.  2015. Using combination therapy to thwart drug resistance. Future Microbiol 10:1719–26 [Google Scholar]
  58. Hill JA, O'Meara TR, Cowen LE. 58.  2015. Fitness trade-offs associated with the evolution of resistance to antifungal drug combinations. Cell Rep 10:809–19 [Google Scholar]
  59. Hoot SJ, Smith AR, Brown RP, White TC. 59.  2011. An A643V amino acid substitution in Upc2p contributes to azole resistance in well-characterized clinical isolates of Candida albicans. Antimicrob. Agents Chemother. 55:940–42 [Google Scholar]
  60. King AM, Reid-Yu SA, Wang W, King DT, De Pascale G. 60.  et al. 2014. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510:503–6 [Google Scholar]
  61. Kumamoto CA, Vinces MD. 61.  2005. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol 7:1546–54 [Google Scholar]
  62. LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M. 62.  et al. 2010. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLOS Pathog 6:e1001069 [Google Scholar]
  63. LaFleur MD, Kumamoto CA, Lewis K. 63.  2006. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. 50:3839–46 [Google Scholar]
  64. Lamoth F, Alexander BD, Juvvadi PR, Steinbach WJ. 64.  2015. Antifungal activity of compounds targeting the Hsp90-calcineurin pathway against various mould species. J. Antimicrob. Chemother. 70:1408–11 [Google Scholar]
  65. Lamoth F, Juvvadi PR, Gehrke C, Steinbach WJ. 65.  2013. In vitro activity of calcineurin and heat shock protein 90 inhibitors against Aspergillus fumigatus azole- and echinocandin-resistant strains. Antimicrob. Agents Chemother. 57:1035–39 [Google Scholar]
  66. Laprade L, Boyartchuk VL, Dietrich WF, Winston F. 66.  2002. Spt3 plays opposite roles in filamentous growth in Saccharomyces cerevisiae and Candida albicans and is required for C. albicans virulence. Genetics 161:509–19 [Google Scholar]
  67. Larsen RA, Pappas PG, Perfect J, Aberg JA, Casadevall A. 67.  et al. 2005. Phase I evaluation of the safety and pharmacokinetics of murine-derived anticryptococcal antibody 18B7 in subjects with treated cryptococcal meningitis. Antimicrob. Agents Chemother. 49:952–58 [Google Scholar]
  68. Leberer E, Harcus D, Dignard D, Johnson L, Ushinsky S. 68.  et al. 2001. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol. Microbiol. 42:673–87 [Google Scholar]
  69. Leonardelli F, Macedo D, Dudiuk C, Cabeza MS, Gamarra S, Garcia-Effron G. 69.  2016. Aspergillus fumigatus intrinsic fluconazole resistance is due to the naturally occurring T301I substitution in Cyp51Ap. Antimicrob. Agents Chemother. 60:5420–26 [Google Scholar]
  70. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. 70.  1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–49 [Google Scholar]
  71. Maclean RC, Hall AR, Perron GG, Buckling A. 71.  2010. The evolution of antibiotic resistance: insight into the roles of molecular mechanisms of resistance and treatment context. Discov. Med. 10:112–18 [Google Scholar]
  72. Maligie MA, Selitrennikoff CP. 72.  2005. Cryptococcus neoformans resistance to echinocandins: (1,3)β-glucan synthase activity is sensitive to echinocandins. Antimicrob. Agents Chemother. 49:2851–56 [Google Scholar]
  73. Mann PA, Parmegiani RM, Wei SQ, Mendrick CA, Li X. 73.  et al. 2003. Mutations in Aspergillus fumigatus resulting in reduced susceptibility to posaconazole appear to be restricted to a single amino acid in the cytochrome P450 14α-demethylase. Antimicrob. Agents Chemother. 47:577–81 [Google Scholar]
  74. Mansfield BE, Oltean HN, Oliver BG, Hoot SJ, Leyde SE. 74.  et al. 2010. Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi. PLOS Pathog 6:e1001126 [Google Scholar]
  75. Marichal P, Koymans L, Willemsens S, Bellens D, Verhasselt P. 75.  et al. 1999. Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 145:2701–13 [Google Scholar]
  76. Martin DE, Hall MN. 76.  2005. The expanding TOR signaling network. Curr. Opin. Cell Biol. 17:158–66 [Google Scholar]
  77. Mathe L, Van Dijck P. 77.  2013. Recent insights into Candida albicans biofilm resistance mechanisms. Curr. Genet. 59:251–64 [Google Scholar]
  78. Meletiadis J, Antachopoulos C, Stergiopoulou T, Pournaras S, Roilides E, Walsh TJ. 78.  2007. Differential fungicidal activities of amphotericin B and voriconazole against Aspergillus species determined by microbroth methodology. Antimicrob. Agents Chemother. 51:3329–37 [Google Scholar]
  79. Miceli MH, Kauffman CA. 79.  2015. Isavuconazole: a new broad-spectrum triazole antifungal agent. Clin. Infect. Dis. 61:1558–65 [Google Scholar]
  80. Morio F, Pagniez F, Besse M, Gay-andrieu F, Miegeville M, Le Pape P. 80.  2013. Deciphering azole resistance mechanisms with a focus on transcription factor-encoding genes TAC1,MRR1 and UPC2 in a set of fluconazole-resistant clinical isolates of Candida albicans. Int. J. Antimicrob. Agents 42:410–15 [Google Scholar]
  81. Morschhauser J, Barker KS, Liu TT, Bla BWJ, Homayouni R, Rogers PD. 81.  2007. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLOS Pathog. 3:e164 [Google Scholar]
  82. Murad AM, Leng P, Straffon M, Wishart J, Macaskill S. 82.  et al. 2001. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 20:4742–52 [Google Scholar]
  83. Niimi K, Monk BC, Hirai A, Hatakenaka K, Umeyama T. 83.  et al. 2010. Clinically significant micafungin resistance in Candida albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by loss of heterozygosity. J. Antimicrob. Chemother. 65:842–52 [Google Scholar]
  84. Nishikawa JL, Boeszoermenyi A, Vale-Silva LA, Torelli R, Posteraro B. 84.  et al. 2016. Inhibiting fungal multidrug resistance by disrupting an activator–Mediator interaction. Nature 530:485–89The authors identified a small-molecule inhibitor that blocks efflux pump overexpression and resensitizes drug-resistant Candida glabrata to azoles. [Google Scholar]
  85. Noble SM, French S, Kohn LA, Chen V, Johnson AD. 85.  2010. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat. Genet. 42:590–98 [Google Scholar]
  86. Nosanchuk JD, Ovalle R, Casadevall A. 86.  2001. Glyphosate inhibits melanization of Cryptococcus neoformans and prolongs survival of mice after systemic infection. J. Infect. Dis. 183:1093–99 [Google Scholar]
  87. Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. 87.  2010. An insight into the antifungal pipeline: selected new molecules and beyond. Nat. Rev. Drug Disc. 9:719–27 [Google Scholar]
  88. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA. 88.  et al. 2016. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 62:e1–50 [Google Scholar]
  89. Park S, Kelly R, Kahn JN, Robles J, Hsu MJ. 89.  et al. 2005. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob. Agents Chemother. 49:3264–73 [Google Scholar]
  90. Patterson TF, Thompson GR III, Denning DW, Fishman JA, Hadley S. 90.  et al. 2016. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 63:e1–60 [Google Scholar]
  91. Perlin DS. 91.  2007. Resistance to echinocandin-class antifungal drugs. Drug Resist. Updat. 10:121–30 [Google Scholar]
  92. Perlin DS. 92.  2011. Current perspectives on echinocandin class drugs. Future Microbiol 6:441–57 [Google Scholar]
  93. Perlin DS. 93.  2015. Mechanisms of echinocandin antifungal drug resistance. Ann. N.Y. Acad. Sci. 1354:1–11 [Google Scholar]
  94. Pfaller MA, Diekema DJ. 94.  2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20:133–63 [Google Scholar]
  95. Pfaller MA, Diekema DJ. 95.  2010. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol. 36:1–53 [Google Scholar]
  96. Polvi EJ, Averette AF, Lee SC, Kim T, Bahn YS. 96.  et al. 2016. Metal chelation as a powerful strategy to probe cellular circuitry governing fungal drug resistance and morphogenesis. PLOS Genet 12:e1006350 [Google Scholar]
  97. Robbins N, Collins C, Morhayim J, Cowen LE. 97.  2010. Metabolic control of antifungal drug resistance. Fungal Genet. Biol. 47:81–93 [Google Scholar]
  98. Robbins N, Spitzer M, Yu T, Cerone RP, Averette AK. 98.  et al. 2015. An antifungal combination matrix identifies a rich pool of adjuvant molecules that enhance drug activity against diverse fungal pathogens. Cell Rep 13:1481–92 [Google Scholar]
  99. Robbins N, Wright GD, Cowen LE. 99.  2016. Antifungal drugs: the current armamentarium and development of new agents. Microbiol. Spectr. 4:FUNK–00022016 [Google Scholar]
  100. Rodero L, Mellado E, Rodriguez AC, Salve A, Guelfand L. 100.  et al. 2003. G484S amino acid substitution in lanosterol 14-α demethylase (ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate. Antimicrob. Agents Chemother. 47:3653–56 [Google Scholar]
  101. Roemer T, Krysan DJ. 101.  2014. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med. 4:a019703 [Google Scholar]
  102. Schmelzle T, Hall MN. 102.  2000. TOR, a central controller of cell growth. Cell 103:253–62 [Google Scholar]
  103. Schulz zur Wiesch P, Engelstadter J, Bonhoeffer S. 103.  2010. Compensation of fitness costs and reversibility of antibiotic resistance mutations. Antimicrob. Agents Chemother. 54:2085–95 [Google Scholar]
  104. Selmecki AM, Forche A, Berman J. 104.  2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313:367–70The first evidence linking a specific aneuploidy with azole resistance in C. albicans was provided by this study. [Google Scholar]
  105. Selmecki AM, Gerami-Nejad M, Paulson C, Forche A, Berman J. 105.  2008. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68:624–41 [Google Scholar]
  106. Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J. 106.  2009. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLOS Genet 5:e1000705 [Google Scholar]
  107. Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N. 107.  et al. 2015. Polyploidy can drive rapid adaptation in yeast. Nature 519:349–52This study provided quantitative evidence that in particular environments, polyploidy can accelerate evolutionary adaptation in yeast. [Google Scholar]
  108. Shapiro RS, Robbins N, Cowen LE. 108.  2011. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev. 75:213–67This serves as a comprehensive review of the regulatory circuitry important for fungal pathogenesis and drug resistance. [Google Scholar]
  109. Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H. 109.  et al. 2009. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr. Biol. 19:621–29 [Google Scholar]
  110. Shapiro S, Beenhouwer DO, Feldmesser M, Taborda C, Carroll MC. 110.  et al. 2002. Immunoglobulin G monoclonal antibodies to Cryptococcus neoformans protect mice deficient in complement component C3. Infect. Immun. 70:2598–604 [Google Scholar]
  111. Shekhar-Guturja T, Gunaherath GM, Wijeratne EM, Lambert JP, Averette AF. 111.  et al. 2016. Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nat. Chem. Biol. 12:867–75This work established that the natural product beauvericin targets both multidrug efflux and TOR signaling in fungi. [Google Scholar]
  112. Shekhar-Guturja T, Tebung WA, Mount H, Liu N, Kohler JR. 112.  et al. 2016. Beauvericin potentiates azole activity via inhibition of multidrug efflux, blocks Candida albicans morphogenesis, and is effluxed via Yor1 and circuitry controlled by Zcf29. Antimicrob. Agents Chemother. 60:7468–80 [Google Scholar]
  113. Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE. 113.  2009. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLOS Pathog 5:e1000532 [Google Scholar]
  114. Singh-Babak SD, Babak T, Diezmann S, Hill JA, Xie JL. 114.  et al. 2012. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLOS Pathog. 8:e1002718 [Google Scholar]
  115. Sionov E, Chang YC, Garraffo HM, Kwon-Chung KJ. 115.  2009. Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob. Agents Chemother. 53:2804–15 [Google Scholar]
  116. Sionov E, Chang YC, Kwon-Chung KJ. 116.  2013. Azole heteroresistance in Cryptococcus neoformans: emergence of resistant clones with chromosomal disomy in the mouse brain during fluconazole treatment. Antimicrob. Agents Chemother. 57:5127–30 [Google Scholar]
  117. Sionov E, Lee H, Chang YC, Kwon-Chung KJ. 117.  2010. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLOS Pathog 6:e1000848 [Google Scholar]
  118. Spitzer M, Griffiths E, Blakely KM, Wildenhain J, Ejim L. 118.  et al. 2011. Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Mol. Syst. Biol. 7:499 [Google Scholar]
  119. Spitzer M, Robbins N, Wright GD. 119.  2017. Combinatorial strategies for combating invasive fungal infections. Virulence 8:169–85 [Google Scholar]
  120. Stevens DA, Ichinomiya M, Koshi Y, Horiuchi H. 120.  2006. Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for β-1,6-glucan synthesis inhibition by caspofungin. Antimicrob. Agents Chemother. 50:3160–61 [Google Scholar]
  121. Stone LK, Baym M, Lieberman TD, Chait R, Clardy J, Kishony R. 121.  2016. Compounds that select against the tetracycline-resistance efflux pump. Nat. Chem. Biol. 12:902–4 [Google Scholar]
  122. Taff HT, Mitchell KF, Edward JA, Andes DR. 122.  2013. Mechanisms of Candida biofilm drug resistance. Future Microbiol 8:1325–37 [Google Scholar]
  123. Taipale M, Jarosz DF, Lindquist S. 123.  2010. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11:515–28 [Google Scholar]
  124. Tobin MB, Peery RB, Skatrud PL. 124.  1997. Genes encoding multiple drug resistance-like proteins in Aspergillusfumigatus and Aspergillus flavus. Gene 200:11–23 [Google Scholar]
  125. Varma A, Kwon-Chung KJ. 125.  2010. Heteroresistance of Cryptococcus gattii to fluconazole. Antimicrob. Agents Chemother. 54:2303–11 [Google Scholar]
  126. Venkateswarlu K, Taylor M, Manning NJ, Rinaldi MG, Kelly SL. 126.  1997. Fluconazole tolerance in clinical isolates of Cryptococcus neoformans. Antimicrob. Agents Chemother. 41:748–51 [Google Scholar]
  127. Veri A, Cowen LE. 127.  2014. Progress and prospects for targeting Hsp90 to treat fungal infections. Parasitology 141:1127–37 [Google Scholar]
  128. Vincent BM, Lancaster AK, Scherz-Shouval R, Whitesell L, Lindquist S. 128.  2013. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLOS Biol 11:e1001692This study revealed that mutations conferring amphotericin B resistance are deleterious due to an increased sensitivity to host-relevant stresses. [Google Scholar]
  129. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP. 129.  et al. 2008. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin. Infect. Dis. 46:327–60 [Google Scholar]
  130. Wang Y, Casadevall A. 130.  1996. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to the melanin-binding compounds trifluoperazine and chloroquine. Antimicrob. Agents Chemother. 40:541–45 [Google Scholar]
  131. White TC. 131.  1997. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob. Agents Chemother. 41:1482–87 [Google Scholar]
  132. White TC. 132.  1997. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14α demethylase in Candida albicans. Antimicrob. Agents Chemother. 41:1488–94 [Google Scholar]
  133. White TC, Pfaller MA, Rinaldi MG, Smith J, Redding SW. 133.  1997. Stable azole drug resistance associated with a substrain of Candida albicans from an HIV-infected patient. Oral Dis 3:Suppl. 1S102–9 [Google Scholar]
  134. Wiederhold NP. 134.  2007. Attenuation of echinocandin activity at elevated concentrations: a review of the paradoxical effect. Curr. Opin. Infect. Dis. 20:574–78 [Google Scholar]
  135. Willger SD, Puttikamonkul S, Kim KH, Burritt JB, Grahl N. 135.  et al. 2008. A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLOS Pathog. 4:e1000200 [Google Scholar]
  136. Wong GK, Griffith S, Kojima I, Demain AL. 136.  1998. Antifungal activities of rapamycin and its derivatives, prolylrapamycin, 32-desmethylrapamycin, and 32-desmethoxyrapamycin. J. Antibiot. 51:487–91 [Google Scholar]
  137. Wright GD. 137.  2007. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 5:175–86 [Google Scholar]
  138. Wright GD. 138.  2015. Solving the antibiotic crisis. ACS Infect. Dis. 1:80–84 [Google Scholar]
/content/journals/10.1146/annurev-micro-030117-020345
Loading
/content/journals/10.1146/annurev-micro-030117-020345
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error